Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 12: 763067, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712245

RESUMO

Uterine M1/M2 macrophages activation states undergo dynamic changes throughout pregnancy, and inappropriate macrophages polarization can cause adverse pregnancy outcomes, especially during the peri-implantation period. Our previous studies have confirmed that Cytochrome P450 26A1 (CYP26A1) can affect embryo implantation by regulating uterine NK cells and DCs. The aim of this study was to investigate whether CYP26A1 regulates the polarization of uterine macrophages in early pregnancy. Here, we observed that Cyp26a1 was significantly upregulated in M1 as compared with M2 of uterine macrophages, Raw264.7 and iBMDM. Knockdown of CYP26A1 in mice uterine significantly decreased the number of embryo implantation sites and the proportion of CD45+F4/80+CD206 - M1-like uterine macrophages. Primary uterine macrophages treated with anti-CYP26A1 antibody expressed significantly lower levels of M1 markers Nos2, Il1b, Il6 and Tnf-a. In CYP26A1 knockout Raw264.7 cells, the protein levels of M1 markers TNF-α, IL-6 and CD86 were significantly decreased as compared with the wild type cells. Moreover, CYP26A1 deficiency decreased the ability to produce nitric oxide and increased the phagocytosis capacity of Raw264.7 cells under M1 stimulation state. The re-introduction of CYP26A1 partially reversed the polarization levels of M1 in CYP26A1 knockout Raw264.7 cells. CYP26A1 may regulate the polarization of uterine macrophages to M1 through Stap1 and Slc7a2. In summary, these results indicate that CYP26A1 plays a significant role in macrophage polarization, and knockdown of CYP26A1 can cause insufficient M1 polarization during the peri-implantation period, which has adverse effects on blastocyst implantation.


Assuntos
Implantação do Embrião , Macrófagos/fisiologia , Ácido Retinoico 4 Hidroxilase/fisiologia , Útero/imunologia , Animais , Polaridade Celular , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Macrófagos/enzimologia , Camundongos , Camundongos Endogâmicos BALB C
2.
Development ; 147(4)2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32001436

RESUMO

Proper organ development depends on coordinated communication between multiple cell types. Retinoic acid (RA) is an autocrine and paracrine signaling molecule essential for the development of most organs, including the lung. Despite extensive work detailing effects of RA deficiency in early lung morphogenesis, little is known about how RA regulates late gestational lung maturation. Here, we investigate the role of the RA catabolizing protein Cyp26b1 in the lung. Cyp26b1 is highly enriched in lung endothelial cells (ECs) throughout development. We find that loss of Cyp26b1 leads to reduction of alveolar type 1 cells, failure of alveolar inflation and early postnatal lethality in mouse. Furthermore, we observe expansion of distal epithelial progenitors, but no appreciable changes in proximal airways, ECs or stromal populations. Exogenous administration of RA during late gestation partially mimics these defects; however, transcriptional analyses comparing Cyp26b1-/- with RA-treated lungs reveal overlapping, but distinct, responses. These data suggest that defects observed in Cyp26b1-/- lungs are caused by both RA-dependent and RA-independent mechanisms. This work reports crucial cellular crosstalk during lung development involving Cyp26b1-expressing endothelium and identifies a novel RA modulator in lung development.


Assuntos
Epitélio/embriologia , Pulmão/embriologia , Alvéolos Pulmonares/embriologia , Ácido Retinoico 4 Hidroxilase/genética , Ácido Retinoico 4 Hidroxilase/fisiologia , Animais , Sistemas CRISPR-Cas , Diferenciação Celular , Células Endoteliais/citologia , Células Epiteliais/citologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Rim/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Organogênese/efeitos dos fármacos , Gravidez , Prenhez , Transdução de Sinais , Células-Tronco/citologia , Tretinoína/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...