Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.087
Filtrar
1.
Nat Commun ; 15(1): 5697, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972900

RESUMO

Climate and environmental changes threaten human mental health, but the impacts of specific environmental conditions on neuropsychiatric disorders remain largely unclear. Here, we show the impact of a humid heat environment on the brain and the gut microbiota using a conditioned housing male mouse model. We demonstrate that a humid heat environment can cause anxiety-like behaviour in male mice. Microbial 16 S rRNA sequencing analysis reveals that a humid heat environment caused gut microbiota dysbiosis (e.g., decreased abundance of Lactobacillus murinus), and metabolomics reveals an increase in serum levels of secondary bile acids (e.g., lithocholic acid). Moreover, increased neuroinflammation is indicated by the elevated expression of proinflammatory cytokines in the serum and cortex, activated PI3K/AKT/NF-κB signalling and a microglial response in the cortex. Strikingly, transplantation of the microbiota from mice reared in a humid heat environment readily recapitulates these abnormalities in germ-free mice, and these abnormalities are markedly reversed by Lactobacillus murinus administration. Human samples collected during the humid heat season also show a decrease in Lactobacillus murinus abundance and an increase in the serum lithocholic acid concentration. In conclusion, gut microbiota dysbiosis induced by a humid heat environment drives the progression of anxiety disorders by impairing bile acid metabolism and enhancing neuroinflammation, and probiotic administration is a potential therapeutic strategy for these disorders.


Assuntos
Ansiedade , Ácidos e Sais Biliares , Disbiose , Microbioma Gastrointestinal , Temperatura Alta , Animais , Masculino , Camundongos , Ácidos e Sais Biliares/metabolismo , Humanos , Disbiose/microbiologia , Ansiedade/microbiologia , Camundongos Endogâmicos C57BL , Umidade , Ácido Litocólico/metabolismo , Lactobacillus , Encéfalo/metabolismo , NF-kappa B/metabolismo , RNA Ribossômico 16S/genética , Modelos Animais de Doenças , Transtornos de Ansiedade/metabolismo , Transtornos de Ansiedade/microbiologia , Transtornos de Ansiedade/etiologia , Transdução de Sinais , Citocinas/metabolismo
2.
ACS Chem Biol ; 19(7): 1440-1446, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38901034

RESUMO

Peptide-bile acid hybrids offer promising drug candidates due to enhanced pharmacological properties, such as improved protease resistance and oral bioavailability. However, it remains unknown whether bile acids can be incorporated into peptide chains by the ribosome to produce a peptide-bile acid hybrid macrocyclic peptide library for target-based de novo screening. In this study, we achieved the ribosomal incorporation of lithocholic acid (LCA)-d-tyrosine into peptide chains. This led to the construction of a peptide-LCA hybrid macrocyclic peptide library, which enabled the identification of peptides TP-2C-4L3 (targeting Trop2) and EP-2C-4L5 (targeting EphA2) with strong binding affinities. Notably, LCA was found to directly participate in binding to EphA2 and confer on the peptides improved stability and resistance to proteases. Cell staining experiments confirmed the high specificity of the peptides for targeting Trop2 and EphA2. This study highlights the benefits of LCA in peptides and paves the way for de novo discovery of stable peptide-LCA hybrid drugs.


Assuntos
Ácido Litocólico , Biblioteca de Peptídeos , Peptídeos , Ribossomos , Ácido Litocólico/química , Ácido Litocólico/análogos & derivados , Ácido Litocólico/metabolismo , Ribossomos/metabolismo , Humanos , Peptídeos/química , Peptídeos/metabolismo , Receptor EphA2/metabolismo , Receptor EphA2/química , Descoberta de Drogas , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo
3.
Mol Pharm ; 21(7): 3566-3576, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38899552

RESUMO

Oxidative stress is pivotal in retinal disease progression, causing dysfunction in various retinal components. An effective antioxidant, such as probucol (PB), is vital to counteract oxidative stress and emerges as a potential candidate for treating retinal degeneration. However, the challenges associated with delivering lipophilic drugs such as PB to the posterior segment of the eye, specifically targeting photoreceptor cells, necessitate innovative solutions. This study uses formulation-based spray dry encapsulation technology to develop polymer-based PB-lithocholic acid (LCA) nanoparticles and assesses their efficacy in the 661W photoreceptor-like cell line. Incorporating LCA enhances nanoparticles' biological efficacy without compromising PB stability. In vitro studies demonstrate that PB-LCA nanoparticles prevent reactive oxygen species (ROS)-induced oxidative stress by improving cellular viability through the nuclear erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. These findings propose PB-LCA nanoparticles as a promising therapeutic strategy for oxidative stress-induced retinopathies.


