Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.675
Filtrar
1.
PLoS One ; 19(9): e0308500, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39269939

RESUMO

Glutathione transferase P1 (GSTP1) is a multi-functional protein that protects cells from electrophiles by catalyzing their conjugation with glutathione, and contributes to the regulation of cell proliferation, apoptosis, and signalling. GSTP1, usually described as a cytosolic enzyme, can localize to other cell compartments and we have reported its strong association with the plasma membrane. In the current study, the hypothesis that GSTP1 is palmitoylated and this modification facilitates its dynamic localization and function was investigated. Palmitoylation is the reversible post-translational addition of a 16-C saturated fatty acid to proteins, most commonly on Cys residues through a thioester bond. GSTP1 in MCF7 cells was modified by palmitate, however, GSTP1 Cys to Ser mutants (individual and Cys-less) retained palmitoylation. Treatment of palmitoylated GSTP1 with 0.1 N NaOH, which cleaves ester bonds, did not remove palmitate. Purified GSTP1 was spontaneously palmitoylated in vitro and peptide sequencing revealed that Cys48 and Cys102 undergo S-palmitoylation, while Lys103 undergoes the rare N-palmitoylation. N-palmitoylation occurs via a stable NaOH-resistant amide bond. Analysis of subcellular fractions of MCF7-GSTP1 cells and a modified proximity ligation assay revealed that palmitoylated GSTP1 was present not only in the membrane fraction but also in the cytosol. GSTP1 isolated from E. coli, and MCF7 cells (grown under fatty acid free or regular conditions), associated with plasma membrane-enriched fractions and this association was not altered by palmitoyl CoA. Overall, GSTP1 is modified by palmitate, at multiple sites, including at least one non-Cys residue. These modifications could contribute to regulating the diverse functions of GSTP1.


Assuntos
Glutationa S-Transferase pi , Lipoilação , Palmitatos , Humanos , Glutationa S-Transferase pi/metabolismo , Glutationa S-Transferase pi/genética , Glutationa S-Transferase pi/química , Células MCF-7 , Palmitatos/metabolismo , Membrana Celular/metabolismo , Citosol/metabolismo , Cisteína/metabolismo , Processamento de Proteína Pós-Traducional , Ácido Palmítico/metabolismo
2.
FASEB J ; 38(18): e70036, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39275940

RESUMO

Fatty acid-binding protein 1 (FABP1) plays an important role in regulating fatty acid metabolism in liver, which is a potential therapeutic target for diseases such as non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanisms are not well defined. Using complementary experimental models, we discovered FABP1 induction in hepatocytes as a primary mediator of lipogenesis when exposed to fatty acids, especially saturated fatty acids (SFAs). In the feeding trial, palm oil led to excess lipid accumulation in the liver of large yellow croaker (Larimichthys crocea), accompanied by significant induction of FABP1. In cultured cells, palmitic acid (PA), a kind of SFA, triggered the fabp1 expression and increased triglyceride (TG) contents. Knockdown of FABP1 dampened PA-induced TG accumulation through mitigated lipogenesis. The overexpression of FABP1 showed the opposite result. Furthermore, the inactivation of FABP1 led to induction in insulin-induced gene 1 (INSIG1) expression, which attenuated the processing of sterol regulatory element-binding protein 1 (SREBP1) by down-regulating the nuclear-localized SREBP1. These results revealed a previously unrecognized function of FABP1 in response to PA, providing additional evidence for targeting FABP1 in the treatment of NAFLD caused by SFA.


Assuntos
Proteínas de Ligação a Ácido Graxo , Hepatócitos , Lipogênese , Perciformes , Proteína de Ligação a Elemento Regulador de Esterol 1 , Animais , Hepatócitos/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Perciformes/metabolismo , Perciformes/genética , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Triglicerídeos/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Ácido Palmítico/farmacologia , Células Cultivadas
3.
Nutrients ; 16(17)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39275168

RESUMO

Obesity has been associated with a chronic increase in sympathetic nerve activity, which can lead to hypertension and other cardiovascular diseases. Preliminary studies from our lab found that oxidative stress and neuroinflammation in the brainstem contribute to sympathetic overactivity in high-fat-diet-induced obese mice. However, with glial cells emerging as significant contributors to various physiological processes, their role in causing these changes in obesity remains unknown. In this study, we wanted to determine the role of palmitic acid, a major form of saturated fatty acid in the high-fat diet, in regulating sympathetic outflow. Human brainstem astrocytes (HBAs) were used as a cell culture model since astrocytes are the most abundant glial cells and are more closely associated with the regulation of neurons and, hence, sympathetic nerve activity. In the current study, we hypothesized that palmitic acid-mediated oxidative stress induces senescence and downregulates glutamate reuptake transporters in HBAs. HBAs were treated with palmitic acid (25 µM for 24 h) in three separate experiments. After the treatment period, the cells were collected for gene expression and protein analysis. Our results showed that palmitic acid treatment led to a significant increase in the mRNA expression of oxidative stress markers (NQO1, SOD2, and CAT), cellular senescence markers (p21 and p53), SASP factors (TNFα, IL-6, MCP-1, and CXCL10), and a downregulation in the expression of glutamate reuptake transporters (EAAT1 and EAAT2) in the HBAs. Protein levels of Gamma H2AX, p16, and p21 were also significantly upregulated in the treatment group compared to the control. Our results showed that palmitic acid increased oxidative stress, DNA damage, cellular senescence, and SASP factors, and downregulated the expression of glutamate reuptake transporters in HBAs. These findings suggest the possibility of excitotoxicity in the neurons of the brainstem, sympathoexcitation, and increased risk for cardiovascular diseases in obesity.


