Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.335
Filtrar
1.
Sci Adv ; 10(29): eado9413, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39018393

RESUMO

Chemical ligation of peptides is increasingly used to generate proteins not readily accessible by recombinant approaches. However, a robust method to ligate "difficult" peptides remains to be developed. Here, we report an enhanced native chemical ligation strategy mediated by peptide conjugation in trifluoroacetic acid (TFA). The conjugation between a carboxyl-terminal peptide thiosalicylaldehyde thioester and a 1,3-dithiol-containing peptide in TFA proceeds rapidly to form a thioacetal-linked intermediate, which is readily converted into the desired native amide bond product through simple postligation treatment. The effectiveness and practicality of the method was demonstrated by the successful synthesis of several challenging proteins, including the SARS-CoV-2 transmembrane Envelope (E) protein and nanobodies. Because of the ability of TFA to dissolve virtually all peptides and prevent the formation of unreactive peptide structures, the method is expected to open new opportunities for synthesizing all families of proteins, particularly those with aggregable or colloidal peptide segments.


Assuntos
Peptídeos , Ácido Trifluoracético , Ácido Trifluoracético/química , Peptídeos/química , SARS-CoV-2/química , Anticorpos de Domínio Único/química , Humanos , COVID-19/virologia
2.
Anal Chem ; 96(23): 9721-9728, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38807522

RESUMO

Can reversed-phase peptide retention be the same for C8 and C18 columns? or increase for otherwise identical columns with a smaller surface area? Can replacing trifluoroacetic acid (TFA) with formic acid (FA) improve the peak shape? According to our common understanding of peptide chromatography, absolutely not. Surprisingly, a thorough comparison of the peptide separation selectivity of 100 and 120 Šfully porous C18 sorbents to maximize the performance of our in-house proteomics LC-MS/MS setup revealed an unexpectedly higher peptide retentivity for a wider pore packing material, despite it having a smaller surface area. Concurrently, the observed increase in peptide retention─which drives variation in separation selectivity between 100 and 120 Špore size materials─was more pronounced for smaller peptides. These findings contradict the central dogmas that underlie the development of all peptide RP-HPLC applications: (i) a larger surface area leads to higher retention and (ii) increasing the pore size should benefit the retention of larger analytes. Based on our intriguing findings, we compared reversed-phase high-performance liquid chromatography peptide retention for a total of 20 columns with pore sizes between 60 and 300 Šusing FA- and TFA-based eluents. Our results unequivocally attest that the larger size of ion pairs in FA- vs TFA-based eluents leads to the observed impact on selectivity and peptide retention. For FA, peptide retention peaks at 200 Špore size, compared to between 120 and 200 Šfor TFA. However, the decrease in retention for narrow-pore particles is more profound in FA. Our findings suggest that common assumptions about analyte size and accessible surface area should be revisited for ion-pair RP separation of small peptides, typical for proteomic applications that are predominantly applying FA eluents. Hybrid silica-based materials with pore sizes of 130-200 Šshould be specifically targeted for bottom-up proteomic applications to obtain both superior peak shape and peptide retentivity. This challenging task of attaining the best RPLC column for proteomics calls for closer collaboration between LC column manufacturers and proteomic LC specialists.


Assuntos
Cromatografia de Fase Reversa , Peptídeos , Proteômica , Proteômica/métodos , Peptídeos/química , Peptídeos/análise , Peptídeos/isolamento & purificação , Porosidade , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Tamanho da Partícula , Ácido Trifluoracético/química , Propriedades de Superfície
3.
J Chromatogr A ; 1727: 464974, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38761702

RESUMO

Continuous C8 stationary phase gradients are created on commercial Waters Symmetry Shield RP8 columns by strategically cleaving the C8 moieties in a time-dependent fashion. The method relies on the controlled infusion of a trifluoroacetic acid/water/acetonitrile solution through the column to cleave the organic functionality (e.g., C8) from the siloxane framework. The bond cleavage solution is reactive enough to cleave the functional groups, even with polar groups embedded within the stationary phase to protect the silica. Both the longitudinal and radial heterogeneity were evaluated by extruding the silica powder into polyethylene tubing and evaluating the percent carbon content in the different sections using thermogravimetric analysis (TGA). TGA analysis shows the presence of a stationary phase gradient in the longitudinal direction but not in the radial direction. Two different gradient profiles were formed with good reproducibility by modifying the infusion method: one exhibited an 'S'-shaped gradient while the other exhibited a steep exponential-like gradient. The gradients were characterized chromatographically using test mixtures, and the results showed varied retention characteristics and an enhanced ability to resolve nicotine analytes.


