Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Labelled Comp Radiopharm ; 66(11): 362-368, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37530220

RESUMO

Halogenated, labeled with deuterium, tritium or doubly labeled with deuterium and tritium in the 3S position of the side chain isotopomers of L-phenylalanine and phenylpyruvic acid were synthesized. Isotopomers of halogenated L-phenylalanine were obtained by addition of ammonia from isotopically enriched buffer solution to the halogenated derivative of (E)-cinnamic acid catalyzed by phenylalanine ammonia lyase. Isotopomers of halogenated phenylpyruvic acid were obtained enzymatically by conversion of the appropriate isotopomer of halogenated L-phenylalanine in the presence of phenylalanine dehydrogenase. As a source of deuterium was used deuterated water, as a source of tritium was used a solution of highly diluted tritiated water. The labeling takes place in good yields and with high deuterium atom% abundance.


Assuntos
Halogênios , Fenilalanina , Ácidos Fenilpirúvicos , Deutério/química , Halogênios/síntese química , Halogênios/química , Hidrogênio , Trítio/química , Ácidos Fenilpirúvicos/síntese química , Ácidos Fenilpirúvicos/química
2.
ACS Synth Biol ; 10(9): 2187-2196, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34491727

RESUMO

Benzylamine is a commodity chemical used in the synthesis of motion-sickness treatments and anticonvulsants, in dyeing textiles, and as a precursor to the high-energy propellant CL-20. Because chemical production generates toxic waste streams, biosynthetic alternatives have been explored, recently resulting in a functional nine-step pathway from central metabolism (phenylalanine) in E. coli. We report a novel four-step pathway for benzylamine production, which generates the product from cellular phenylpyruvate using enzymes from different sources: a mandelate synthase (Amycolatopsis orientalis), a mandelate oxidase (Streptomyces coelicolor), a benzoylformate decarboxylase (Pseudomonas putida), and an aminotransferase (Salicibacter pomeroyi). This pathway produces benzylamine at 24 mg/L in 15 h (4.5% yield) in cultures of unoptimized cells supplemented with phenylpyruvate. Because the yield is low, supplementation with pathway intermediates is used to troubleshoot the design. This identifies conversion inefficiencies in the mandelate synthase-mediated synthesis of (S)-mandelic acid, and subsequent genome mining identifies a new mandelate synthase (Streptomyces sp. 1114.5) with improved yield. Supplementation experiments also reveal native redirection of ambient phenylpyruvate away from the pathway to phenylalanine. Overall, this work illustrates how retrosynthetic design can dramatically reduce the number of enzymes in a pathway, potentially reducing its draw on cellular resources. However, it also shows that such benefits can be abrogated by inefficiencies of individual conversions. Addressing these barriers can provide an alternative approach to green production of benzylamine, eliminating upstream dependence on chlorination chemistry.


Assuntos
Benzilaminas/metabolismo , Escherichia coli/metabolismo , Ácidos Fenilpirúvicos/metabolismo , Proteínas de Bactérias/genética , Benzilaminas/química , Carboxiliases/genética , Escherichia coli/química , Escherichia coli/genética , Engenharia Metabólica/métodos , Família Multigênica , Oxirredutases/genética , Ácidos Fenilpirúvicos/química , Transaminases/genética
3.
J Biochem ; 167(3): 315-322, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31722428