Assuntos
Astrócitos , Tronco Encefálico , Senescência Celular , Regulação para Baixo , Obesidade , Estresse Oxidativo , Ácido Palmítico , Ácido Palmítico/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Humanos , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Obesidade/metabolismo , Senescência Celular/efeitos dos fármacos , Tronco Encefálico/metabolismo , Tronco Encefálico/efeitos dos fármacos , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo , Células Cultivadas
4.
Mol Cell ; 84(18): 3513-3529.e5, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39255795

RESUMO

Innate immunity serves as the primary defense against viral and microbial infections in humans. The precise influence of cellular metabolites, especially fatty acids, on antiviral innate immunity remains largely elusive. Here, through screening a metabolite library, palmitic acid (PA) has been identified as a key modulator of antiviral infections in human cells. Mechanistically, PA induces mitochondrial antiviral signaling protein (MAVS) palmitoylation, aggregation, and subsequent activation, thereby enhancing the innate immune response. The palmitoyl-transferase ZDHHC24 catalyzes MAVS palmitoylation, thereby boosting the TBK1-IRF3-interferon (IFN) pathway, particularly under conditions of PA stimulation or high-fat-diet-fed mouse models, leading to antiviral immune responses. Additionally, APT2 de-palmitoylates MAVS, thus inhibiting antiviral signaling, suggesting that its inhibitors, such as ML349, effectively reverse MAVS activation in response to antiviral infections. These findings underscore the critical role of PA in regulating antiviral innate immunity through MAVS palmitoylation and provide strategies for enhancing PA intake or targeting APT2 for combating viral infections.


Assuntos
Aciltransferases , Proteínas Adaptadoras de Transdução de Sinal , Imunidade Inata , Fator Regulador 3 de Interferon , Lipoilação , Ácido Palmítico , Transdução de Sinais , Imunidade Inata/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Humanos , Animais , Ácido Palmítico/farmacologia , Camundongos , Células HEK293 , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Aciltransferases/genética , Aciltransferases/imunologia , Aciltransferases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Camundongos Endogâmicos C57BL , Antivirais/farmacologia , Proteínas de Neoplasias , Peptídeos e Proteínas de Sinalização Intracelular
5.
Nutr Diabetes ; 14(1): 75, 2024 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271650

RESUMO

OBJECTIVE: The release of adipose tissue-derived miRNAs is increased under conditions of obesity, but the exact molecular mechanisms involved have not been elucidated. This study investigated whether obesity-induced increases in palmitic acid (PA) content could activate the NF-κB/endoplasmic reticulum stress (ER stress) pathway and promote the expression and release of exosomal miRNAs in adipocytes. METHODS: Abdominal adipose tissue and serum samples were collected from normal weight individuals and people with obesity to clarify the correlation of serum PA content with NF-κB/ER stress and the release of exosomal miRNAs. NF-κB and ER stress were blocked in obese mice and in vitro cultured adipocytes to demonstrate the molecular mechanisms by which PA promotes the release of exosomal miRNAs.The morphology, particle size and distribution of the exosomes were observed via transmission electron microscopy and NTA. RESULTS: Accompanied by increased serum PA levels, the NF-κB/ER stress pathway was activated in the adipose tissue of people with obesity and in high-fat diet (HFD)-induced obese mice; moreover, the levels of miRNAs in both adipose tissue and serum were increased. P-p65 (Bay11-7082) and ER stress (TUDCA) blockers significantly reduced the levels of miRNAs in abdominal adipose tissue and serum, decreased blood glucose levels, and improved glucose tolerance and insulin sensitivity in obese mice. In 3T3-L1 adipocytes, high concentrations of PA activated the NF-κB/ER stress pathway and increased the expression and release of miRNAs in exosomes. P-p65 (Bay11-7082) and ER stress (TUDCA) blockers significantly reversed the increased release exosomal miRNAs cause by PA. CONCLUSIONS: Obesity-induced increases in PA content increase the expression and release of miRNAs in adipocyte exosomes by activating the NF-κB/ER stress pathway.