Assuntos
Dióxido de Silício , Dióxido de Silício/química , Acetonitrilas/química , Nicotina/análise , Cromatografia Líquida/métodos , Ácido Trifluoracético/química , Termogravimetria , Reprodutibilidade dos Testes , Siloxanas/química , Água/química , Cromatografia Líquida de Alta Pressão/métodos
4.
Environ Sci Technol ; 58(18): 8076-8085, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38661729

RESUMO

Per- and polyfluoroalkyl substances (PFAS) have received increased attention due to their environmental prevalence and threat to public health. Trifluoroacetic acid (TFA) is an ultrashort-chain PFAS and the simplest perfluorocarboxylic acid (PFCA). While the US EPA does not currently regulate TFA, its chemical similarity to other PFCAs and its simple molecular structure make it a suitable model compound for studying the transformation of PFAS. We show that hydrothermal processing in compressed liquid water transforms TFA at relatively mild conditions (T = 150-250 °C, P < 30 MPa), initially yielding gaseous products, such as CHF3 and CO2, that naturally aspirate from the solution. Alkali amendment (e.g., NaOH) promotes the mineralization of CHF3, yielding dissolved fluoride, formate, and carbonate species as final products. Fluorine and carbon balances are closed using Raman spectroscopy and fluoride ion selective electrode measurements for experiments performed at alkaline conditions, where gas yields are negligible. Qualitative FTIR gas analysis allows for establishing the transformation pathways; however, the F-balance could not be quantitatively closed for experiments without NaOH amendment. The kinetics of TFA transformation under hydrothermal conditions are measured, showing little to no dependency on NaOH concentration, indicating that the thermal decarboxylation is a rate-limiting step. A proposed TFA transformation mechanism motivates additional work to generalize the hydrothermal reaction pathways to other PFCAs.


Assuntos
Ácido Trifluoracético , Ácido Trifluoracético/química , Água/química , Halogenação
5.
Environ Sci Technol ; 58(6): 2966-2972, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38306688

RESUMO

Trifluoroacetate (TFA) is the anionic form of the shortest perfluorocarboxylic acid (PFCA) and is ubiquitous in the environment at concentrations that are typically much higher than those of other PFCAs. As a stable and nonvolatile anion, it is expected to accumulate in terminal lakes in endorheic basins. This research sampled eight terminal lakes in the Western United States to determine the degree to which TFA is concentrating in these lakes and compare the data to samples collected from three of these lakes 25 years ago. The first observation was that three of the six terminal lakes sampled had higher TFA concentrations than their input streams, while the last two lakes lacked surface water inputs at the sampling time. The TFA concentrations in Mono Lake effectively remained constant over 25 years despite the input stream concentrations increasing 6.5-fold. In contrast, Pyramid Lake concentrations increased approximately the expected amount based on a simplistic analysis of input flows and concentrations. An additional observation was that lakes in basins with agricultural activity appeared to have higher TFA concentrations, which suggests an agricultural input.


Assuntos
Lagos , Poluentes Químicos da Água , Estados Unidos , Monitoramento Ambiental , Ácido Trifluoracético/análise , Poluentes Químicos da Água/análise , Água
6.
J Hazard Mater ; 465: 133217, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38101019