RESUMO

4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a key enzyme in tyrosine catabolism, catalysing the oxidation of 4-hydroxyphenylpyruvate to homogentisate. Genetic deficiency of this enzyme causes type III tyrosinaemia. The enzyme comprises two barrel-shaped domains formed by the N- and C-termini, with the active site located in the C-terminus. This study investigated the role of the N-terminus, located at the domain interface, in HPPD activity. We observed that the kcat/Km decreased ∼8-fold compared with wild type upon removal of the 12 N-terminal residues (ΔR13). Interestingly, the wild-type level of activity was retained in a mutant missing the 17 N-terminal residues, with a kcat/Km 11-fold higher than that of the ΔR13 mutant; however, the structural stability of this mutant was lower than that of wild type. A 2-fold decrease in catalytic efficiency was observed for the K10A and E12A mutants, indicating synergism between these residues in the enzyme catalytic function. A molecular dynamics simulation showed large RMS fluctuations in ΔR13 suggesting that conformational flexibility at the domain interface leads to lower activity in this mutant. These results demonstrate that the N-terminus maintains the stability of the domain interface to allow for catalysis at the active site of HPPD.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase/química , 4-Hidroxifenilpiruvato Dioxigenase/genética , 4-Hidroxifenilpiruvato Dioxigenase/metabolismo , Catálise , Domínio Catalítico , Dicroísmo Circular , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação , Ácidos Fenilpirúvicos/química , Conformação Proteica , Domínios Proteicos/genética , Tirosina/química
4.
Environ Sci Process Impacts ; 21(6): 1038-1051, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31124553

RESUMO

At pH 4.0, hydrous manganese oxide (HMO) oxidizes mandelic acid by two mole-equivalents of electrons, yielding phenylglyoxylic acid and benzaldehyde. These intermediates, in turn, are oxidized by two mole-equivalents of electrons to the same ultimate oxidation product, benzoic acid. The four compounds of the "reaction set" just described are conveniently monitored using capillary electrophoresis (CE) and HPLC. Extents of adsorption are negligible and their sum exhibits mass balance. Concentrations of phenylglyoxylic acid, benzaldehyde, and benzoic acid can therefore be used to calculate mole-equivalents delivered to HMO for comparison with experimentally-determined dissolved MnII concentrations. Semi-log plots (ln[substrate] versus time) and numerical analysis can also be used to explore rates of oxidation of the functional groups represented, i.e. an α-hydroxycarboxylic acid, an α-ketocarboxylic acid, and an aldehyde. Inserting a -CH2- group between the benzene ring and the functional groups just described yields a new reaction set comprised of phenyllactic acid, phenylpyruvic acid, and phenylacetaldehyde, plus the C-1 ultimate oxidation product, phenylacetic acid. At pH 4, mass balance for phenyllactic acid oxidation fell short by ∼9%. Phenyllactic acid was oxidized 2.7-times more slowly than mandelic acid, while phenylpyruvic acid was oxidized 12.7-times faster than phenylglyoxylic acid. Unlike benzaldehyde, oxidation rates for phenylacetaldehyde were too fast to measure. Under pH 4.0 conditions, this reaction set approach was used to explore the acceleratory effects of increases in HMO loading and inhibitory effects of 500 µM phosphate and pyrophosphate additions. Mandelic acid and phenyllactic acid were oxidized by HMO far more slowly at pH 7.0 than at pH 4.0. At pH 7.0, 2 mM MOPS and phosphate buffers did not yield appreciable dissolved MnII, despite oxidation of organic substrate. 2 mM pyrophosphate, in contrast, solubilized HMO-bound MnII and MnIII.


Assuntos
Glioxilatos/química , Ácidos Mandélicos/química , Compostos de Manganês/química , Óxidos/química , Adsorção , Benzaldeídos/química , Cinética , Oxirredução , Ácidos Fenilpirúvicos/química
5.
J Struct Biol ; 205(3): 44-52, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30742895

RESUMO

The 2-carboxy-6-hydroxyoctahydroindole (Choi) moiety is a hallmark of aeruginosins, a class of cyanobacterial derived bioactive linear tetrapeptides that possess antithrombotic activity. The biosynthetic pathway of Choi has yet to be resolved. AerE is a cupin superfamily enzyme that was shown to be involved in the biosynthesis of Choi, but its exact role remains unclear. This study reports the functional characterization and structural analyses of AerE. Enzymatic observation reveals that AerE can dramatically accelerate 1,3-allylic isomerization of the non-aromatic decarboxylation product of prephenate, dihydro-4-hydroxyphenylpyruvate (H2HPP). This olefin isomerization reaction can occur non-enzymatically and is the second step of the biosynthetic pathway from prephenate to Choi. The results of comparative structural analysis and substrate analogue binding geometry analysis combined with the results of mutational studies suggest that AerE employs an induced fit strategy to bind and stabilize the substrate in a particular conformation that is possibly favorable for 1,3-allylic isomerization of H2HPP through coordinate bonds, hydrogen bonds, π-π conjugation interaction and hydrophobic interactions. All of these interactions are critical for the catalytic efficiency.