Assuntos
Adipócitos , Dieta Hiperlipídica , Estresse do Retículo Endoplasmático , Obesidade , Ácido Palmítico , Transdução de Sinais , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Células 3T3-L1 , Gordura Abdominal/metabolismo , Adipócitos/metabolismo , Exossomos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Obesos , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Obesidade/metabolismo , Ácido Palmítico/farmacologia
6.
Lipids Health Dis ; 23(1): 282, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232759

RESUMO

OBJECTIVE: This study aimed to reveal the role and mechanism of MG-132 in delaying hyperlipidemia-induced senescence of vascular smooth muscle cells (VSMCs). METHODS: Immunohistochemistry and hematoxylin-eosin staining confirmed the therapeutic effect of MG-132 on arterial senescence in vivo and its possible mechanism. Subsequently, VSMCs were treated with sodium palmitate (PA), an activator (Recilisib) or an inhibitor (Pictilisib) to activate or inhibit PI3K, and CCK-8 and EdU staining, wound healing assays, Transwell cell migration assays, autophagy staining assays, reactive oxygen species assays, senescence-associated ß-galactosidase staining, and Western blotting were performed to determine the molecular mechanism by which MG-132 inhibits VSMC senescence. Validation of the interaction between MG-132 and PI3K using molecular docking. RESULTS: Increased expression of p-PI3K, a key protein of the autophagy regulatory system, and decreased expression of the autophagy-associated proteins Beclin 1 and ULK1 were observed in the aortas of C57BL/6J mice fed a high-fat diet (HFD), and autophagy was inhibited in aortic smooth muscle. MG-132 inhibits atherosclerosis by activating autophagy in VSMCs to counteract PA-induced cell proliferation, migration, oxidative stress, and senescence, thereby inhibiting VSMC senescence in the aorta. This process is achieved through the PI3K/AKT/mTOR signaling pathway. CONCLUSION: MG-132 activates autophagy by inhibiting the PI3K/AKT/mTOR pathway, thereby inhibiting palmitate-induced proliferation, migration, and oxidative stress in vascular smooth muscle cells and suppressing their senescence.


Assuntos
Autofagia , Senescência Celular , Leupeptinas , Músculo Liso Vascular , Miócitos de Músculo Liso , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Autofagia/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Senescência Celular/efeitos dos fármacos , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Leupeptinas/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Ácido Palmítico/farmacologia , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos
7.
Int J Mol Sci ; 25(17)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39273228

RESUMO

Vascular aging is an important factor leading to cardiovascular diseases such as hypertension and atherosclerosis. Hyperlipidemia or fat accumulation may play an important role in vascular aging and cardiovascular disease. Isopropyl 3-(3,4-dihydroxyphenyl)-2-hydroxypropanoate (IDHP) has biological activity and can exert cardiovascular protection, which may be related to ferroptosis. However, the exact mechanism remains undefined. We hypothesized that IDHP may have a protective effect on blood vessels by regulating vascular aging caused by hyperlipidemia or vascular wall fat accumulation. The aim of this study is to investigate the protective effect and mechanism of IDHP on palmitic acid-induced human umbilical vein endothelial cells (HUVEC) based on senescence and ferroptosis. We found that IDHP could delay vascular aging, reduce the degree of ferrous ion accumulation and lipid peroxidation, and protect vascular cells from injury. These effects may be achieved by attenuating excessive reactive oxygen species (ROS) and ferroptosis signaling pathways generated in vascular endothelial cells. In short, our study identified IDHP as one of the antioxidant agents to slow down lipotoxicity-induced vascular senescence through the ROS/ferroptosis pathway. IDHP has new medicinal value and provides a new therapeutic idea for delaying vascular aging in patients with dyslipidemia.


Assuntos
Senescência Celular , Ferroptose , Células Endoteliais da Veia Umbilical Humana , Ácido Palmítico , Espécies Reativas de Oxigênio , Transdução de Sinais , Humanos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Ácido Palmítico/farmacologia , Senescência Celular/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Antioxidantes/farmacologia
8.
BMC Complement Med Ther ; 24(1): 296, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095777

RESUMO

BACKGROUND: The fruit of Phyllanthus emblica L., a traditional medicine in China and India, is used to treat diabetes mellitus. Its water extract (WEPE) has demonstrated hypoglycemic effects in diabetic rats, but its mechanisms on glucose utilization and insulin resistance in skeletal muscle remain unclear. Therefore, this study aims to investigate the effects and underlying mechanisms of WEPE on glucose utilization and insulin resistance using C2C12 myotubes. METHODS: Effects of WEPE on glucose uptake, GLUT4 translocation, and AMPK and AKT phosphorylation were investigated in C2C12 myotubes and palmitate-treated myotubes. An AMPK inhibitor and siRNA were used to explore the mechanisms of WEPE. Glucose uptake was determined using a 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino)-2-deoxyglucose (2-NBDG) uptake assay, and protein expression and GLUT4 translocation were assessed via western blotting. RESULTS: In normal myotubes, WEPE significantly stimulated glucose uptake and GLUT4 translocation to the plasma membrane at concentrations of 125 and 250 µg/mL. This was accompanied by an increase in the phosphorylation of AMPK and its downstream targets. However, both compound C and AMPK siRNA blocked the WEPE-induced GLUT4 translocation and glucose uptake. Moreover, pretreatment with STO-609, a calcium/calmodulin-dependent protein kinase kinase ß (CaMKKß) inhibitor, inhibited WEPE-induced AMPK phosphorylation and attenuated the WEPE-stimulated glucose uptake and GLUT4 translocation. In myotubes treated with palmitate, WEPE prevented palmitate-induced insulin resistance by enhancing insulin-mediated glucose uptake and AKT phosphorylation. It also restored the insulin-mediated translocation of GLUT4 from cytoplasm to membrane. However, these effects of WEPE on glucose uptake and GLUT4 translocation were blocked by pretreatment with compound C. CONCLUSIONS: WEPE significantly stimulated basal glucose uptake though CaMKKß/AMPK pathway and markedly ameliorated palmitate-induced insulin resistance by activating the AMPK pathway in C2C12 myotubes.