RESUMO

In this study, the biodegradability of trifluoroacetate (TFA), perfluorooctanoic acid (PFOA), and perfluoro-2-methyl-3-oxahexanoic acid (HFPO-DA) by a native microbial community was evaluated over a 10-month incubation period. The observed microbial defluorination ratios and removal efficiency were 3.46 ( ± 2.73) % and 8.03 ( ± 3.03) %, 8.44 ( ± 1.88) % and 13.52 ( ± 4.96) %, 3.02 ( ± 0.62) % and 5.45 ( ± 2.99) % for TFA, PFOA and HFPO-DA, respectively. The biodegradation intermediate products, TFA and pentafluoropropionic acid (PFA), of PFOA and HFPO-DA were detected in their biodegradation treatment groups. Furthermore, the concentrations of the PFOA metabolites, perfluorohexanoic acid (PFHxA) and perfluoroheptanoic acid (PFHpA), in the aqueous solutions after incubation were quantified to be 0.21 and 4.14 µg/L. TFA, PFOA and HFPO-DA significantly reduced the microbial diversity and changed the structure of the community. The co-occurrence network analysis showed that low abundance species, such as Flexilinea flocculi, Bacteriovorax stolpii, and g_Sphingomonas, are positively correlated with the generation of fluoride ion, implying their potential collaborative functions contributing to the observed biodefluorination. The findings in this study can provide insights for the biodegradation of perfluoroalkyl carboxylic acids and their emerging alternatives by indigenous microorganisms in the environment.


Assuntos
Fluorocarbonos , Consórcios Microbianos , Propionatos , Ácido Trifluoracético , Fluorocarbonos/química , Caprilatos/química
7.
Biol Pharm Bull ; 46(11): 1576-1582, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37914360

RESUMO

Chinese artichoke tuber (Stachys sieboldii Miq.) is used as an herbal medicine as well as edible food. This study examined the effect of the Chinese artichoke extracts on the nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway that induces the expression of antioxidant enzymes to explore its novel characteristics. Hot water extracts exhibited relatively high ARE activity. ARE activity was observed in two fractions when the hot water extracts were separated in the presence of trifluoroacetic acid using HPLC. Conversely, the highly active fraction disappeared when the hot water extracts were separated in the absence of trifluoroacetic acid. These results indicate that acidic degradation produces active ingredients. The structural analysis of the two active fractions identified harpagide, which is an iridoid glucoside, and harpagogenin. In vitro experiments revealed that harpagide was converted into harpagogenin under acidic conditions and that harpagogenin, but not harpagide, had potent ARE activity. Therefore, this study identified harpagogenin, which is an acid hydrolysate of harpagide, as an ARE activator and suggests that Nrf2-ARE pathway activation by Chinese artichoke contributes to the antioxidative effect.


Assuntos
Stachys , Elementos de Resposta Antioxidante , Antioxidantes/farmacologia , Fator 2 Relacionado a NF-E2 , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Stachys/química , Ácido Trifluoracético , Água
8.
J Environ Sci (China) ; 132: 22-30, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37336607

RESUMO

The reduction of CO2 into high value-added chemicals and fuels by a photocatalytic technology can relieve energy shortages and the environmental problems caused by greenhouse effects. In the current work, an amino-functionalized zirconium metal organic framework (Zr-MOF) was covalently modified with different functional groups via the condensation of Zr-MOF with 2-pyridinecarboxaldehyde (PA), salicylaldehyde (SA), benzaldehyde (BA), and trifluoroacetic acid (TA), named Zr-MOF-X (X = PA, SA, BA, and TA), respectively, through the post-synthesis modification. Compared with Zr-MOF and Zr-MOF-TA, the introduction of PA, SA, or BA into the framework of Zr-MOF can not only enhance the visible-light harvesting and CO2 capture, but also accelerate the photogenerated charge separation and transfer, thereby improving the photocatalytic ability of Zr-MOF for CO2 reduction. These results indicate that the modification of Zr-MOF with electron-donating groups can promote the photocatalytic CO2 reduction. Therefore, the current work provides an instructive approach to improve the photocatalytic efficiency of CO2 reduction through the covalent modification of MOFs.


Assuntos
Dióxido de Carbono , Estruturas Metalorgânicas , Zircônio , Ácido Trifluoracético
9.
Anal Chem ; 95(13): 5484-5488, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36946571

RESUMO

Fluorine nuclear magnetic resonance (19F-NMR) spectroscopy has been shown to be a powerful tool capable of quantifying the total per- and polyfluoroalkyl substances (PFAS) in a complex sample. The technique relies on the characteristic terminal -CF3 shift (-82.4 ppm) in the alkyl chain for quantification and does not introduce bias due to sample preparation or matrix effects. Traditional quantitative analytical techniques for PFAS, such as liquid chromatography-mass spectrometry (LC-MS) and combustion ion chromatography (CIC), contain inherent limitations that make total fluorine analysis challenging. Here, we report a sensitive 19F-NMR method for the analysis of total PFAS, with a limit of detection of 99.97 nM, or 50 µg/L perfluorosulfonic acid. To demonstrate the capabilities of 19F-NMR, the technique was compared to two commonly used methods for PFAS analysis: total oxidizable precursor (TOP) assay and LC-high resolution MS analysis for targeted quantification and suspect screening. In both cases, the 19F-NMR analyses detected higher total PFAS quantities than either the TOP assay (63%) or LC-MS analyses (65%), suggesting that LC-MS and TOP assays can lead to underreporting of PFAS. Importantly, the 19F-NMR detected trifluoroacetic acid at a concentration more than five times the total PFAS concentration quantified using LC-MS in the wastewater sample. Therefore, the use of 19F-NMR to quantify the total PFAS in highly complex samples can be used to complement classic TOP or LC-MS approaches for more accurate reporting of PFAS contamination in the environment.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Flúor/química , Ácido Trifluoracético , Cromatografia Líquida , Espectroscopia de Ressonância Magnética/métodos , Fluorocarbonos/análise , Poluentes Químicos da Água/análise
10.
Environ Sci Technol ; 57(13): 5327-5336, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36962003

RESUMO

The wavelength dependence of photoproduct formation and quantum yields was evaluated for fluorinated pesticides and pharmaceuticals using UV-light emitting diodes (LEDs) with 255, 275, 308, 365, and 405 nm peak wavelengths. The fluorinated compounds chosen were saflufenacil, penoxsulam, sulfoxaflor, fluoxetine, 4-nitro-3-trifluoromethylphenol (TFM), florasulam, voriconazole, and favipiravir, covering key fluorine motifs (benzylic-CF3, heteroaromatic-CF3, aryl-F, and heteroaromatic-F). Quantum yields for the compounds were consistently higher for UV-C as compared to UV-A wavelengths and did not show the same trend as molar absorptivity. For all compounds except favipiravir and TFM, the fastest degradation was observed using 255 or 275 nm light, despite the low power of the LEDs. Using quantitative 19F NMR, fluoride, trifluoroacetate, and additional fluorinated byproducts were tracked and quantified. Trifluoroacetate was observed for both Ar-CF3 and Het-CF3 motifs and increased at longer wavelengths for Het-CF3. Fluoride formation from Het-CF3 was significantly lower as compared to other motifs. Ar-F and Het-F motifs readily formed fluoride at all wavelengths. For Het-CF3 and some Ar-CF3 motifs, 365 nm light produced either a greater number of or different major products. Aliphatic-CF2/CF3 products were stable under all wavelengths. These results assist in selecting the most efficient wavelengths for UV-LED degradation and informing future design of fluorinated compounds.


Assuntos
Praguicidas , Raios Ultravioleta , Fotólise , Fluoretos , Ácido Trifluoracético , Preparações Farmacêuticas
11.
Arch Toxicol ; 97(4): 1069-1077, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36800005

RESUMO

While trifluoroacetic acid has limited technical uses, the highly water-soluble trifluoroacetate (TFA) is reported to be present in water bodies at low concentrations. Most of the TFA in the environment is discussed to arise from natural processes, but also with the contribution from decomposition of environmental chemicals. The presence of TFA may result in human exposures. For hazard and risk assessment, the mammalian toxicity of TFA and human exposures are reviewed to assess the margin of exposures (MoE). The potential of TFA to induce acute toxicity is very low and oral repeated dose studies in rats have identified the liver as the target organ with mild liver hypertrophy as the lead effect. Biomarker analyses indicate that TFA is a weak peroxisome proliferator in rats. TFA administered to rats did not induce adverse effects in an extended one-generation study and in a developmental toxicity study or induce genotoxic responses. Based on recent levels of TFA in water and diet, MoEs for human exposures to TFA are well above 100 and do not indicate health risks.


Assuntos
Exposição Ambiental , Poluentes Químicos da Água , Humanos , Animais , Ratos , Ácido Trifluoracético/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Fígado , Água , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Mamíferos
12.
J Chromatogr A ; 1693: 463874, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36841023

RESUMO

The current study describes the development of a 2D-LC-MS-based strategy for assessing main peak purity in the analysis of pharmaceutical peptides. The focus is on 2D-LC using reversed-phase (RP) separations in both dimensions, and particularly peptide isomer selectivity, since compounds with the same mass to charge ratio are not readily differentiated by mass spectrometry and therefore must be separated chromatographically. Initially, 30 column / mobile phase combinations were evaluated for both general separation performance (i.e., selectivity and peak shape) and isomer selectivity using forcibly degraded peptide samples and mixtures of synthetic diastereomers. A ranking of more than 300 UV and MS chromatograms suggests that when developing a new method, screening a set of four columns and four volatile mobile phases with differing characteristics should be adequate to both cover the selectivity space, and yield good separation performance. When 2D-LC-MS is to be used to evaluate peak purity for a new method, our results show that a second-dimension separation comprising a C8/C18 column possessing no ionic functionality, and an acetic acid / ammonium acetate mobile phase buffered at pH 5, provides good selectivity at 25 °C for peptide isomers with a MW <10 kDa. Retention data for 29 diverse peptides (1 < MW < 14 kDa, 3.7 < pI < 12.5) measured in this study using a variety of column and mobile phase conditions (i.e., 30 in total) are consistent with the classification of these various chromatographic conditions using the previously reported Peptide RPC Column Characterisation Protocol. For the investigated peptides trifluoroacetic acid was found to reduce selectivity differences between columns of diverse properties, probably due to its potential to form ion-pairs with peptides. Trifluoroacetic acid often improves peak shape for very large peptides (i.e. MW > 10 kDa). In the current dataset which also contain smaller peptides it received the highest ranking for 40% of the column and mobile phase combinations due to better selectivity and/or peak shape. The reported work here constitutes part one of a series of two papers. The second paper focuses on the use of retention modelling for rapid and accurate selection of the shallow gradients (i.e., << 1% ACN/min) required to obtain sufficient peptide isomer retention and separation in the second dimension. The overall results presented in this series of papers provides the guidance needed to develop a 2D-LC-MS method from start to finish for the analysis of main peak purity of therapeutic peptides.


Assuntos
Cromatografia de Fase Reversa , Peptídeos , Cromatografia de Fase Reversa/métodos , Ácido Trifluoracético , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Peptídeos/análise , Preparações Farmacêuticas , Cromatografia Líquida de Alta Pressão/métodos
13.
Anal Chim Acta ; 1243: 340801, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36697174

RESUMO

Targeting and quantifying intact proteins from biological samples is still a very challenging research area. Several crucial steps exist in the analytical workflow, including development of a reliable sample preparation method. Here, we developed and applied for the first time a non-immunoaffinity sample preparation method based on a generally widely available micro-elution solid phase extraction (µSPE) strategy for the extraction of multiple lower molecular weight intact proteins (<30 kDa) from various biological matrices. Omission of a time-consuming drying and reconstitution step after extraction resulted in a more simple and rapid sample preparation procedure. A model set of eleven intact proteins (molecular weights: 5.5-29 kDa; isoelectric points: 4.5-11.3) were analyzed in multiple biological fluids using reversed-phase liquid chromatography with a triple quadrupole mass spectrometer operated in multiple reaction monitoring mode. Various sample pre-treatment reagents, sorbent types, and washing and elution solvents were experimentally tested and optimized to obtain the µSPE clean-up condition for a broad mixture of intact proteins having variable physicochemical properties. 1% trifluoroacetic acid and 0.2% Triton 100-X were selected as suitable sample pre-treatment reagents for releasing protein-protein interactions in human serum/plasma and human urine, respectively. Hydrophilic lipophilic balanced µSPE sorbent was selected as a high performing stationary phase. Addition of 1% trifluoroacetic acid to all washing and elution solutions showed the most beneficial effect for the extraction recovery of the proteins. Under the optimized conditions, reproducible extraction recoveries >65% for all targeted proteins (up to 30 kDa) in human urine and >50% for most of the proteins in serum/plasma were achieved. The selected conditions were applied also for the analysis of clinical serum and urine samples to demonstrate the feasibility of the developed method to target intact proteins directly by more affordable µSPE sample preparation and triple quadrupole mass spectrometry, which could be beneficial in many application fields.


Assuntos
Proteínas , Extração em Fase Sólida , Humanos , Peso Molecular , Ácido Trifluoracético , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Extração em Fase Sólida/métodos , Cromatografia Líquida de Alta Pressão
14.
Biomed Chromatogr ; 37(2): e5550, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36410774

RESUMO

The aim of this research work was to develop and validate a stability-indicating, single reversed-phase HPLC method for the separation of five impurities, including enantiomers, diastereomers, and degradation products in sacubitril-valsartan tablets. The method was developed using a Chiralcel OJ-RH column (150 × 4.6 mm, 5 µm) at 45°C with a gradient program of (T/%B) 0.01/25, 10.0/25, 25/38, 37.0/45, 39.0/25, and 45.0/25 at a flow rate of 0.8 ml/min. Mobile phase A consisted of 1 ml of trifluoroacetic acid in 1000 ml of Milli-Q water. Mobile phase B consisted of 1 ml of trifluoroacetic acid in a mixture of acetonitrile and methanol in the ratio of 950:50 (v/v). Sacubitril, valsartan, and their five impurities were monitored at 254 nm. Degradation was not observed when sacubitril-valsartan was subjected to heat, light, hydrolytic, and oxidation conditions. In acid degradation study (1 N HCl/60°C/2 h) impurity 1 (m/z 383.44) was formed, and in base degradation study (0.1 N NaOH/40°C/1 h) impurities 1 and 5 (m/z 265.35) were formed; both impurities were confirmed using LC-MS. The degradation products, enantiomers, and diastereomers were well separated from sacubitril and valsartan, proving the stability-indicating power of the method. The developed method was validated per the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use guidelines. The inter- and intra-day percentage relative standard deviation for sacubitril, valsartan, and their five impurities was less than 5.2%, recovery of the five impurities was between 93 and 105%, and linearity was ≥0.999. The limit of detection was 0.030-0.048 µg/ml, and the limit of quantification was 0.100-0.160 µg/ml.


Assuntos
Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida/métodos , Cromatografia Líquida de Alta Pressão/métodos , Estereoisomerismo , Ácido Trifluoracético , Estabilidade de Medicamentos , Espectrometria de Massas em Tandem/métodos , Valsartana
15.
Org Biomol Chem ; 21(1): 179-186, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36472160

RESUMO

Herein, an efficient and highly functional group-compatible procedure for controllable transformation of indoles by the combination of phenyliodine bis(trifluoroacetate) (PIFA) with n-Bu4NCl·H2O (TBAC) was exploited. Through controlling the amount of PIFA and TBAC from one to three equivalents, 3-chloro-indoles, 3-chloro-2-oxindoles, and 3,3-dichloro-2-oxindoles were obtained, respectively, in satisfactory to excellent yields. The advantages of the protocol include mild conditions, facile process with short reaction time, high yields, satisfactory functional group tolerance, and the use of PIFA, which is an air- and moisture-stable promoter. The mechanism studies showed that the reaction may proceed through a halonium ion species-mediated halogenation-elimination-halogenation stepwise process.


Assuntos
Iodo , Indicadores e Reagentes , Indóis , Oxindóis , Ácido Trifluoracético
18.
J Chem Theory Comput ; 18(12): 7570-7585, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36322136

RESUMO

The GW approximation has recently gained increasing attention as a viable method for the computation of deep core-level binding energies as measured by X-ray photoelectron spectroscopy. We present a comprehensive benchmark study of different GW methodologies (starting point optimized, partial and full eigenvalue-self-consistent, Hedin shift, and renormalized singles) for molecular inner-shell excitations. We demonstrate that all methods yield a unique solution and apply them to the CORE65 benchmark set and ethyl trifluoroacetate. Three GW schemes clearly outperform the other methods for absolute core-level energies with a mean absolute error of 0.3 eV with respect to experiment. These are partial eigenvalue self-consistency, in which the eigenvalues are only updated in the Green's function, single-shot GW calculations based on an optimized hybrid functional starting point, and a Hedin shift in the Green's function. While all methods reproduce the experimental relative binding energies well, the eigenvalue self-consistent schemes and the Hedin shift yield with mean absolute errors <0.2 eV the best results.


Assuntos
Benchmarking , Espectroscopia Fotoeletrônica , Ácido Trifluoracético
19.
Org Biomol Chem ; 20(48): 9613-9617, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36420677

RESUMO

A metal-free tandem reduction and N-trifluoroethylation of quinolines and quinoxalines has been developed. It provided a convenient route to access trifluoroethylated tetrahydroquinolines and tetrahydroquinoxalines. This one-pot method avoids the purification process of the intermediate. Mechanistically, the in situ-generated boryl acetal species reacted with tetrahydroquinolines to generate iminiums followed by reduction to give the target compounds.


Assuntos
Boranos , Quinolinas , Quinoxalinas , Ácido Trifluoracético
20.
MAbs ; 14(1): 2135183, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36284469

RESUMO

Detection of host cell protein (HCP) impurities is critical to ensuring that recombinant drug products, including monoclonal antibodies (mAbs), are safe. Mechanistic characterization as to how HCPs persist in drug products is important to refining downstream processing. It has been hypothesized that weak lipase-mAb interactions enable HCP lipases to evade drug purification processes. Here, we apply state-of-the-art methods to establish lipase-mAb binding mechanisms. First, the mass spectrometry (MS) approach of fast photochemical oxidation of proteins was used to elucidate putative binding regions. The CH1 domain was identified as a conserved interaction site for IgG1 and IgG4 mAbs against the HCPs phospholipase B-like protein (PLBL2) and lysosomal phospholipase A2 (LPLA2). Rationally designed mutations in the CH1 domain of the IgG4 mAb caused a 3- to 70-fold KD reduction against PLBL2 by surface plasmon resonance (SPR). LPLA2-IgG4 mutant complexes, undetected by SPR and studied using native MS collisional dissociation experiments, also showed significant complex disruption, from 16% to 100%. Native MS and ion mobility (IM) determined complex stoichiometries for four lipase-IgG4 complexes and directly interrogated the enrichment of specific lipase glycoforms. Confirmed with time-course and exoglycosidase experiments, deglycosylated lipases prevented binding, and low-molecular-weight glycoforms promoted binding, to mAbs. This work demonstrates the value of integrated biophysical approaches to characterize micromolar affinity complexes. It is the first in-depth structural report of lipase-mAb binding, finding roles for the CH1 domain and lipase glycosylation in mediating binding. The structural insights gained offer new approaches for the bioengineering of cells or mAbs to reduce HCP impurity levels.Abbreviations: CAN, Acetonitrile; AMAC, Ammonium acetate; BFGS, Broyden-Fletcher-Goldfarb-Shanno; CHO, Chinese Hamster Ovary; KD, Dissociation constant; DTT, Dithiothreitol; ELISA, Enzyme-linked immunosorbent assay; FPOP, Fast photochemical oxidation of proteins; FA, Formic acid; F(ab'), Fragment antibodies; HCP, Host cell protein; IgG, Immunoglobulin; IM, Ion mobility; LOD, Lower limit of detection; LPLA2, Lysosomal phospholipase A2; Man, Mannose; MS, Mass spectrometry; MeOH, Methanol; MST, Microscale thermophoresis; mAbs, Monoclonal antibodies; PPT1, Palmitoyl protein thioesterase; ppm, Parts per million; PLBL2, Phospholipase B-like protein; PLD3, Phospholipase D3; PS-20, Polysorbate-20; SP, Sphingomyelin phosphodiesterase; SPR, Surface plasmon resonance; TFA, Trifluoroacetic acid.


Assuntos
Lisofosfolipase , Esfingomielina Fosfodiesterase , Humanos , Cricetinae , Animais , Cricetulus , Células CHO , Polissorbatos , Ditiotreitol , Manose , Ácido Trifluoracético , Metanol , Anticorpos Monoclonais/química , Imunoglobulina G/genética , Fosfolipases A2 , Acetonitrilas , Lipase , Glicosídeo Hidrolases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...