Assuntos
Antioxidantes , Ácido Litocólico , Nanopartículas , Estresse Oxidativo , Polímeros , Probucol , Espécies Reativas de Oxigênio , Probucol/farmacologia , Probucol/administração & dosagem , Probucol/química , Estresse Oxidativo/efeitos dos fármacos , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Ácido Litocólico/química , Ácido Litocólico/farmacologia , Animais , Polímeros/química , Linhagem Celular , Antioxidantes/farmacologia , Antioxidantes/química , Fator 2 Relacionado a NF-E2/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Heme Oxigenase-1/metabolismo , Humanos
4.
Mol Nutr Food Res ; 68(11): e2300910, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38794856

RESUMO

Gut epithelial barrier disruption is commonly observed in Western diseases like diabetes and inflammatory bowel disease (IBD). Enhanced epithelial permeability triggers inflammatory responses and gut microbiota dysbiosis. Reduced bacterial diversity in IBD affects gut microbiota metabolism, altering microbial products such as secondary bile acids (BAs), which potentially play a role in gut barrier regulation and immunity. Dietary fibers such as pectin may substitute effects of these BAs. The study examines transepithelial electrical resistance of gut epithelial T84 cells and the gene expression of tight junctions after exposure to (un)sulfated secondary BAs. This is compared to the impact of the dietary fiber pectin with different degrees of methylation (DM) and blockiness (DB), with disruption induced by calcium ionophore A23187 under both normal and hyperglycemic conditions. Unsulfated lithocholic acid (LCA) and deoxycholic acid (DCA) show a stronger rescuing effect, particularly evident under 20 mM glucose levels. DM19 with high DB (HB) and DM43HB pectin exhibit rescuing effects under both glucose conditions. Notably, DM19HB and DM43HB display higher rescue effects under 20 mM glucose compared to 5 mM glucose. The study demonstrates that specific pectins such as DM19HB and DM43HB may serve as alternatives for preventing barrier disruption in the case of disturbed DCA metabolism.


Assuntos
Ácidos e Sais Biliares , Hiperglicemia , Pectinas , Pectinas/farmacologia , Humanos , Ácidos e Sais Biliares/metabolismo , Ácido Desoxicólico/farmacologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Linhagem Celular , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Ácido Litocólico/farmacologia , Fibras na Dieta/farmacologia , Glucose/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos
5.
Biosens Bioelectron ; 259: 116383, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38749286

RESUMO

Lithocholic acid (LCA), a secondary bile acid, has emerged as a potential early diagnostic biomarker for various liver diseases. In this study, we introduce a novel near-infrared (NIR) polymethine dye-based biosensor, capable of sensitive and selective detection of LCA in phosphate buffer and artificial urine (AU) solutions. The detection mechanism relies on the formation of J-aggregates resulting from the interplay of 3,3-Diethylthiatricarbocyanine iodide (DiSC2(7)) dye molecules and LCA, which induces a distinctive red shift in both absorption and fluorescence spectra. The biosensor demonstrates a detection limit for LCA of 70 µM in PBS solution (pH 7.4), while in AU solution, it responds to an LCA concentration as low as ∼60 µM. Notably, the proposed biosensor exhibits outstanding selectivity for LCA, effectively distinguishing it from common interferents such as uric acid, ascorbic acid, and glucose. This rapid, straightforward, and cost-effective spectrometer-based method underscores its potential for early diagnosis of liver diseases by monitoring LCA concentrations.


Assuntos
Técnicas Biossensoriais , Limite de Detecção , Ácido Litocólico , Técnicas Biossensoriais/métodos , Ácido Litocólico/química , Ácido Litocólico/análise , Humanos , Espectrometria de Fluorescência/métodos , Corantes Fluorescentes/química , Carbocianinas/química
6.
Nanoscale ; 16(21): 10350-10365, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38739006

RESUMO

Tumour cells secrete various proangiogenic factors like VEGF, PDGF, and EGF that result in the formation of highly vascularized tumours with an immunosuppressive tumour microenvironment. As tumour growth and metastasis are highly dependent on angiogenesis, targeting tumour vasculature along with rapidly dividing tumour cells is a potential approach for cancer treatment. Here, we specifically engineered sub-100 sized nanomicelles (DTX-CA4 NMs) targeting proliferation and angiogenesis using an esterase-sensitive phosphocholine-tethered docetaxel conjugate of lithocholic acid (LCA) (PC-LCA-DTX) and a poly(ethylene glycol) (PEG) derivative of an LCA-combretastatin A4 conjugate (PEG-LCA-CA4). DTX-CA4 NMs effectively inhibit the tumour growth in syngeneic (CT26) and xenograft (HCT116) colorectal cancer models, inhibit tumour recurrence, and enhance the percentage survival in comparison with individual drug-loaded NMs. DTX-CA4 NMs enhance the T cell-mediated anti-tumour immune response and DTX-CA4 NMs in combination with an immune checkpoint inhibitor, anti-PDL1 antibody, enhance the anti-tumour response. We additionally showed that DTX-CA4 NMs effectively attenuate the production of ceramide-1-phosphate, a key metabolite of the sphingolipid pathway, by downregulating the expression of ceramide kinase at both transcriptional and translational levels. Therefore, this study presents the engineering of effective DTX-CA4 NMs for targeting the tumour microenvironment that can be explored further for clinical applications.