Assuntos
Proteínas Quinases Ativadas por AMP , Glucose , Resistência à Insulina , Fibras Musculares Esqueléticas , Phyllanthus emblica , Extratos Vegetais , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Animais , Camundongos , Glucose/metabolismo , Extratos Vegetais/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Frutas , Transportador de Glucose Tipo 4/metabolismo , Linhagem Celular , Palmitatos/farmacologia , Ácido Palmítico/farmacologia
9.
Turk J Gastroenterol ; 35(7): 551-559, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39128113

RESUMO

BACKGROUND/AIMS:  Metabolic-associated fatty liver disease (MAFLD) is a common cause of chronic liver disease worldwide. However, there is currently no recognized effective drugs for treating it. MATERIALS AND METHODS:  In this study, we investigated the efficacy of Honokiol (HNK) in vitro for mitigating MAFLD. Then, 0.4 mM palmitic acid (PA) and LO2 cells were used to establish the MAFLD model. The protective effect of HNK on MAFLD was confirmed by Oil Red O staining and cell counting kit (CCK-8) assay in LO2 cell line. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were carried out to analyze the regulatory role of HNK on Nrf2 and RIPK3 signaling pathways. The effect of HNK and its downstream signaling pathways on oxidative stress were verified by the detection of reactive oxygen species (ROS), malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD). The concentration of IL-1ß, IL-6L, and TNF-α was assessed by enzyme-linked immunosorbent assay (ELISA). RESULTS:  The middle concentration of HNK (50 µmol/L) was selected as the best option for inhibiting lipidosis and oxidative stress in MAFLD models. Honokiol mitigates MAFLD via activation of nuclear factor E2-related factor 2 (Nrf2) signaling pathways in vitro. Honokiol suppressed MAFLD via activating the Nrf2 signaling pathway to play an antioxidant and anti-inflammatory role. Also, HNK regulates Nrf2 and RIPK3 signaling pathways to mitigate MAFLD. CONCLUSION:  Our results showed that HNK may suppress the oxidative stress and inflammation in MAFLD via activation of Nrf2 signaling pathway.


Assuntos
Compostos de Bifenilo , Lignanas , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Proteína Serina-Treonina Quinases de Interação com Receptores , Transdução de Sinais , Lignanas/farmacologia , Lignanas/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Humanos , Compostos de Bifenilo/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Linhagem Celular , Espécies Reativas de Oxigênio/metabolismo , Ácido Palmítico/farmacologia , Compostos Alílicos , Fenóis
10.
Mol Med ; 30(1): 124, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138413

RESUMO

BACKGROUND: Obesity is well-established as a significant contributor to the development of insulin resistance (IR) and diabetes, partially due to elevated plasma saturated free fatty acids like palmitic acid (PA). Grb10-interacting GYF Protein 2 (GIGYF2), an RNA-binding protein, is widely expressed in various tissues including the liver, and has been implicated in diabetes-induced cognitive impairment. Whereas, its role in obesity-related IR remains uninvestigated. METHODS: In this study, we employed palmitic acid (PA) exposure to establish an in vitro IR model in the human liver cancer cell line HepG2 with high-dose chronic PA treatment. The cells were stained with fluorescent dye 2-NBDG to evaluate cell glucose uptake. The mRNA expression levels of genes were determined by real-time qRT-PCR (RT-qPCR). Western blotting was employed to examine the protein expression levels. The RNA immunoprecipitation (RIP) was used to investigate the binding between protein and mRNA. Lentivirus-mediated gene knockdown and overexpression were employed for gene manipulation. In mice, an IR model induced by a high-fat diet (HFD) was established to validate the role and action mechanisms of GIGYF2 in the modulation of HFD-induced IR in vivo. RESULTS: In hepatocytes, high levels of PA exposure strongly trigger the occurrence of hepatic IR evidenced by reduced glucose uptake and elevated extracellular glucose content, which is remarkably accompanied by up-regulation of GIGYF2. Silencing GIGYF2 ameliorated PA-induced IR and enhanced glucose uptake. Conversely, GIGYF2 overexpression promoted IR, PTEN upregulation, and AKT inactivation. Additionally, PA-induced hepatic IR caused a notable increase in STAU1, which was prevented by depleting GIGYF2. Notably, silencing STAU1 prevented GIGYF2-induced PTEN upregulation, PI3K/AKT pathway inactivation, and IR. STAU1 was found to stabilize PTEN mRNA by binding to its 3'UTR. In liver cells, tocopherol treatment inhibits GIGYF2 expression and mitigates PA-induced IR. In the in vivo mice model, GIGYF2 knockdown and tocopherol administration alleviate high-fat diet (HFD)-induced glucose intolerance and IR, along with the suppression of STAU1/PTEN and restoration of PI3K/AKT signaling. CONCLUSIONS: Our study discloses that GIGYF2 mediates obesity-related IR by disrupting the PI3K/AKT signaling axis through the up-regulation of STAU1/PTEN. Targeting GIGYF2 may offer a potential strategy for treating obesity-related metabolic diseases, including type 2 diabetes.