Assuntos
Proteínas de Bactérias/química , Indóis/química , Isomerases/química , Microcystis/química , Oligopeptídeos/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Ácidos Cicloexanocarboxílicos/química , Ácidos Cicloexanocarboxílicos/metabolismo , Cicloexenos/química , Cicloexenos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fibrinolíticos/química , Fibrinolíticos/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Indóis/metabolismo , Isomerases/genética , Isomerases/metabolismo , Cinética , Microcystis/enzimologia , Modelos Moleculares , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Ácidos Fenilpirúvicos/química , Ácidos Fenilpirúvicos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
6.
Org Lett ; 20(24): 7807-7810, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30511859

RESUMO

Solanaceous medicinal plants produce tropane alkaloids (TAs). We discovered a novel gene from Atropa belladonna, AbPPAR, which encodes a phenylpyruvic acid reductase required for TA biosynthesis. AbPPAR was specifically expressed in root pericycles and endodermis. AbPPAR was shown to catalyze reduction of phenylpyruvic acid to phenyllactic acid, a precursor of TAs. Suppression of AbPPAR disrupted TA biosynthesis through reduction of phenyllactic acid levels. In summary, we identified a novel enzyme involved in TA biosynthesis.


Assuntos
Alcaloides/biossíntese , Oxirredutases/metabolismo , Ácidos Fenilpirúvicos/metabolismo , Tropanos/metabolismo , Alcaloides/química , Atropa belladonna/química , Atropa belladonna/metabolismo , Estrutura Molecular , Oxirredutases/química , Oxirredutases/isolamento & purificação , Ácidos Fenilpirúvicos/química , Ácidos Fenilpirúvicos/isolamento & purificação , Tropanos/química
8.
J Biotechnol ; 281: 193-198, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-29800600

RESUMO

To improve the specific activity and catalytic efficiency of l-LcLDH1, an NADH-dependent allosteric l-lactate dehydrogenase from L. casei, towards phenylpyruvic acid (PPA), its directed modification was conducted based on the semi-rational design. The three variant genes, Lcldh1Q88R, Lcldh1I229A and Lcldh1T235G, were constructed by whole-plasmid PCR as designed theoretically, and expressed in E. coli BL21(DE3), respectively. The purified mutant, l-LcLDH1Q88R or l-LcLDH1I229A, displayed the specific activity of 451.5 or 512.4 U/mg towards PPA, by which the asymmetric reduction of PPA afforded l-phenyllactic acid (PLA) with an enantiomeric excess (eep) more than 99%. Their catalytic efficiencies (kcat/Km) without d-fructose-1,6-diphosphate (d-FDP) were 4.8- and 5.2-fold that of l-LcLDH1. Additionally, the kcat/Km values of l-LcLDH1Q88R and l-LcLDH1I229A with d-FDP were 168.4- and 8.5-fold higher than those of the same enzymes without d-FDP, respectively. The analysis of catalytic mechanisms by molecular docking (MD) simulation indicated that substituting I229 in l-LcLDH1 with Ala enlarges the space of substrate-binding pocket, and that the replacement of Q88 with Arg makes the inlet of pocket larger than that of l-LcLDH1.


Assuntos
Proteínas de Bactérias , L-Lactato Desidrogenase , Lacticaseibacillus casei/enzimologia , Ácidos Fenilpirúvicos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Escherichia coli/genética , Escherichia coli/metabolismo , L-Lactato Desidrogenase/química , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Mutação , Ácidos Fenilpirúvicos/química , Engenharia de Proteínas
9.
PLoS One ; 12(11): e0188683, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29176872

RESUMO

Targeting metabolism is emerging as a promising therapeutic strategy for modulation of the immune response in human diseases. In the presented study we used the lipopolysaccharide (LPS)-mediated activation of RAW 264.7 macrophage-like cell line as a model to investigate changes in the metabolic phenotype and to test the effect of p-hydroxyphenylpyruvate (pHPP) on it. pHPP is an intermediate of the PHE/TYR catabolic pathway, selected as analogue of the ethyl pyruvate (EP), which proved to exhibit antioxidant and anti-inflammatory activities. The results obtained show that LPS-priming of RAW 264.7 cell line to the activated M1 state resulted in up-regulation of the inducible nitric oxide synthase (iNOS) expression and consequently of NO production and in release of the pro-inflammatory cytokine IL-6. All these effects were prevented dose dependently by mM concentrations of pHPP more efficiently than EP. Respirometric and metabolic flux analysis of LPS-treated RAW 264.7 cells unveiled a marked metabolic shift consisting in downregulation of the mitochondrial oxidative phosphorylation and upregulation of aerobic glycolysis respectively. The observed respiratory failure in LPS-treated cells was accompanied with inhibition of the respiratory chain complexes I and IV and enhanced production of reactive oxygen species. Inhibition of the respiratory activity was also observed following incubation of human neonatal fibroblasts (NHDF-neo) with sera from septic patients. pHPP prevented all the observed metabolic alteration caused by LPS on RAW 264.7 or by septic sera on NHDF-neo. Moreover, we provide evidence that pHPP is an efficient reductant of cytochrome c. On the basis of the presented results a working model, linking pathogen-associated molecular patterns (PAMPs)-mediated immune response to mitochondrial oxidative metabolism, is put forward along with suggestions for its therapeutic control.


Assuntos
Inflamação/imunologia , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Respiração Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/patologia , Interleucina-6/metabolismo , Macrófagos/efeitos dos fármacos , Análise do Fluxo Metabólico , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Nitratos/metabolismo , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/metabolismo , Nitritos/metabolismo , Nitrosação , Oxirredução , Peróxidos/metabolismo , Ácidos Fenilpirúvicos/química , Ácidos Fenilpirúvicos/farmacologia , Piruvatos/química , Piruvatos/farmacologia , Células RAW 264.7
10.
Molecules ; 22(11)2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29140277

RESUMO

BACKGROUND: l-Phenyllactic acid (l-PLA)-a valuable building block in the pharmaceutical and chemical industry-has recently emerged as an important monomer in the composition of the novel degradable biocompatible material of polyphenyllactic acid. However, both normally chemically synthesized and naturally occurring phenyllactic acid are racemic, and the product yields of reported l-PLA synthesis processes remain unsatisfactory. METHODS: We developed a novel recombinant Escherichia coli strain, co-expressing l-lactate dehydrogenase (l-LDH) from Lactobacillus plantarum subsp. plantarum and glucose dehydrogenase (GDH) from Bacillus megaterium, to construct a recombinant oxidation/reduction cycle for whole-cell biotransformation of phenylpyruvic acid (PPA) into chiral l-PLA in an enantioselective and continuous manner. RESULTS: During fed-batch bioconversion with intermittent PPA feeding, l-PLA yield reached 103.8 mM, with an excellent enantiomeric excess of 99.7%. The productivity of l-PLA was as high as 5.2 mM·h-1 per OD600 (optical density at 600 nm) of whole cells. These results demonstrate the efficient production of l-PLA by the one-pot biotransformation system. Therefore, this stereoselective biocatalytic process might be a promising alternative for l-PLA production.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Glucose 1-Desidrogenase/metabolismo , L-Lactato Desidrogenase/metabolismo , Lactatos/metabolismo , Bacillus megaterium/enzimologia , Bacillus megaterium/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas de Cultura Celular por Lotes , Biotransformação , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Genética , Glucose 1-Desidrogenase/genética , Concentração de Íons de Hidrogênio , L-Lactato Desidrogenase/genética , Lactatos/química , Ácido Láctico , Lactobacillus plantarum/enzimologia , Lactobacillus plantarum/genética , Ácidos Fenilpirúvicos/química
11.
Molecules ; 22(6)2017 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-28598377

RESUMO

p-Hydroxyphenylpyruvate dioxygenase (HPPD) is not only the useful molecular target in treating life-threatening tyrosinemia type I, but also an important target for chemical herbicides. A combined in silico structure-based pharmacophore and molecular docking-based virtual screening were performed to identify novel potential HPPD inhibitors. The complex-based pharmacophore model (CBP) with 0.721 of ROC used for screening compounds showed remarkable ability to retrieve known active ligands from among decoy molecules. The ChemDiv database was screened using CBP-Hypo2 as a 3D query, and the best-fit hits subjected to molecular docking with two methods of LibDock and CDOCKER in Accelrys Discovery Studio 2.5 (DS 2.5) to discern interactions with key residues at the active site of HPPD. Four compounds with top rankings in the HipHop model and well-known binding model were finally chosen as lead compounds with potential inhibitory effects on the active site of target. The results provided powerful insight into the development of novel HPPD inhibitors herbicides using computational techniques.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase/antagonistas & inibidores , Inibidores Enzimáticos/química , Herbicidas/química , Ácidos Fenilpirúvicos/química , Proteínas de Plantas/antagonistas & inibidores , Plantas Daninhas/química , 4-Hidroxifenilpiruvato Dioxigenase/química , Motivos de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Bases de Dados de Compostos Químicos , Descoberta de Drogas , Interações Hidrofóbicas e Hidrofílicas , Cinética , Ligantes , Simulação de Acoplamento Molecular , Proteínas de Plantas/química , Plantas Daninhas/enzimologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Relação Quantitativa Estrutura-Atividade , Termodinâmica , Interface Usuário-Computador
12.
PLoS One ; 12(3): e0174665, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28355308

RESUMO

Acceptor substrate specificity of Streptomyces roseochromogenes prenyltransferase SrCloQ was investigated using different non-genuine phenolic compounds. RP-UHPLC-UV-MSn was used for the tentative annotation and quantification of the prenylated products. Flavonoids, isoflavonoids and stilbenoids with different types of substitution were prenylated by SrCloQ, although with less efficiency than the genuine substrate 4-hydroxyphenylpyruvate. The isoflavan equol, followed by the flavone 7,4'-dihydroxyflavone, were the best non-genuine acceptor substrates. B-ring C-prenylation was in general preferred over A-ring C-prenylation (ratio 5:1). Docking studies of non-genuine acceptor substrates with the B-ring oriented towards the donor substrate dimethylallyl pyrophosphate, showed that the carbonyl group of the C-ring was able to make stabilizing interactions with the residue Arg160, which might determine the preference observed for B-ring prenylation. No reaction products were formed when the acceptor substrate had no phenolic hydroxyl groups. This preference can be explained by the essential hydrogen bond needed between a phenolic hydroxyl group and the residue Glu281. Acceptor substrates with an additional hydroxyl group at the C3' position (B-ring), were mainly O3'-prenylated (> 80% of the reaction products). This can be explained by the proximity of the C3' hydroxyl group to the donor substrate at the catalytic site. Flavones were preferred over isoflavones by SrCloQ. Docking studies suggested that the orientation of the B-ring and of the phenolic hydroxyl group at position C7 (A-ring) of flavones towards the residue Tyr233 plays an important role in this observed preference. Finally, the insights obtained on acceptor substrate specificity and regioselectivity for SrCloQ were extended to other prenyltransferases from the CloQ/NhpB family.


Assuntos
Proteínas de Bactérias/metabolismo , Dimetilaliltranstransferase/metabolismo , Flavonoides/metabolismo , Isoflavonas/metabolismo , Streptomyces/enzimologia , Proteínas de Bactérias/química , Domínio Catalítico , Dimetilaliltranstransferase/química , Equol/química , Equol/metabolismo , Flavonoides/química , Ligação de Hidrogênio , Isoflavonas/química , Cinética , Simulação de Acoplamento Molecular , Estrutura Molecular , Novobiocina/análogos & derivados , Novobiocina/biossíntese , Novobiocina/química , Fenóis/química , Fenóis/metabolismo , Ácidos Fenilpirúvicos/química , Ácidos Fenilpirúvicos/metabolismo , Prenilação , Ligação Proteica , Estrutura Terciária de Proteína , Estilbenos/química , Estilbenos/metabolismo , Streptomyces/metabolismo , Especificidade por Substrato
13.
Chem Biodivers ; 13(3): 331-335, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26919474

RESUMO

This work deals with a trimeric bacterial protein, RhCC, which, although belonging to the tautomerase superfamily, shows oxygenase activity. A model of the complex from RhCC and substrate 4-hydroxyphenylenolpyruvate (4HPP), fitting the observation of extra electron densities from X-ray diffraction of the crystal, could be built by autodocking. When subjected to molecular dynamics (MD) aided by an external random force applied to a O2 molecule placed above 4HPP, this model evolved with O2 egressing toward the bulk solvent from two nearly opposite gates. These were located between the nearly parallel helices 75 - 91 and 15 - 33 of either chain C (gate SE) or chain B (gate FL). Alternatively, with four O2 molecules in the bulk solvent, unbiased MD led to O2 entering the protein from gate SE and getting to 4HPP, while forming a stabilizing salt bridge between the 4HPP carboxylate and P1.C (+) NH2 , thus providing scientific ground for a refined model of the complex.


Assuntos
Simulação de Dinâmica Molecular , Oxigênio/metabolismo , Oxigenases/metabolismo , Ácidos Fenilpirúvicos/metabolismo , Oxigênio/química , Oxigenases/química , Ácidos Fenilpirúvicos/química , Software
14.
Astrobiology ; 15(12): 1043-51, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26625153

RESUMO

UNLABELLED: The mineral greigite (Fe3S4) distributes widely in anoxic marine and lake sedimentary systems, with important implications for magnetostratigraphy and paleomagnetism. In living organisms, magnetotactic bacteria can synthesize greigite grains with regular sizes and morphologies. The cubic Fe3S4 structure also occurs as an integral constituent and active center in a family of iron-sulfur proteins in all life-forms on Earth. This basic biochemistry shared by all organisms implies that the Fe3S4 structure might have evolved in the first protocell. Therefore, greigite is of general interest in geochemistry, geophysics, biomineralogy, and origin-of-life sciences. However, the growth of thermodynamically metastable Fe3S4 crystals often requires strictly defined conditions because both Fe and S show variable valences and it is hard to tune their valence fluctuation. Here, we show that freshly precipitated FeS can be selectively oxidized to form greigite in the presence of α-oxo acids, even at room temperature. Based on a brief overview of the experimental findings, a metal-organic complex intermediate model has been put forward and discussed for the discriminative chemical transformation. The results not only provide a possible pathway for the abiotic formation of greigite in nature but also may help explain the biotic mineralization of greigite in magnetotactic bacteria. Moreover, in the context of prebiotic evolution, along with the synergic evolution between greigite and α-oxo acids, Fe3S4 might have been sequestered by primordial peptides, and the whole finally evolved into the first iron-sulfur protein. KEY WORDS: Greigite-Mineralization-α-Oxo acid-Magnetosome-Iron-sulfur protein-Prebiotic evolution.


Assuntos
Ferro/química , Cetoácidos/química , Sulfetos/química , Acetaldeído/química , Cristalização , Formaldeído/química , Glioxilatos/química , Ácidos Cetoglutáricos/química , Ácido Láctico/química , Magnetismo , Magnetossomos , Ácido Oxaloacético/química , Oxirredução , Ácidos Pentanoicos/química , Transição de Fase , Ácidos Fenilpirúvicos/química , Ácido Pirúvico/química , Temperatura , Difração de Raios X
15.
Amino Acids ; 47(11): 2457-61, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26173510

RESUMO

Recently, crystalized mouse ketimine reductase/CRYM complexed with NADPH was found to have pyruvate bound in its active site. We demonstrate that the enzyme binds α-keto acids, such as pyruvate, in solution, and catalyzes the formation of N-alkyl-amino acids from alkylamines and α-keto acids (via reduction of imine intermediates), but at concentrations of these compounds not expected to be encountered in vivo. These findings confirm that, mechanistically, ketimine reductase/CRYM acts as a classical imine reductase and may explain the finding of bound pyruvate in the crystallized protein.


Assuntos
Cristalinas/química , Complexos Multiproteicos/química , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/química , Ácidos Fenilpirúvicos/química , Animais , Catálise , Humanos , Camundongos , Cristalinas mu
16.
J Biotechnol ; 207: 47-51, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26008622

RESUMO

L-Phenyllactic acid (L-PLA) is a novel antiseptic agent with broad and effective antimicrobial activity. In addition, L-PLA has been used for synthesis of poly(phenyllactic acid)s, which exhibits better mechanical properties than poly(lactic acid)s. However, the concentration and optical purity of L-PLA produced by native microbes was rather low. An NAD-dependent L-lactate dehydrogenase (L-nLDH) from Bacillus coagulans NL01 was confirmed to have a good ability to produce L-PLA from phenylpyruvic acid (PPA). In the present study, l-nLDH gene and formate dehydrogenase gene were heterologously coexpressed in Escherichia coli. Through two coupled reactions, 79.6mM l-PLA was produced from 82.8mM PPA in 40min and the enantiomeric excess value of L-PLA was high (>99%). Therefore, this process suggested a promising alternative for the production of chiral l-PLA.


Assuntos
Escherichia coli/genética , Formiato Desidrogenases/metabolismo , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/biossíntese , Bacillus/genética , Clonagem Molecular , Escherichia coli/enzimologia , Formiato Desidrogenases/genética , L-Lactato Desidrogenase/genética , Ácidos Fenilpirúvicos/química
17.
Chem Commun (Camb) ; 51(36): 7681-4, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25850011

RESUMO

Two mononuclear iron(ii)-phenylpyruvate complexes of monoanionic facial N3 ligands are reported to react with dioxygen to undergo two consecutive oxidative decarboxylation steps via an iron-mandelate complex mimicking the function of HMS and CloR.


Assuntos
Compostos Ferrosos/metabolismo , Oxigênio/metabolismo , Oxigenases/metabolismo , Ácidos Fenilpirúvicos/metabolismo , Cristalografia por Raios X , Descarboxilação , Compostos Ferrosos/química , Modelos Moleculares , Estrutura Molecular , Oxirredução , Oxigênio/química , Ácidos Fenilpirúvicos/química
18.
ACS Chem Biol ; 10(4): 1118-27, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25636004

RESUMO

Oncogenic transcriptional coregulators C-terminal Binding Protein (CtBP) 1 and 2 possess regulatory d-isomer specific 2-hydroxyacid dehydrogenase (D2-HDH) domains that provide an attractive target for small molecule intervention. Findings that the CtBP substrate 4-methylthio 2-oxobutyric acid (MTOB) can interfere with CtBP oncogenic activity in cell culture and in mice confirm that such inhibitors could have therapeutic benefit. Recent crystal structures of CtBP 1 and 2 revealed that MTOB binds in an active site containing a dominant tryptophan and a hydrophilic cavity, neither of which are present in other D2-HDH family members. Here, we demonstrate the effectiveness of exploiting these active site features for the design of high affinity inhibitors. Crystal structures of two such compounds, phenylpyruvate (PPy) and 2-hydroxyimino-3-phenylpropanoic acid (HIPP), show binding with favorable ring stacking against the CtBP active site tryptophan and alternate modes of stabilizing the carboxylic acid moiety. Moreover, ITC experiments show that HIPP binds to CtBP with an affinity greater than 1000-fold over that of MTOB, and enzymatic assays confirm that HIPP substantially inhibits CtBP catalysis. These results, thus, provide an important step, and additional insights, for the development of highly selective antineoplastic CtBP inhibitors.


Assuntos
Oxirredutases do Álcool/química , Proteínas de Ligação a DNA/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Proteínas do Tecido Nervoso/química , Oxirredutases do Álcool/antagonistas & inibidores , Oxirredutases do Álcool/metabolismo , Sítios de Ligação , Proteínas Correpressoras , Cristalografia por Raios X , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Inibidores Enzimáticos/metabolismo , Humanos , Hidroxilaminas/química , Hidroxilaminas/metabolismo , Hidroxilaminas/farmacologia , Ligantes , Modelos Moleculares , NAD/química , NAD/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Fenilpropionatos/química , Fenilpropionatos/metabolismo , Fenilpropionatos/farmacologia , Ácidos Fenilpirúvicos/química , Ácidos Fenilpirúvicos/metabolismo , Ácidos Fenilpirúvicos/farmacologia , Conformação Proteica , Relação Estrutura-Atividade , Termodinâmica
19.
Biochemistry ; 53(30): 5034-41, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25020142

RESUMO

Understanding the mechanism of prenyltransferases is important to the design of engineered proteins capable of synthesizing derivatives of naturally occurring therapeutic agents. CloQ is a Mg(2+)-independent aromatic prenyltransferase (APTase) that transfers a dimethylallyl group to 4-hydroxyphenylpyruvate in the biosynthetic pathway for clorobiocin. APTases consist of a common ABBA fold that defines a ß-barrel containing the reaction cavity. Positively charged basic residues line the inside of the ß-barrel of CloQ to activate the pyrophosphate leaving group to replace the function of the Mg(2+) cofactor in other APTases. Classical molecular dynamics simulations of CloQ, its E281G and F68S mutants, and the related NovQ were used to explore the binding of the 4-hydroxyphenylpyruvate (4HPP) and dimethylallyl diphosphate substrates in the reactive cavity and the role of various conserved residues. Hybrid quantum mechanics/molecular mechanics potential of mean force (PMF) calculations show that the effect of the replacement of the Mg(2+) cofactor with basic residues yields a similar activation barrier for prenylation to Mg(2+)-dependent APTases like NphB. The topology of the binding pocket for 4HPP is important for selective prenylation at the ortho position of the ring. Methylation at this position alters the conformation of the substrate for O-prenylation at the phenol group. Further, a two-dimensional PMF scan shows that a "reverse" prenylation product may be a possible target for protein engineering.


Assuntos
Dimetilaliltranstransferase/química , Magnésio/metabolismo , Simulação de Dinâmica Molecular , Novobiocina/análogos & derivados , Prenilação/fisiologia , Teoria Quântica , Domínio Catalítico , Cristalografia por Raios X , Dimetilaliltranstransferase/fisiologia , Magnésio/química , Novobiocina/química , Ácidos Fenilpirúvicos/química , Transdução de Sinais , Eletricidade Estática
20.
Chembiochem ; 15(4): 527-32, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24474719

RESUMO

Two new acyloin compounds were isolated from the thermophilic bacterium Thermosporothrix hazakensis SK20-1(T) . Genome sequencing of the bacterium and biochemical studies identified the thiamine diphosphate (TPP)-dependent enzyme Thzk0150, which is involved in the formation of acyloin. Through extensive analysis of the Thzk0150-catalyzed reaction products, we propose a putative reaction mechanism involving two substrates: 4-methyl-2-oxovalerate as an acyl donor and phenyl pyruvate as an acyl acceptor.


Assuntos
Chloroflexi/química , Álcoois Graxos/metabolismo , Proteínas de Bactérias/metabolismo , Biocatálise , Candida albicans/efeitos dos fármacos , Chloroflexi/metabolismo , Álcoois Graxos/química , Álcoois Graxos/farmacologia , Hexanonas/química , Hexanonas/metabolismo , Hexanonas/farmacologia , Cetoácidos/química , Cetoácidos/metabolismo , Ácidos Fenilpirúvicos/química , Ácidos Fenilpirúvicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...