Assuntos
Proliferação de Células , Ceramidas , Docetaxel , Micelas , Neovascularização Patológica , Animais , Ceramidas/química , Ceramidas/farmacologia , Humanos , Camundongos , Proliferação de Células/efeitos dos fármacos , Docetaxel/farmacologia , Docetaxel/química , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Ácido Litocólico/química , Ácido Litocólico/farmacologia , Polietilenoglicóis/química , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Estilbenos/química , Estilbenos/farmacologia , Células HCT116 , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Microambiente Tumoral/efeitos dos fármacos , Nanopartículas/química , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino , Angiogênese
7.
Commun Biol ; 7(1): 465, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632312

RESUMO

High temperature and humidity in the environment are known to be associated with discomfort and disease, yet the underlying mechanisms remain unclear. We observed a decrease in plasma glucagon-like peptide-1 levels in response to high-temperature and humidity conditions. Through 16S rRNA gene sequencing, alterations in the gut microbiota composition were identified following exposure to high temperature and humidity conditions. Notably, changes in the gut microbiota have been implicated in bile acid synthesis. Further analysis revealed a decrease in lithocholic acid levels in high-temperature and humidity conditions. Subsequent in vitro experiments demonstrated that lithocholic acid increases glucagon-like peptide-1 secretion in NCI-H716 cells. Proteomic analysis indicated upregulation of farnesoid X receptor expression in the ileum. In vitro experiments revealed that the combination of lithocholic acid with farnesoid X receptor inhibitors resulted in a significant increase in GLP-1 levels compared to lithocholic acid alone. In this study, we elucidate the mechanism by which reduced lithocholic acid suppresses glucagon-like peptide 1 via farnesoid X receptor activation under high-temperature and humidity condition.


Assuntos
Microbioma Gastrointestinal , Peptídeo 1 Semelhante ao Glucagon , Animais , Camundongos , Peptídeo 1 Semelhante ao Glucagon/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Umidade , Proteômica , RNA Ribossômico 16S , Temperatura , Fatores de Transcrição , Ácidos e Sais Biliares , Ácido Litocólico
8.
Bioorg Med Chem Lett ; 105: 129760, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38641151

RESUMO

The naturally occurring bile acid lithocholic acid (LCA) has been a crucial core structure for many non-sugar-containing sialyltranferase (ST) inhibitors documented in literature. With the aim of elucidating the impact of the terminal carboxyl acid substituent of LCA on its ST inhibition, in this present study, we report the (bio)isosteric replacement-based design and synthesis of sulfonate and sulfate analogues of LCA. Among these compounds, the sulfate analogue SPP-002 was found to selectively inhibit N-glycan sialylation by at least an order of magnitude, indicating a substantial improvement in both potency and selectivity when compared to the unmodified parent bile acid. Molecular docking analysis supported the stronger binding of the synthetic analogue in the enzyme active site. Treatment with SPP-002 also hampered the migration, adhesion, and invasion of MDA-MB-231 cells in vitro by suppressing the expression of signaling proteins involved in the cancer metastasis-associated integrin/FAK/paxillin pathway. In totality, these findings offer not only a novel structural scaffold but also valuable insights for the future development of more potent and selective ST inhibitors with potential therapeutic effects against tumor cancer metastasis.


Assuntos
Ácido Litocólico , Simulação de Acoplamento Molecular , Sialiltransferases , Ácido Litocólico/farmacologia , Ácido Litocólico/química , Ácido Litocólico/síntese química , Ácido Litocólico/análogos & derivados , Humanos , Sialiltransferases/antagonistas & inibidores , Sialiltransferases/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Relação Estrutura-Atividade , Sulfatos/química , Sulfatos/farmacologia , Sulfatos/síntese química , Metástase Neoplásica , Ácidos Sulfônicos/farmacologia , Ácidos Sulfônicos/química , Ácidos Sulfônicos/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Estrutura Molecular , Adesão Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Paxilina/metabolismo , Paxilina/antagonistas & inibidores , Quinase 1 de Adesão Focal/antagonistas & inibidores , Quinase 1 de Adesão Focal/metabolismo , Descoberta de Drogas
9.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673867

RESUMO

Sialyltransferase-catalyzed membrane protein and lipid glycosylation plays a vital role as one of the most abundant post-translational modifications and diversification reactions in eukaryotes. However, aberrant sialylation has been associated with cancer malignancy and metastasis. Sialyltransferases thus represent emerging targets for the development of small molecule cancer drugs. Herein, we report the inhibitory effects of a recently discovered lithocholic acid derivative FCW393 on sialyltransferase catalytic activity, integrin sialyation, cancer-associated signal transduction, MDA-MB-231 and B16F10 cell migration and invasion, and in in vivo studies, on tumor growth, metastasis, and angiogenesis. FCW393 showed effective and selective inhibition of the sialyltransferases ST6GAL1 (IC50 = 7.8 µM) and ST3GAL3 (IC50 = 9.45 µM) relative to ST3GAL1 (IC50 > 400 µM) and ST8SIA4 (IC50 > 100 µM). FCW393 reduced integrin sialylation in breast cancer and melanoma cells dose-dependently and downregulated proteins associated with the integrin-regulated FAK/paxillin and GEF/Rho/ROCK pathways, and with the VEGF-regulated Akt/NFκB/HIF-1α pathway. FCW393 inhibited cell migration (IC50 = 2.6 µM) and invasion in in vitro experiments, and in in vivo studies of tumor-bearing mice, FCW393 reduced tumor size, angiogenesis, and metastatic potential. Based on its demonstrated selectivity, cell permeability, relatively low cytotoxicity (IC50 = 55 µM), and high efficacy, FCW393 shows promising potential as a small molecule experimental tool compound and a lead for further development of a novel cancer therapeutic.


Assuntos
Movimento Celular , Sialiltransferases , Sialiltransferases/metabolismo , Sialiltransferases/antagonistas & inibidores , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Metástase Neoplásica , Feminino , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ácido Litocólico/farmacologia
10.
J Steroid Biochem Mol Biol ; 240: 106507, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38508471

RESUMO

Cytochrome P450 enzyme with 7ß-hydroxylation capacity has attracted widespread attentions due to the vital roles in the biosynthesis of ursodeoxycholic acid (UDCA), a naturally active molecule for the treatment of liver and gallbladder diseases. In this study, a novel P450 hydroxylase (P450FE) was screen out from Fusarium equiseti HG18 and identified by a combination of genome and transcriptome sequencing, as well as heterologous expression in Pichia pastoris. The biotransformation of lithocholic acid (LCA) by whole cells of recombinant Pichia pastoris further confirmed the C7ß-hydroxylation with 5.2% UDCA yield. It was firstly identified a fungal P450 enzyme from Fusarium equiseti HG18 with the capacity to catalyze the LCA oxidation producing UDCA. The integration of homology modeling and molecular docking discovered the substrate binding to active pockets, and the key amino acids in active center were validated by site-directed mutagenesis, and revealed that Q112, V362 and L363 were the pivotal residues of P450FE in regulating the activity and selectivity of 7ß-hydroxylation. Specifically, V362I mutation exhibited 2.6-fold higher levels of UDCA and higher stereospecificity than wild-type P450FE. This advance provided guidance for improving the catalytic efficiency and selectivity of P450FE in LCA hydroxylation, indicative of the great potential in green synthesis of UDCA from biologically toxic LCA.


Assuntos
Sistema Enzimático do Citocromo P-450 , Fusarium , Simulação de Acoplamento Molecular , Saccharomycetales , Ácido Ursodesoxicólico , Fusarium/enzimologia , Fusarium/genética , Fusarium/metabolismo , Ácido Ursodesoxicólico/metabolismo , Ácido Ursodesoxicólico/química , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/química , Hidroxilação , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Mutagênese Sítio-Dirigida , Ácido Litocólico/metabolismo , Ácido Litocólico/química , Especificidade por Substrato
11.
Am J Transplant ; 24(7): 1132-1145, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38452932

RESUMO

Mycophenolate mofetil (MMF) is one of the most used immunosuppressive drugs in organ transplantation, but frequent gastrointestinal (GI) side effects through unknown mechanisms limit its clinical use. Gut microbiota and its metabolites were recently reported to play a vital role in MMF-induced GI toxicity, but the specific mechanism of how they interact with the human body is still unclear. Here, we found that secondary bile acids (BAs), as bacterial metabolites, were significantly reduced by MMF administration in the gut of mice. Microbiome data and fecal microbiota transfer model supported a microbiota-dependent effect on the reduction of secondary BAs. Supplementation of the secondary BA lithocholic acid alleviated MMF-induced weight loss, colonic inflammation, and oxidative phosphorylation damage. Genetic deletion of the vitamin D3 receptor (VDR), which serves as a primary colonic BA receptor, in colonic epithelial cells (VDRΔIEC) abolished the therapeutic effect of lithocholic acid on MMF-induced GI toxicity. Impressively, we discovered that paricalcitol, a Food and Drug Administration-approved VDR agonist that has been used in clinics for years, could effectively alleviate MMF-induced GI toxicity. Our study reveals a previously unrecognized mechanism of gut microbiota, BAs, and VDR signaling in MMF-induced GI side effects, offering potential therapeutic strategies for clinics.


Assuntos
Ácidos e Sais Biliares , Microbioma Gastrointestinal , Ácido Micofenólico , Receptores de Calcitriol , Animais , Ácido Micofenólico/farmacologia , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Receptores de Calcitriol/metabolismo , Ácidos e Sais Biliares/metabolismo , Imunossupressores , Camundongos Endogâmicos C57BL , Masculino , Gastroenteropatias/induzido quimicamente , Ácido Litocólico , Humanos
12.
J Agric Food Chem ; 72(10): 5452-5462, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38428036

RESUMO

Deoxynivalenol (DON) is a common mycotoxin that induces intestinal inflammation and oxidative damage in humans and animals. Given that lithocholic acid (LCA) has been suggested to inhibit intestinal inflammation, we aimed to investigate the protective effects of LCA on DON-exposed porcine intestinal epithelial IPI-2I cells and the underlying mechanisms. Indeed, LCA rescued DON-induced cell death in IPI-2I cells and reduced DON-stimulated inflammatory cytokine levels and oxidative stress. Importantly, the nuclear receptor PPARγ was identified as a key transcriptional factor involved in the DON-induced inflammation and oxidative stress processes in IPI-2I cells. The PPARγ function was found compromised, likely due to the hyperphosphorylation of the p38 and ERK signaling pathways. In contrast, the DON-induced inflammatory responses and oxidative stress were restrained by LCA via PPARγ-mediated reprogramming of the core inflammatory and antioxidant genes. Notably, the PPARγ-modulated transcriptional regulations could be attributed to the altered recruitments of coactivator SRC-1/3 and corepressor NCOR1/2, along with the modified histone marks H3K27ac and H3K18la. This study emphasizes the protective actions of LCA on DON-induced inflammatory damage and oxidative stress in intestinal epithelial cells via PPARγ-mediated epigenetically transcriptional reprogramming, including histone acetylation and lactylation.


Assuntos
Ácido Litocólico , PPAR gama , Tricotecenos , Humanos , Animais , Suínos , PPAR gama/metabolismo , Ácido Litocólico/efeitos adversos , Ácido Litocólico/metabolismo , Células Epiteliais/metabolismo , Estresse Oxidativo , Inflamação/metabolismo
13.
Sci Rep ; 14(1): 6750, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514730

RESUMO

Signals for the maintenance of epithelial homeostasis are provided in part by commensal bacteria metabolites, that promote tissue homeostasis in the gut and remote organs as microbiota metabolites enter the bloodstream. In our study, we investigated the effects of bile acid metabolites, 3-oxolithocholic acid (3-oxoLCA), alloisolithocholic acid (AILCA) and isolithocholic acid (ILCA) produced from lithocholic acid (LCA) by microbiota, on the regulation of innate immune responses connected to the expression of host defense peptide cathelicidin in lung epithelial cells. The bile acid metabolites enhanced expression of cathelicidin at low concentrations in human bronchial epithelial cell line BCi-NS1.1 and primary bronchial/tracheal cells (HBEpC), indicating physiological relevance for modulation of innate immunity in airway epithelium by bile acid metabolites. Our study concentrated on deciphering signaling pathways regulating expression of human cathelicidin, revealing that LCA and 3-oxoLCA activate the surface G protein-coupled bile acid receptor 1 (TGR5, Takeda-G-protein-receptor-5)-extracellular signal-regulated kinase (ERK1/2) cascade, rather than the nuclear receptors, aryl hydrocarbon receptor, farnesoid X receptor and vitamin D3 receptor in bronchial epithelium. Overall, our study provides new insights into the modulation of innate immune responses by microbiota bile acid metabolites in the gut-lung axis, highlighting the differences in epithelial responses between different tissues.


Assuntos
Ácidos e Sais Biliares , Catelicidinas , Humanos , Ácidos e Sais Biliares/metabolismo , Catelicidinas/metabolismo , Sistema de Sinalização das MAP Quinases , Receptores Acoplados a Proteínas G/metabolismo , Epitélio/metabolismo , Ácido Litocólico/farmacologia , Ácido Litocólico/metabolismo
14.
mSystems ; 9(3): e0005224, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38345382

RESUMO

Chronic alcohol consumption, an important risk factor for diseases and deaths, can cause intestinal microbiota dysbiosis and increase the infection of some opportunistic pathogens. However, the current studies on the effects of alcohol-induced intestinal microbiota dysbiosis on gut colonization of Klebsiella pneumoniae are still scarce. In the present study, we established a binge-on-chronic alcohol model in mice to identify the characteristics of alcohol-induced intestinal microbiome and metabolite dysbiosis using multi-omics and explored the effects and potential mechanisms of these dysbioses on the intestinal colonization of K. pneumoniae. The results show that chronic alcohol consumption alters the diversity and composition of gut microbiota (including bacteria and fungi), decreases the complexity of the interaction between intestinal bacteria and fungi, disturbs the gut metabolites, and promotes the colonization of K. pneumoniae on the gut of mice. The relevance analyses find that alcohol-induced gut microbiome dysbiosis has a strong correlation with the alteration of secondary bile acids. In vitro results suggest that the high concentration of lithocholic acid, a secondary bile acid, could significantly inhibit the proliferation of K. pneumoniae, and the adhesion of K. pneumoniae to Caco-2 cells. Our results indicate that alcohol-induced microbiome dysbiosis contributes to decreased levels of secondary bile acids, which was one of the main reasons affecting the colonization of K. pneumoniae in mice's intestines. Some secondary bile acids (e.g., lithocholic acid) might be a potential drug to prevent the colonization and spread of K. pneumoniae.IMPORTANCEAlcohol is one of the most commonly misused substances in our lives. However, long-term heavy drinking will increase the colonization of some opportunistic pathogens (e.g., Klebsiella pneumoniae) in the body. Here, we revealed that binge-on-chronic alcohol consumption disrupted the balance between gut bacteria and fungi, induced the gut microbiome and metabolites dysbiosis, and promoted the colonization of K. pneumoniae in the intestine of mice. In particular, alcohol-taking disrupted intestinal bile acid metabolism and reduced the lithocholic acid concentration. However, a high concentration of lithocholic acid can protect against intestinal colonization of K. pneumoniae by inhabiting the bacterial growth and adhesion to the host cell. Hence, regulating the balance of gut microbiota and intestinal bile acid metabolism may be a potential strategy for reducing the risk of K. pneumoniae infection and spread.


Assuntos
Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Klebsiella pneumoniae , Disbiose/etiologia , Células CACO-2 , Etanol/efeitos adversos , Ácidos e Sais Biliares/farmacologia , Bactérias , Ácido Litocólico/farmacologia
15.
Thromb Res ; 235: 68-74, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38306775

RESUMO

INTRODUCTION: The gut microbiome plays a crucial role in various diseases, and its regulation is a potential treatment option for these conditions. However, the relationship between the gut microbiome and venous thromboembolism (VTE) remains poorly explored. METHODS: In this study, we collected feces and serum samples from 8 VTE patients and 7 healthy controls. The gut microbiota and serum metabolites were analyzed using 16S rRNA gene sequencing and liquid chromatography-mass spectrometry, respectively. Additionally, a combined analysis of microbiota and metabolome was performed. RESULTS: The alpha and beta diversity between the VTE and control groups were significantly different. Patients with VTE exhibited an overgrowth of Blautia, Roseburia, Coprococcus, and Ruminococcus. Moreover, serum metabolomics analysis revealed altered levels of choline and lithocholic acid. Pathway enrichment analysis indicated a significant upregulation of bile secretion pathways. In addition, a positive correlation was observed between the levels of serum choline and lithocholic acid and the abundance of gut flora enriched in the VTE group. CONCLUSION: This study provided novel insights into the disordered gut microbiota and serum metabolome associated with VTE, suggesting potential common pathological mechanisms between VTE and arterial thrombosis. Targeted modulation of the gut microbiome may hold promise as a preventive and therapeutic approach for VTE.


Assuntos
Microbioma Gastrointestinal , Tromboembolia Venosa , Humanos , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Metaboloma , Colina , Ácido Litocólico
16.
Biochim Biophys Acta Biomembr ; 1866(3): 184294, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316379

RESUMO

This study presents a new approach to designing a lithocholic acid functionalized oligomer (OLithocholicAA-X) that can be used as a drug carrier with additional, beneficial activity. Namely, this novel oligomer can incorporate an anti-cancer drug due to the application of an effective backbone as its component (lithocholic acid) alone is known to have anticancer activity. The oligomer was synthesized and characterized in detail by nuclear magnetic resonance, attenuated total reflectance Fourier-transform infrared spectroscopy, ultraviolet-visible spectroscopy, thermal analysis, and mass spectrometry analysis. We selected lipid rafts as potential drug carrier-membrane binding sites. In this respect, we investigated the effects of OLithocholicAA-X on model lipid raft of normal and altered composition, containing an increased amount of cholesterol (Chol) or sphingomyelin (SM), using Langmuir monolayers and liposomes. The surface topography of the studied monolayers was additionally investigated by atomic force microscopy (AFM). The obtained results showed that the investigated oligomer has affinity for a system that mimics a normal lipid raft (SM:Chol 2:1). On the other hand, for systems with an excess of SM or Chol, thermodynamically unfavorable fluidization of the films occurs. Moreover, AFM topographies showed that the amount of SM determines the bioavailability of the oligomer, causing fragmentation of its lattice.


Assuntos
Lipossomos , Ácido Litocólico , Ácido Litocólico/análise , Ácido Litocólico/metabolismo , Lipossomos/química , Sistemas de Liberação de Medicamentos , Espectroscopia de Ressonância Magnética , Microdomínios da Membrana/química , Esfingomielinas/química , Colesterol/química
17.
Folia Microbiol (Praha) ; 69(2): 445-457, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38277095

RESUMO

The aim of this article is to introduce the topic of newly designed peptides as well as their biological activity. We designed nine encoded peptides composed of six amino acids. All these peptides were synthesized with C-terminal amidation. To investigate the importance of increased hydrophobicity at the amino end of the peptides, all of them were subsequently synthesized with palmitic or lithocholic acid at the N-terminus. Antimicrobial activity was tested on Gram-positive and Gram-negative bacteria and fungi. Cytotoxicity was measured on HepG2 and HEK 293 T cell cultures. Peptides bearing a hydrophobic group exhibited the best antimicrobial activity. Lipopeptides with palmitic or lithocholic acid (PAL or LCA peptides) at the N-terminus and with C-terminal amidation were highly active against Gram-positive bacteria, especially against strains of Staphylococcus aureus and Candida tropicalis. The LCA peptide SHP 1.3 with the sequence LCA-LVKRAG-NH2, had high efficiency on HepG2 human liver hepatocellular carcinoma cells (97%).


Assuntos
Antibacterianos , Lipopeptídeos , Humanos , Antibacterianos/farmacologia , Lipopeptídeos/farmacologia , Células HEK293 , Bactérias Gram-Positivas , Relação Estrutura-Atividade , Bactérias Gram-Negativas , Ácido Litocólico , Testes de Sensibilidade Microbiana
18.
Life Sci ; 337: 122355, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38104861

RESUMO

AIMS: Lithocholic acid (LCA)-induced cholestasis was accompanied by the occurrence of apoptosis, which indicated that anti-apoptosis was a therapeutic strategy for primary biliary cholangitis (PBC). As an agonist of (Farnesoid X receptor) FXR, we supposed that the hepatoprotection of Obeticholic acid (OCA) against cholestatic liver injury is related to anti-apoptosis beside of the bile acids (BAs) regulation. Herein, we explored the non-metabolic regulating mechanism of OCA for resisting LCA-induced cholestatic liver injury via anti-apoptosis. MAIN METHODS: LCA-induced cholestatic liver injury mice were pretreated with OCA to evaluate its hepatoprotective effect and mechanism. Biochemical and pathological indicators were used to detect the protective effect of OCA on LCA-induced cholestatic liver injury. The bile acids (BAs) profile in serum was detected by LC-MS/MS. Hepatocyte BAs metabolism, apoptosis and inflammation related genes and proteins alteration were investigated by biochemical determination. KEY FINDINGS: OCA improved LCA-induced cholestasis and hepatic apoptosis in mice. The BA profile in serum was changed by OCA mainly manifested as a reduction of taurine-conjugated bile acids, which was due to the upregulation of FXR-related bile acid efflux transporters bile salt export pump (BSEP), multi-drug resistant associated protein 2 (MRP2), MRP3 and multi-drug resistance 3 (MDR3). Apoptosis related proteins cleaved caspase-3, cleaved caspase-8 and cleaved PARP were obviously reduced after OCA treatment. SIGNIFICANCE: OCA improved LCA-induced cholestatic liver injury via FXR-induced exogenous cell apoptosis, which will provide new evidence for the application of OCA to ameliorate PBC in clinical.


Assuntos
Colestase , Ácido Litocólico , Camundongos , Animais , Ácido Litocólico/efeitos adversos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Fígado/metabolismo , Colestase/induzido quimicamente , Colestase/complicações , Colestase/tratamento farmacológico , Ácidos e Sais Biliares/metabolismo , Apoptose
19.
Clin Transl Med ; 13(10): e1236, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37846137

RESUMO

OBJECTIVE: To reveal whether gut microbiota and their metabolites are correlated with oocyte quality decline caused by circadian rhythm disruption, and to search possible approaches for improving oocyte quality. DESIGN: A mouse model exposed to continuous light was established. The oocyte quality, embryonic development, microbial metabolites and gut microbiota were analyzed. Intragastric administration of microbial metabolites was conducted to confirm the relationship between gut microbiota and oocyte quality and embryonic development. RESULTS: Firstly, we found that oocyte quality and embryonic development decreased in mice exposed to continuous light. Through metabolomics profiling and 16S rDNA-seq, we found that the intestinal absorption capacity of vitamin D was decreased due to significant decrease of bile acids such as lithocholic acid (LCA), which was significantly associated with increased abundance of Turicibacter. Subsequently, the concentrations of anti-Mullerian hormone (AMH) hormone in blood and melatonin in follicular fluid were reduced, which is the main reason for the decline of oocyte quality and early embryonic development, and this was rescued by injection of vitamin D3 (VD3). Secondly, melatonin rescued oocyte quality and embryonic development by increasing the concentration of lithocholic acid and reducing the concentration of oxidative stress metabolites in the intestine. Thirdly, we found six metabolites that could rescue oocyte quality and early embryonic development, among which LCA of 30 mg/kg and NorDCA of 15 mg/kg had the best rescue effect. CONCLUSION: These findings confirm the link between ovarian function and gut microbiota regulation by microbial metabolites and have potential value for improving ovary function.


Assuntos
Microbioma Gastrointestinal , Melatonina , Gravidez , Feminino , Camundongos , Animais , Vitamina D , Ácidos e Sais Biliares , Melatonina/metabolismo , Oócitos/metabolismo , Desenvolvimento Embrionário , Ácido Litocólico/farmacologia , Ácido Litocólico/metabolismo
20.
Zhonghua Gan Zang Bing Za Zhi ; 31(9): 928-935, 2023 Sep 20.
Artigo em Chinês | MEDLINE | ID: mdl-37872088

RESUMO

Objective: This study focuses on Na(+)-taurocholate cotransporting polypeptide (NTCP) deficiency to analyze and investigate the value of the serum bile acid profile for facilitating the diagnosis and differential diagnosis. Methods: Clinical data of 66 patients with cholestatic liver diseases (CLDs) diagnosed and treated in the Department of Pediatrics of the First Affiliated Hospital of Jinan University from early April 2015 to the end of December 2021 were collected, including 32 cases of NTCP deficiency (16 adults and 16 children), 16 cases of neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD), 8 cases of Alagille syndrome, and 10 cases of biliary atresia. At the same time, adult and pediatric healthy control groups (15 cases each) were established. The serum bile acid components of the study subjects were qualitatively and quantitatively analyzed by ultra-high performance liquid chromatography-tandem mass spectrometry. The data were plotted and compared using statistical SPSS 19.0 and GraphPad Prism 5.0 software. The clinical and bile acid profiles of children with NTCP deficiency and corresponding healthy controls, as well as differences between NTCP deficiency and other CLDs, were compared using statistical methods such as t-tests, Wilcoxon rank sum tests, and Kruskal-Wallis H tests. Results: Compared with the healthy control, the levels of total conjugated bile acids, total primary bile acids, total secondary bile acids, glycocholic acid, taurocholic acid, and glycochenodeoxycholic acid were increased in NTCP deficiency patients (P < 0.05). Compared with adults with NTCP deficiency, the levels of total conjugated bile acids and total primary bile acids were significantly increased in children with NTCP deficiency (P < 0.05). The serum levels of taurochenodeoxycholic acid, glycolithocholate, taurohyocholate, and tauro-α-muricholic acid were significantly increased in children with NTCP deficiency, but the bile acid levels such as glycodeoxycholic acid, glycolithocholate, and lithocholic acid were decreased (P < 0.05). The serum levels of secondary bile acids such as lithocholic acid, deoxycholic acid, and hyodeoxycholic acid were significantly higher in children with NTCP deficiency than those in other CLD groups such as NICCD, Alagille syndrome, and biliary atresia (P < 0.05). Total primary bile acids/total secondary bile acids, total conjugated bile acids/total unconjugated bile acids, taurocholic acid, serum taurodeoxycholic acid, and glycodeoxycholic acid effectively distinguished children with NTCP deficiency from other non-NTCP deficiency CLDs. Conclusion: This study confirms that serum bile acid profile analysis has an important reference value for facilitating the diagnosis and differential diagnosis of NTCP deficiency. Furthermore, it deepens the scientific understanding of the changing characteristics of serum bile acid profiles in patients with CLDs such as NTCP deficiency, provides a metabolomic basis for in-depth understanding of its pathogenesis, and provides clues and ideas for subsequent in-depth research.


Assuntos
Síndrome de Alagille , Atresia Biliar , Colestase , Citrulinemia , Simportadores , Humanos , Recém-Nascido , Criança , Ácidos e Sais Biliares , Diagnóstico Diferencial , Ácido Taurocólico , Ácido Glicodesoxicólico , Ácido Litocólico , Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...