Assuntos
Proteínas de Transporte , Resistência à Insulina , Fígado , PTEN Fosfo-Hidrolase , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Proteínas de Ligação a RNA , Transdução de Sinais , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos , Fígado/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Células Hep G2 , Ácido Palmítico , Masculino , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica/efeitos adversos
11.
Artigo em Inglês | MEDLINE | ID: mdl-39128394

RESUMO

The aim of the present study was to elucidate unknown effects of intraocular fatty acids (ioFAs) including palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2), arachidonic acid (C20:4), eicosapentaenoic acid (EPA, C20:5) and docosahexaenoic acid (DHA, C22:6) on the outer blood-retinal barrier (oBRB). For this purpose, human retinal pigment epithelium cell line ARPE19 was subjected to analyses for evaluating the following biological phenotypes: (1) cell viability, (2) cellular metabolic functions, (3) barrier functions by trans-epithelial electrical resistance (TEER), and (4) expression of tight junction (TJ) molecules. In the presence of 100 nM ioFAs, no significant effects on cell viability of ARPE19 cells was observed. While treatment with EPA or DHA tended to reduce non-mitochondrial oxygen consumption, most indices in mitochondrial functions were not markedly affected by treatment with ioFAs in ARPE19 cells. On the other hand, ioFAs except for palmitic acid and stearic acid significantly increased basal extracellular acidification rates, suggesting activated glycolysis or increased lactate production. Interestingly, TEER values of planar ARPE19 monolayer were significantly increased by treatment any ioFAs. Consistently, gene expression levels of TJ proteins were increased by treatment with ioFAs. Collectively, the findings presented herein suggest that ioFAs may contribute to reinforcement of barrier functions of the oBRB albeit there are some differences in biological effects depending on the type of ioFAs.


Assuntos
Barreira Hematorretiniana , Epitélio Pigmentado da Retina , Humanos , Barreira Hematorretiniana/metabolismo , Barreira Hematorretiniana/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/citologia , Linhagem Celular , Ácidos Graxos/metabolismo , Ácidos Graxos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Ácido Palmítico/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Esteáricos/farmacologia , Ácido Linoleico/farmacologia , Ácido Eicosapentaenoico/farmacologia , Ácido Oleico/farmacologia , Junções Íntimas/metabolismo , Junções Íntimas/efeitos dos fármacos , Ácido Araquidônico/farmacologia , Ácido Araquidônico/metabolismo
12.
Int Immunopharmacol ; 141: 112971, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39178517

RESUMO

BACKGROUND: Recent studies have shown that KIR+CD8+ T cells play a role in suppressing autoimmunity by eliminating pathogenic CD4+ T cells. However, their specific role in type 1 diabetes (T1D) remains unclear. METHODS: In this study, we enrolled 108 patients diagnosed with T1D and 86 healthy individuals. We conducted flow cytometric analysis to examine the various subtypes of KIR+CD8+ T cells derived from peripheral blood mononuclear cells. Additionally, CD8+ T cells were isolated from the peripheral blood of T1D patients to assess the functions of different KIR+CD8+ T cell subtypes. To investigate the influence of lipids on the characteristics and activities of these T cell subtypes, the isolated CD8+ T cells were cultured with varying concentrations of palmitic acid (PA). Furthermore, we utilized an NSG (NOD scid gamma) mouse adoptive transfer model to assess the impact of dietary lipid intake on the functionality of KIR2DL5+CD8+ T cells in vivo. RESULTS: We observed variations in circulating KIR+CD8+ T cell subtypes between patients with T1D and healthy controls. Notably, we observed a significant negative correlation between the frequencies of circulating KIR+CD8+ T cells and the titers of ZnT8 autoantibodies in individuals with T1D. Among these subtypes, KIR2DL5+CD8+ T cells demonstrated a positive association with dietary fat intake, characterized by increased perforin expression and reduced PD-1 expression. Importantly, KIR2DL5+CD8+ T cells exhibited enhanced proliferative capacity compared to other KIR+CD8+ T cell subsets. Palmitic acid (PA) was found to enhance the activation of KIR2DL5+CD8+ T cells and strengthened their ability to suppress CD4+ T cell proliferation in T1D patients. Moreover, dietary lipid intake significantly enhanced the functionality of KIR2DL5+CD8+ T cells in an NSG mouse adoptive transfer model. CONCLUSION: Our findings suggest that lipid intake enhances the functionality of human KIR2DL5+CD8+ T cells and may offer implications for immunotherapy in T1D.


Assuntos
Linfócitos T CD8-Positivos , Diabetes Mellitus Tipo 1 , Camundongos Endogâmicos NOD , Diabetes Mellitus Tipo 1/imunologia , Humanos , Linfócitos T CD8-Positivos/imunologia , Animais , Feminino , Masculino , Adulto , Gorduras na Dieta/administração & dosagem , Camundongos , Ácido Palmítico/administração & dosagem , Ácido Palmítico/farmacologia , Camundongos SCID , Transferência Adotiva , Adulto Jovem , Células Cultivadas , Adolescente , Autoanticorpos/sangue , Autoanticorpos/imunologia
13.
Food Chem ; 460(Pt 3): 140804, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39137578

RESUMO

Here, we investigated the complexation of short chain amylose (SCAs) and palmitic acid (PA), serving as polymeric building blocks that alter the selectivity and directionality of particle growth. This alteration affects the shape anisotropy of the particles, broadening their applications due to the increased surface area. By modifying the concentration of PA, we were able to make spherical, macaron, and disc-shaped particles, demonstrating that PA acts as a structure-directing agent. We further illustrated the lateral and longitudinal stacking kinetics between PA-SCA inclusion complexes during self-assembly, leading to anisotropy. Transmission electron microscope (TEM) and scanning electron microscope (SEM) revealed the structural difference between the initial and final morphologies of palmitic acid-short chain amylose particles (PA-SCAPs) compared to those of short-chain amylose particle (SCAPs). The presence of PA-SCA inclusion complex in the anisotropic particles was confirmed using nuclear magnetic resonance (NMR) and powder x-ray diffraction (XRD) analysis.


Assuntos
Amilose , Cristalização , Ácido Palmítico , Tamanho da Partícula , Amilose/química , Ácido Palmítico/química , Cinética , Difração de Raios X
14.
Acta Biochim Pol ; 71: 13014, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39027262

RESUMO

Fatty acid profiles are crucial for the functionality and viability of lactobacilli used in food applications. Tween 80™, a common culture media additive, is known to influence bacterial growth and composition. This study investigated how Tween 80™ supplementation impacts the fatty acid profiles of six mesophilic lactobacilli strains (Lacticaseibacillus spp., Limosilactobacillus spp., Lactiplantibacillus plantarum). Analysis of eleven strains revealed 29 distinct fatty acids. Tween 80™ supplementation significantly altered their fatty acid composition. Notably, there was a shift towards saturated fatty acids and changes within the unsaturated fatty acid profile. While some unsaturated fatty acids decreased, there was a concurrent rise in cyclic derivatives like lactobacillic acid (derived from vaccenic acid) and dihydrosterculic acid (derived from oleic acid). This suggests that despite the presence of Tween 80™ as an oleic acid source, lactobacilli prioritize the synthesis of these cyclic derivatives from precursor unsaturated fatty acids. Myristic acid and dihydrosterculic acid levels varied across strains. Interestingly, palmitic acid content increased, potentially reflecting enhanced incorporation of oleic acid from Tween 80™ into membranes. Conversely, cis-vaccenic acid levels consistently decreased across all strains. The observed fatty acid profiles differed from previous studies, likely due to a combination of factors including strain-specific variations and growth condition differences (media type, temperature, harvesting point). However, this study highlights the consistent impact of Tween 80™ on the fatty acid composition of lactobacilli, regardless of these variations. In conclusion, Tween 80™ significantly alters fatty acid profiles, influencing saturation levels and specific fatty acid proportions. This work reveals key factors, including stimulated synthesis of lactobacillic acid, competition for oleic acid incorporation, and strain-specific responses to myristic and dihydrosterculic acids. The consistent reduction in cis-vaccenic acid and the presence of cyclic derivatives warrant further investigation to elucidate their roles in response to Tween 80™ supplementation.


Assuntos
Ácidos Graxos , Lactobacillus , Polissorbatos , Polissorbatos/farmacologia , Ácidos Graxos/metabolismo , Lactobacillus/metabolismo , Ácidos Oleicos/metabolismo , Ácido Mirístico/metabolismo , Ácido Oleico/metabolismo , Meios de Cultura/química , Ácido Palmítico/metabolismo , Ácidos Graxos Insaturados/metabolismo
15.
Proc Natl Acad Sci U S A ; 121(28): e2318691121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968121

RESUMO

Dietary lipids play an essential role in regulating the function of the gut microbiota and gastrointestinal tract, and these luminal interactions contribute to mediating host metabolism. Palmitic Acid Hydroxy Stearic Acids (PAHSAs) are a family of lipids with antidiabetic and anti-inflammatory properties, but whether the gut microbiota contributes to their beneficial effects on host metabolism is unknown. Here, we report that treating chow-fed female and male germ-free (GF) mice with PAHSAs improves glucose tolerance, but these effects are lost upon high fat diet (HFD) feeding. However, transfer of feces from PAHSA-treated, but not vehicle-treated, chow-fed conventional mice increases insulin sensitivity in HFD-fed GF mice. Thus, the gut microbiota is necessary for, and can transmit, the insulin-sensitizing effects of PAHSAs in HFD-fed GF male mice. Analyses of the cecal metagenome and lipidome of PAHSA-treated mice identified multiple lipid species that associate with the gut commensal Bacteroides thetaiotaomicron (Bt) and with insulin sensitivity resulting from PAHSA treatment. Supplementing live, and to some degree, heat-killed Bt to HFD-fed female mice prevented weight gain, reduced adiposity, improved glucose tolerance, fortified the colonic mucus barrier and reduced systemic inflammation compared to HFD-fed controls. These effects were not observed in HFD-fed male mice. Furthermore, ovariectomy partially reversed the beneficial Bt effects on host metabolism, indicating a role for sex hormones in mediating the Bt probiotic effects. Altogether, these studies highlight the fact that PAHSAs can modulate the gut microbiota and that the microbiota is necessary for the beneficial metabolic effects of PAHSAs in HFD-fed mice.


Assuntos
Dieta Hiperlipídica , Microbioma Gastrointestinal , Resistência à Insulina , Obesidade , Animais , Masculino , Feminino , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Obesidade/metabolismo , Obesidade/microbiologia , Obesidade/etiologia , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Ácidos Esteáricos/metabolismo , Ácido Palmítico/metabolismo , Fezes/microbiologia , Camundongos Obesos
17.
JCI Insight ; 9(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973609

RESUMO

Lipoprotein lipase (LPL) hydrolyzes circulating triglycerides (TGs), releasing fatty acids (FA) and promoting lipid storage in white adipose tissue (WAT). However, the mechanisms regulating adipose LPL and its relationship with the development of hypertriglyceridemia are largely unknown. WAT from obese humans exhibited high PAR2 expression, which was inversely correlated with the LPL gene. Decreased LPL expression was also inversely correlated with elevated plasma TG levels, suggesting that adipose PAR2 might regulate hypertriglyceridemia by downregulating LPL. In mice, aging and high palmitic acid diet (PD) increased PAR2 expression in WAT, which was associated with a high level of macrophage migration inhibitory factor (MIF). MIF downregulated LPL expression and activity in adipocytes by binding with CXCR2/4 receptors and inhibiting Akt phosphorylation. In a MIF overexpression model, high-circulating MIF levels suppressed adipose LPL, and this suppression was associated with increased plasma TGs but not FA. Following PD feeding, adipose LPL expression and activity were significantly reduced, and this reduction was reversed in Par2-/- mice. Recombinant MIF infusion restored high plasma MIF levels in Par2-/- mice, and the levels decreased LPL and attenuated adipocyte lipid storage, leading to hypertriglyceridemia. These data collectively suggest that downregulation of adipose LPL by PAR2/MIF may contribute to the development of hypertriglyceridemia.


Assuntos
Regulação para Baixo , Hipertrigliceridemia , Lipase Lipoproteica , Receptor PAR-2 , Animais , Lipase Lipoproteica/metabolismo , Lipase Lipoproteica/genética , Hipertrigliceridemia/metabolismo , Hipertrigliceridemia/genética , Camundongos , Humanos , Receptor PAR-2/metabolismo , Receptor PAR-2/genética , Masculino , Camundongos Knockout , Triglicerídeos/metabolismo , Triglicerídeos/sangue , Tecido Adiposo Branco/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Fatores Inibidores da Migração de Macrófagos/genética , Adipócitos/metabolismo , Obesidade/metabolismo , Obesidade/genética , Ácido Palmítico/metabolismo , Feminino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
18.
J Pharm Sci ; 113(9): 2851-2860, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39033977

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory joint condition characterized by symmetric, erosive synovitis leading to cartilage erosion and significant disability. Macrophages, pivotal in disease progression, release pro-inflammatory factors upon activation. We developed a nanoparticle delivery system (DXP-PSA NPs), based on palmitic acid modified human serum albumin (PSA), to deliver dexamethasone palmitate (DXP) directly to sites of inflammation, enhancing treatment effectiveness and minimizing possible side effects. The system actively targets scavenger receptor-A on activated macrophages, achieving selective accumulation at inflamed joints. In vitro effect and preliminary targeting abilities were investigated on LPS-activated RAW264.7 cells. The in vivo efficacy and safety were evaluated and compared side to side with commercially available lipid emulsion Limethason® in an advanced adjuvant-induced arthritis rat model. DXP-PSA NPs offer a novel approach to RA treatment and presents promising prospects for clinical translation.


Assuntos
Artrite Experimental , Artrite Reumatoide , Dexametasona , Nanopartículas , Ácido Palmítico , Dexametasona/administração & dosagem , Dexametasona/química , Animais , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Ácido Palmítico/química , Camundongos , Células RAW 264.7 , Humanos , Nanopartículas/química , Ratos , Artrite Experimental/tratamento farmacológico , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacocinética , Masculino , Albumina Sérica Humana/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo
19.
Free Radic Biol Med ; 222: 424-436, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38960008

RESUMO

Abnormal polarization of adipose tissue macrophages (ATMs) results in low-grade systemic inflammation and insulin resistance (IR), potentially contributing to the development of diabetes. However, the underlying mechanisms that regulate the polarization of ATMs associated with gestational diabetes mellitus (GDM) remain unclear. Thus, we aimed to determine the effects of abnormal fatty acids on macrophage polarization and development of insulin resistance in GDM. Levels of fatty acids and inflammation were assessed in the serum samples and adipose tissues of patients with GDM. An in vitro cell model treated with palmitic acid was established, and the mechanisms of palmitic acid in regulating macrophage polarization was clarified. The effects of excessive palmitic acid on the regulation of histone methylations and IR were also explored in the high-fat diet induced GDM mice model. We found that pregnancies with GDM were associated with increased levels of serum fatty acids, and inflammation and IR in adipose tissues. Increased palmitic acid could induce mitochondrial dysfunction and excessive ROS levels in macrophages, leading to abnormal cytoplasmic and nuclear metabolism of succinate and α-ketoglutarate (αKG). Specifically, a decreased nuclear αKG/succinate ratio could attenuate the enrichment of H3K27me3 at the promoters of pro-inflammatory cytokines, such as IL-1ß, IL-6, and TNF-α, leading to cytokine secretion. Importantly, GDM mice treated with GSK-J4, an inhibitor of histone lysine demethylase, were protected from abnormal pro-inflammatory macrophage polarization and excessive production of pro-inflammatory cytokines. Our findings highlight the importance of the metabolism of αKG and succinate as transcriptional modulators in regulating the polarization of ATMs and the insulin sensitivity of adipose tissue, ensuring a normal pregnancy. This novel insight sheds new light on gestational fatty acid metabolism and epigenetic alterations associated with GDM.


Assuntos
Tecido Adiposo , Diabetes Gestacional , Resistência à Insulina , Ácidos Cetoglutáricos , Macrófagos , Ácido Palmítico , Ácido Succínico , Diabetes Gestacional/metabolismo , Diabetes Gestacional/patologia , Gravidez , Ácido Palmítico/farmacologia , Animais , Feminino , Camundongos , Tecido Adiposo/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/patologia , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Humanos , Ácidos Cetoglutáricos/metabolismo , Ácido Succínico/metabolismo , Dieta Hiperlipídica/efeitos adversos , Adulto , Camundongos Endogâmicos C57BL , Inflamação/metabolismo , Inflamação/patologia , Modelos Animais de Doenças
20.
Stem Cell Res Ther ; 15(1): 223, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044210

RESUMO

BACKGROUND: Hepatic stellate cells (HSC) have numerous critical roles in liver function and homeostasis, while they are also known for their importance during liver injury and fibrosis. There is therefore a need for relevant in vitro human HSC models to fill current knowledge gaps. In particular, the roles of vitamin A (VA), lipid droplets (LDs), and energy metabolism in human HSC activation are poorly understood. METHODS: In this study, human pluripotent stem cell-derived HSCs (scHSCs), benchmarked to human primary HSC, were exposed to 48-hour starvation of retinol (ROL) and palmitic acid (PA) in the presence or absence of the potent HSC activator TGF-ß. The interventions were studied by an extensive set of phenotypic and functional analyses, including transcriptomic analysis, measurement of activation-related proteins and cytokines, VA- and LD storage, and cell energy metabolism. RESULTS: The results show that though the starvation of ROL and PA alone did not induce scHSC activation, the starvation amplified the TGF-ß-induced activation-related transcriptome. However, TGF-ß-induced activation alone did not lead to a reduction in VA or LD stores. Additionally, reduced glycolysis and increased mitochondrial fission were observed in response to TGF-ß. CONCLUSIONS: scHSCs are robust models for activation studies. The loss of VA and LDs is not sufficient for scHSC activation in vitro, but may amplify the TGF-ß-induced activation response. Collectively, our work provides an extensive framework for studying human HSCs in healthy and diseased conditions.


Assuntos
Células Estreladas do Fígado , Ácido Palmítico , Fator de Crescimento Transformador beta , Vitamina A , Humanos , Vitamina A/farmacologia , Vitamina A/metabolismo , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Ácido Palmítico/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/citologia , Metabolismo Energético/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA