Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lipids ; 54(9): 557-570, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31475368

RESUMO

The remodeling of membrane lipids is a mechanism that allows microorganisms to survive in unfavorable environments such as industrial effluents, which often contain inorganic and organic pollutants, like chromium and phenol. In the present work, we evaluated the effect of Cr(VI) and phenol on the membrane of Acinetobacter guillouiae SFC 500-1A, a bacterial strain isolated from tannery sediments where such pollutants can be found. The presence of lipid kinases and phospholipases and the changes in their activities under exposure to these pollutants were determined. Cr(VI) and Cr(VI) + phenol caused the membrane to become more rigid for up to 16 h after exposure. This could be due to an increase in cardiolipin (Ptd2 Gro) and a decrease in phosphatidylethanolamine (PtdEtn), which are indicative of more order and rigidity in the membrane. Increased phospholipase A activity (PLA, EC 3.1.1.4) could be responsible for the decrease in PtdEtn levels. Moreover, our results indicate that Cr(VI) and Cr(VI) + phenol trigger the phosphatidic acid (PtdOH) signal. The finding of significantly increased phosphatidylinositol-4-phosphate (PtdIns-4-P) levels means this is likely achieved via PtdIns-PLC/DGK. This report provides the first evidence that A. guillouiae SFC 500-1A is able to sense Cr(VI) and phenol, transduce this signal through changes in the physical state of the membrane, and trigger lipid-signaling events.


Assuntos
Acinetobacter/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Cromo/farmacologia , Fenóis/farmacologia , Ácidos Fosfatídicos/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Membrana Celular/metabolismo , Polarização de Fluorescência , Ácidos Fosfatídicos/metabolismo
2.
J Biol Chem ; 294(46): 17168-17185, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31515268

RESUMO

The homeostasis of most organelles requires membrane fusion mediated by soluble N -ethylmaleimide-sensitive factor (NSF) attachment protein receptors (SNAREs). SNAREs undergo cycles of activation and deactivation as membranes move through the fusion cycle. At the top of the cycle, inactive cis-SNARE complexes on a single membrane are activated, or primed, by the hexameric ATPase associated with the diverse cellular activities (AAA+) protein, N-ethylmaleimide-sensitive factor (NSF/Sec18), and its co-chaperone α-SNAP/Sec17. Sec18-mediated ATP hydrolysis drives the mechanical disassembly of SNAREs into individual coils, permitting a new cycle of fusion. Previously, we found that Sec18 monomers are sequestered away from SNAREs by binding phosphatidic acid (PA). Sec18 is released from the membrane when PA is hydrolyzed to diacylglycerol by the PA phosphatase Pah1. Although PA can inhibit SNARE priming, it binds other proteins and thus cannot be used as a specific tool to further probe Sec18 activity. Here, we report the discovery of a small-molecule compound, we call IPA (inhibitor of priming activity), that binds Sec18 with high affinity and blocks SNARE activation. We observed that IPA blocks SNARE priming and competes for PA binding to Sec18. Molecular dynamics simulations revealed that IPA induces a more rigid NSF/Sec18 conformation, which potentially disables the flexibility required for Sec18 to bind to PA or to activate SNAREs. We also show that IPA more potently and specifically inhibits NSF/Sec18 activity than does N-ethylmaleimide, requiring the administration of only low micromolar concentrations of IPA, demonstrating that this compound could help to further elucidate SNARE-priming dynamics.


Assuntos
Adenosina Trifosfatases/genética , Etilmaleimida/metabolismo , Ácidos Fosfatídicos/química , Proteínas de Saccharomyces cerevisiae/genética , Bibliotecas de Moléculas Pequenas/química , Proteínas de Transporte Vesicular/genética , ATPases Associadas a Diversas Atividades Celulares/química , ATPases Associadas a Diversas Atividades Celulares/genética , Adenosina Trifosfatases/química , Fusão de Membrana/efeitos dos fármacos , Fusão de Membrana/genética , Lipídeos de Membrana/química , Lipídeos de Membrana/genética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Simulação de Dinâmica Molecular , Proteínas Sensíveis a N-Etilmaleimida/química , Proteínas Sensíveis a N-Etilmaleimida/genética , Ácidos Fosfatídicos/antagonistas & inibidores , Proteínas SNARE/química , Proteínas SNARE/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/química , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Vacúolos/genética , Proteínas de Transporte Vesicular/química
3.
J Pain ; 14(1): 66-78, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23273834

RESUMO

UNLABELLED: Growing evidence indicates that various chronic pain syndromes exhibit tissue abnormalities caused by microvasculature dysfunction in the blood vessels of skin, muscle, or nerve. We tested whether topical combinations aimed at improving microvascular function would relieve allodynia in animal models of complex regional pain syndrome type I (CRPS-I) and neuropathic pain. We hypothesized that topical administration of either α(2)-adrenergic (α(2)A) receptor agonists or nitric oxide (NO) donors combined with either phosphodiesterase (PDE) or phosphatidic acid (PA) inhibitors would effectively reduce allodynia in these animal models of chronic pain. Single topical agents produced significant dose-dependent antiallodynic effects in rats with chronic postischemia pain, and the antiallodynic dose-response curves of PDE and PA inhibitors were shifted 2.5- to 10-fold leftward when combined with nonanalgesic doses of α(2)A receptor agonists or NO donors. Topical combinations also produced significant antiallodynic effects in rats with sciatic nerve injury, painful diabetic neuropathy, and chemotherapy-induced painful neuropathy. These effects were shown to be produced by a local action, lasted up to 6 hours after acute treatment, and did not produce tolerance over 15 days of chronic daily dosing. The present results support the hypothesis that allodynia in animal models of CRPS-I and neuropathic pain is effectively relieved by topical combinations of α(2)A or NO donors with PDE or PA inhibitors. This suggests that topical treatments aimed at improving microvascular function may reduce allodynia in patients with CRPS-I and neuropathic pain. PERSPECTIVE: This article presents the synergistic antiallodynic effects of combinations of α(2)A or NO donors with PDE or PA inhibitors in animal models of CRPS-I and neuropathic pain. The data suggest that effective clinical treatment of chronic neuropathic pain may be achieved by therapies that alleviate microvascular dysfunction in affected areas.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2/uso terapêutico , Hiperalgesia/tratamento farmacológico , Hiperalgesia/fisiopatologia , Microcirculação/efeitos dos fármacos , Neuralgia/tratamento farmacológico , Neuralgia/fisiopatologia , Doadores de Óxido Nítrico/uso terapêutico , Ácidos Fosfatídicos/antagonistas & inibidores , Inibidores de Fosfodiesterase/uso terapêutico , Distrofia Simpática Reflexa/tratamento farmacológico , Distrofia Simpática Reflexa/fisiopatologia , Administração Tópica , Agonistas de Receptores Adrenérgicos alfa 2/administração & dosagem , Animais , Química Farmacêutica , Diabetes Mellitus Experimental/complicações , Neuropatias Diabéticas/tratamento farmacológico , Combinação de Medicamentos , Masculino , Doadores de Óxido Nítrico/administração & dosagem , Pomadas , Consumo de Oxigênio , Medição da Dor/efeitos dos fármacos , Inibidores de Fosfodiesterase/administração & dosagem , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Fluxo Sanguíneo Regional/efeitos dos fármacos , Neuropatia Ciática/tratamento farmacológico
4.
Dev Biol ; 362(2): 154-61, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22178154

RESUMO

In order to fertilize the oocyte, sperm must undergo a series of biochemical changes in the female reproductive tract, known as capacitation. Once capacitated, spermatozoon can bind to the zona pellucida of the egg and undergo the acrosome reaction (AR), a process that enables its penetration and fertilization of the oocyte. Important processes that characterize sperm capacitation are actin polymerization and the development of hyper-activated motility (HAM). Previously, we showed that Phospholipase D (PLD)-dependent actin polymerization occurs during sperm capacitation, however the role of this process in sperm capacitation is not yet known. In the present study, we showed for the first time the involvement of PLD-dependent actin polymerization in sperm motility during mouse and human capacitation. Sperm incubated under capacitation conditions revealed a time dependent increase in actin polymerization and HAM. Inhibition of Phosphatidic Acid (PA) formation by PLD using butan-1-ol, inhibited actin polymerization and motility, as well as in vitro fertilization (IVF) and the ability of the sperm to undergo the AR. The inhibition of sperm HAM by low concentration of butan-1-ol is completely restored by adding PA, further indicating the involvement of PLD in these processes. Furthermore, exogenous PA enhanced rapid actin polymerization that was followed by a rise in the HAM, as well as an increased in IVF rate. In conclusion, our results demonstrate that PLD-dependent actin polymerization is a critical step needed for the development of HAM during mouse and human sperm capacitation.


Assuntos
Reação Acrossômica/fisiologia , Actinas/metabolismo , Fosfolipase D/metabolismo , Capacitação Espermática/fisiologia , Motilidade dos Espermatozoides/fisiologia , Zona Pelúcida/metabolismo , 1-Butanol/farmacologia , Animais , Feminino , Fertilização in vitro , Humanos , Immunoblotting , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Ácidos Fosfatídicos/antagonistas & inibidores , Ácidos Fosfatídicos/metabolismo , Polimerização/efeitos dos fármacos , Motilidade dos Espermatozoides/efeitos dos fármacos
5.
J Immunol ; 183(8): 5104-12, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19794068

RESUMO

Initial IgE-dependent signaling events are associated with detergent-resistant membrane microdomains. Following Ag stimulation, the IgE-receptor (Fc(epsilon)RI ) accumulates within these domains. This facilitates the phosphorylation of Fc(epsilon)RI subunits by the Src kinase, Lyn, and the interaction with adaptor proteins, such as the linker for activation of T cells. Among the phospholipases (PL) subsequently activated, PLD is of interest because of its presence in lipid microdomains and the possibility that its product, phosphatidic acid, may regulate signal transduction and membrane trafficking. We find that in Ag-stimulated RBL-2H3 mast cells, the association of Fc(epsilon)RI with detergent-resistant membrane fractions is inhibited by 1-butanol, which subverts production of phosphatidic acid to the biologically inert phosphatidylbutanol. Furthermore, the knockdown of PLD2, and to a lesser extent PLD1 with small inhibitory RNAs, also suppressed the accumulation of Fc(epsilon)RI and Lyn in these fractions as well as the phosphorylation of Src kinases, Fc(epsilon)RI , linker for activation of T cells, and degranulation. These effects were accompanied by changes in distribution of the lipid microdomain component, ganglioside 1, in the plasma membrane as determined by binding of fluorescent-tagged cholera toxin B subunit and confocal microscopy in live cells. Collectively, these findings suggest that PLD activity plays an important role in promoting IgE-dependent signaling events within lipid microdomains in mast cells.


Assuntos
Mastócitos/enzimologia , Microdomínios da Membrana/imunologia , Fosfolipase D/metabolismo , Receptores de IgE/metabolismo , 1-Butanol/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Degranulação Celular/imunologia , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Dinitrofenóis/imunologia , Técnicas de Silenciamento de Genes , Glicerofosfolipídeos/imunologia , Glicerofosfolipídeos/metabolismo , Mastócitos/imunologia , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Ácidos Fosfatídicos/antagonistas & inibidores , Ácidos Fosfatídicos/imunologia , Ácidos Fosfatídicos/metabolismo , Fosfolipase D/genética , Fosfoproteínas/imunologia , Fosfoproteínas/metabolismo , Fosforilação/imunologia , RNA Interferente Pequeno/imunologia , RNA Interferente Pequeno/metabolismo , Ratos , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/metabolismo , Receptores de IgE/efeitos dos fármacos , Soroalbumina Bovina/imunologia , Transdução de Sinais/imunologia , Antígenos Thy-1/imunologia , Antígenos Thy-1/metabolismo , Transfecção , beta-Ciclodextrinas/farmacologia , Quinases da Família src/imunologia , Quinases da Família src/metabolismo
6.
J Inorg Biochem ; 103(11): 1497-503, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19740543

RESUMO

In acid soils, aluminium (Al) toxicity and phosphate (Pi) deficiency are the most significant constraints on plant growth. Al inhibits cell growth and disrupts signal transduction processes, thus interfering with metabolism of phospholipase C (PLC), an enzyme involved in second messenger production in the cell. Using a Coffea arabica suspension cell model, we demonstrate that cell growth inhibition by Al toxicity is mitigated at a high Pi concentration. Aluminium-induced cell growth inhibition may be due to culture medium Pi deficiency, since Pi forms complexes with Al, reducing Pi availability to cells. Phosphate does not mitigate inhibition of PLC activity by Al toxicity. Other enzymes of the phosphoinositide signal transduction pathway were also evaluated. Aluminium disrupts production of second messengers such as inositol 1,4,5-trisphosphate (IP(3)) and phosphatidic acid (PA) by blocking PLC activity; however, phospholipase D (PLD) and diacylglycerol kinase (DGK) activities are stimulated by Al, a response probably aimed at counteracting Al effects on PA formation. Phosphate deprivation also induces PLC and DGK activity. These results suggest that Al-induced cell growth inhibition is not linked to PLC activity inhibition.


Assuntos
Alumínio/farmacologia , Coffea/efeitos dos fármacos , Fosfatos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fosfolipases Tipo C/metabolismo , Alumínio/análise , Células Cultivadas , Coffea/crescimento & desenvolvimento , Coffea/metabolismo , Diacilglicerol Quinase/efeitos dos fármacos , Diacilglicerol Quinase/metabolismo , Inositol 1,4,5-Trifosfato/antagonistas & inibidores , Inositol 1,4,5-Trifosfato/metabolismo , Ácidos Fosfatídicos/antagonistas & inibidores , Ácidos Fosfatídicos/metabolismo , Fosfolipase D/efeitos dos fármacos , Fosfolipase D/metabolismo , Transdução de Sinais/fisiologia , Fosfolipases Tipo C/antagonistas & inibidores
7.
Biochem Biophys Res Commun ; 370(1): 169-73, 2008 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-18358832

RESUMO

While a mother's excessive alcohol consumption during pregnancy is known to have adverse effects on fetal neural development, little is known about the underlying mechanism of these effects. In order to investigate these mechanisms, we investigated the toxic effect of ethanol (ETOH) on neural stem/precursor cell (NSC) proliferation. In cultures of NSCs, phospholipase D (PLD) is activated following stimulation with epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF2). Exposure of NSCs to ETOH suppresses cell proliferation, while it has no effect on cell death. Phosphatidic acid (PA), which is a signaling messenger produced by PLD, reverses ETOH inhibition of NSC proliferation. Blocking the PLD signal by 1-butanol suppresses the proliferation. ETOH-induced suppression of NSC proliferation and the protective effect of PA for ETOH-induced suppression are mediated through extracellular signal-regulated kinase signaling. These results indicate that exposure to ETOH impairs NSC proliferation by altering the PLD signaling pathway.


Assuntos
Células-Tronco Embrionárias/efeitos dos fármacos , Etanol/toxicidade , Neurônios/efeitos dos fármacos , Fosfolipase D/antagonistas & inibidores , 1-Butanol/farmacologia , Animais , Apoptose , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células-Tronco Embrionárias/enzimologia , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Etanol/antagonistas & inibidores , Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neurônios/enzimologia , Ácidos Fosfatídicos/antagonistas & inibidores , Ácidos Fosfatídicos/metabolismo , Ácidos Fosfatídicos/farmacologia , Fosfolipase D/genética , Fosfolipase D/metabolismo , Regulação para Cima
8.
Steroids ; 73(2): 216-21, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18036628

RESUMO

In the present study the effects of diethylstilbestrol on phospholipase D activity and degranulation by human neutrophils were examined. Diethylstilbestrol is a synthetic estrogen and has structural similarity to resveratrol. Resveratrol is a natural polyphenolic antioxidant and has been shown to inhibit the activity of phospholipase D in stimulated neutrophils. Phospholipase D catalyzes the hydrolysis of phosphatidylcholine to yield phosphatidic acid and choline. It also catalyzes the transfer of the phosphatidyl group to ethanol forming phosphatidylethanol at the expense of phosphatidic acid. Phospholipase D activation is associated with degranulation by neutrophils stimulated with chemotactic peptide, formyl-methionyl-leucyl-phenylalanine. The results show that diethylstilbestrol at 100 microM induced a complete inhibition of phosphatidic acid formation in neutrophils, the latter activated by chemotactic peptide. In the presence of ethanol, diethylstilbestrol dose dependently reduced phosphatidylethanol formation induced by chemotactic peptide or by phorbol 12-myristate 13-acetate, indicative of diethylstilbestyrol inhibition of phospholipase D activity. The results also demonstrate that diethylstilbestrol inhibited degranulation by chemotactic peptide-stimulated neutrophils. In comparison to resveratrol, diethylstilbestrol exhibits a stronger inhibition on PA formation, phospholipase D activity and degranulation. These findings suggest that diethylstilbestrol-like resveratrol, may have anti-inflammatory effect in vitro.


Assuntos
Degranulação Celular/efeitos dos fármacos , Dietilestilbestrol/farmacologia , Fosfolipase D/efeitos dos fármacos , Anti-Inflamatórios , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , N-Formilmetionina Leucil-Fenilalanina/farmacologia , Ativação de Neutrófilo , Neutrófilos , Ácidos Fosfatídicos/antagonistas & inibidores
9.
J Cell Sci ; 119(Pt 8): 1645-54, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16569667

RESUMO

Phospholipase D catalyzes the hydrolysis of phosphatidylcholine to generate phosphatidic acid, and there is currently much interest in elucidating messenger functions for this molecule. We report here that wounding sheets of corneal epithelial and Madin Darby canine kidney cells induces strong activation of phospholipase D, and we provide evidence that activation is amplified through a positive feed-back loop. Short-chain analogues of phosphatidic acid induce motility robustly in corneal and other epithelial cell types. The effects of these analogues were not the result of their conversion to the corresponding diacylglycerol or lysophosphatidic acid, implying that phosphatidic acid acts directly on one or more cellular targets. Strikingly, phosphatidic acid signaling was found to stimulate the epidermal growth factor receptor (EGFR) through a transactivation process. Healing of wounds in sheets of corneal epithelial cells is absolutely dependent on epidermal growth factor receptor signaling, and the present data suggest that its activation is a result of wound-induced phospholipase D activation.


Assuntos
Movimento Celular , Epitélio Corneano/metabolismo , Receptores ErbB/metabolismo , Ácidos Fosfatídicos/farmacologia , Fosfolipase D/metabolismo , Animais , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Cães , Relação Dose-Resposta a Droga , Ativação Enzimática , Fator de Crescimento Epidérmico/farmacologia , Humanos , Técnicas In Vitro , Modelos Biológicos , Ácidos Fosfatídicos/antagonistas & inibidores , Proteína Quinase C/metabolismo , Coelhos , Transdução de Sinais , Cicatrização
10.
J Immunol ; 174(9): 5201-8, 2005 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15843515

RESUMO

Activation of phospholipase D (PLD) and protein kinase C (PKC) as well as calcium mobilization are essential signals for degranulation of mast cells. However, the exact role of PLD in degranulation remains undefined. In this study we have tested the hypothesis that the PLD product, phosphatidic acid, and diacylglycerides generated therefrom might promote activation of PKC. Studies were conducted in two rodent mast cell lines that were stimulated with Ag via FcepsilonRI and a pharmacologic agent, thapsigargin. Diversion of production of phosphatidic acid to phosphatidylbutanol (the transphosphatidylation reaction) by addition of l-butanol suppressed both the translocation of diacylglyceride-dependent isoforms of PKC to the membrane and degranulation. Tertiary-butanol, which is not a substrate for the transphosphatidylation, had a minimal effect on PKC translocation and degranulation, and 1-butanol itself had no effect on PKC translocation when PKC was stimulated directly with phorbol ester, 12-O-tetradecanoylphorbol-13-acetate. Also, in cells transfected with small inhibitory RNAs directed against PLD1 and PLD2, activation of PLD, generation of diacylglycerides, translocation of PKC, and degranulation were all suppressed. Phorbol ester, which did not stimulate degranulation by itself, restored degranulation when used in combination with thapsigargin whether PLD function was disrupted with 1-butanol or the small inhibitory RNAs. However, degranulation was not restored when cells were costimulated with Ag and phorbol ester. These results suggested that the production of phosphatidic acid by PLD facilitates activation of PKC and, in turn, degranulation, although additional PLD-dependent processes appear to be critical for Ag-mediated degranulation.


Assuntos
Degranulação Celular/imunologia , Mastócitos/enzimologia , Fosfolipase D/fisiologia , Proteína Quinase C/metabolismo , 1-Butanol/antagonistas & inibidores , 1-Butanol/farmacologia , Animais , Degranulação Celular/efeitos dos fármacos , Linhagem Celular Transformada , Linhagem Celular Tumoral , Diglicerídeos/antagonistas & inibidores , Diglicerídeos/biossíntese , Sinergismo Farmacológico , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/imunologia , Inibidores Enzimáticos/farmacologia , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ácidos Fosfatídicos/antagonistas & inibidores , Ácidos Fosfatídicos/biossíntese , Fosfolipase D/antagonistas & inibidores , Fosforilação , Proteína Quinase C/antagonistas & inibidores , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/imunologia , RNA Interferente Pequeno/farmacologia , Ratos , Acetato de Tetradecanoilforbol/farmacologia , Tapsigargina/farmacologia
11.
J Cell Biochem ; 92(3): 481-90, 2004 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15156560

RESUMO

The secretion of matrix metalloproteinase (MMP-9) is stimulated by the glucocorticoid-induced tumor necrosis factor receptor (GITR), a new tumor necrosis factor receptor (TNFR) family, in murine macrophages via an activation of protein kinase C (PKC)delta and phospholipase D (PLD). Secretions of MMP-9 are stimulated by the phosphatidic acid (PA), a product of PLD activity and an inhibition of PA production by a 1-propanol inhibited secretion of MMP-9 by soluble GITR (sGITR). MMP-9 is not secreted by diacylglycerol (DAG) and an inhibitor of PA phosphatase has no effect on the secretion induced by sGITR, indicating that PA is responsible for MMP-9 secretion in murine macrophages. Our data indicates that sGITR-induced activation of PKCdelta and PLD increases MMP-9 secretions in macrophages.


Assuntos
Macrófagos/enzimologia , Macrófagos/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Fosfolipase D/metabolismo , Proteína Quinase C/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , 1-Propanol/farmacologia , Animais , Linhagem Celular , Diglicerídeos/farmacologia , Ativação Enzimática , Proteína Relacionada a TNFR Induzida por Glucocorticoide , Camundongos , Fosfatidato Fosfatase/antagonistas & inibidores , Fosfatidato Fosfatase/metabolismo , Ácidos Fosfatídicos/antagonistas & inibidores , Ácidos Fosfatídicos/farmacologia , Proteína Quinase C-delta , Solubilidade
12.
J Neurochem ; 88(3): 680-8, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14720217

RESUMO

Receptor phosphorylation, arrestin binding, uncoupling from G protein and subsequent endocytosis have been implicated in G protein-coupled receptor desensitization after chronic agonist exposure. In search of proteins regulating the mu-opioid receptor endocytosis, we have recently established that activation of phospholipase D (PLD)2 is required for agonist-induced mu-opioid receptor endocytosis. In this study, we determined the effect of PLD2 activity on the desensitization and resensitization rate of the mu-opioid receptor. We clearly demonstrated that inhibition of PLD2-mediated phosphatidic acid formation by alcohol (1-butanol or ethanol) or overexpression of a dominant negative mutant of PLD2 prevented agonist-mediated endocytosis and resulted in a faster desensitization rate of the mu-opioid receptor after chronic (D-Ala2, Me Phe4, Glyol5)enkephalin treatment in human embryonic kidney 293 cells. Moreover, inhibition of PLD2 activity led to an impairment of the resensitization rate of the mu-opioid receptor. In summary, our data strongly suggest that PLD2 is a modulator of agonist-induced endocytosis, desensitization and resensitization of the mu-opioid receptor.


Assuntos
Fosfolipase D/fisiologia , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , 1-Butanol/farmacologia , Analgésicos Opioides/farmacologia , Animais , Linhagem Celular , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Humanos , Ácidos Fosfatídicos/antagonistas & inibidores , Ácidos Fosfatídicos/biossíntese , Fosfolipase D/antagonistas & inibidores , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/metabolismo , Ratos
14.
Arterioscler Thromb Vasc Biol ; 20(12): E127-33, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11116077

RESUMO

In the present study, the roles of the small GTPase RhoA and its target Rho kinase in endothelial permeability were investigated in vitro. We have shown previously that, in addition to a rise in the intracellular Ca(2+) concentration ([Ca(2+)](i)), RhoA is involved in the prolonged thrombin-induced barrier dysfunction. To study the role of RhoA and Rho kinase more specifically, endothelial cells were stimulated with lysophosphatidic acid (LPA), a commonly used RhoA activator. LPA induced a 2- to 3-fold increase in the passage of horseradish peroxidase (HRP) across endothelial monolayers that lasted for several hours, whereas thrombin induced a 5- to 10-fold increase. Comparable to the thrombin-induced barrier dysfunction, the LPA-induced barrier dysfunction was accompanied by a reorganization of the F-actin cytoskeleton and the formation of focal attachment sites. LPA induced only a transient increase in myosin light-chain (MLC) phosphorylation, which returned to basal level within 10 minutes. In endothelial cells, [Ca(2+)](i) was not elevated by LPA. Chelation of Ca(2+)(i) ions by 1, 2-bis(2-aminophenoxy)ethane-N:,N:,N:',N:'-tetraacetic acid did not prevent the LPA-induced passage of HRP. Apparently, a low degree of MLC kinase activation occurred, because the MLC kinase inhibitor KT5926 reduced the levels of both basal and LPA-stimulated HRP passage. Inhibition of RhoA by the C3 transferase from Clostridium botulinum inhibited the LPA-induced cytoskeletal changes and prevented the LPA-induced HRP passage. Inhibition of Rho kinase by Y-27632 completely prevented the LPA-induced increase in HRP passage without affecting basal permeability. These data indicate that LPA-induced endothelial hyperpermeability occurs without a change in [Ca(2+)](i) and requires activation of RhoA and Rho kinase.


Assuntos
Endotélio Vascular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Amidas/farmacologia , Cálcio/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Cultivadas , AMP Cíclico/metabolismo , Citoesqueleto/efeitos dos fármacos , Relação Dose-Resposta a Droga , Endotélio Vascular/efeitos dos fármacos , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Peroxidase do Rábano Silvestre , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Cadeias Leves de Miosina/metabolismo , Ácidos Fosfatídicos/antagonistas & inibidores , Ácidos Fosfatídicos/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Piridinas/farmacologia , Trombina/farmacologia , Fatores de Tempo , Veias Umbilicais , Quinases Associadas a rho , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores
15.
Dent Mater ; 16(4): 297-302, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10831786

RESUMO

OBJECTIVES: Diacylglycerol-kinase (DAG-kinase) is an enzyme that phosphorylates diacylglycerol (DAG) to phosphatidic acid (PA), which serves as a precursor to phosphoglycerides involved in cell signaling or as cell membrane structural components. DAG-kinase can be inhibited by diacylethylene glycols (DAEG). We hypothesize that 2-hydroxyethyl methacrylate (HEMA) may alter phosphorylation of DAG to PA following intracellular formation of DAEG. METHODS: Cultured rabbit kidney (RK13) epithelial cells were treated with HEMA, EG, or known inhibitors of DAG-kinase for 24 h, then exposed to [32P]O4- in the presence of a synthetic diacylglycerol for 2 h. Other cultures were radiolabeled with [3H]-oleic acid for 24 h, then exposed to HEMA for an additional 24 h. The cells were harvested and the lipids extracted. Radioactive lipids were separated by thin layer chromatography, located by autoradiography, and quantitated as cpm/ug protein. Cell cultures treated with HEMA were homogenized and the DAG-kinase activity was assayed and expressed as cpm/ug protein. Data were analyzed by one-way ANOVA and Newman-Keuls Multiple Comparison Test. RESULTS: Cultures exposed to HEMA or known DAG-kinase inhibitors exhibited reduced incorporation of radioactivity in the PA fraction compared to control cultures. Direct assays of DAG-kinase activity from cells exposed to HEMA demonstrated decreased enzyme activity. Evaluation of cell phospholipid synthesis showed altered formation of phosphatidylethanolamine and phosphatidylcholine. SIGNIFICANCE: Results suggest that HEMA impairs formation of PA, possibly by acylation of EG released by hydrolysis of the HEMA and resultant production of the inhibitor DAEG. The decreased availability of PA may alter PA-dependent cell structural lipid pathways and lipid-dependent signaling pathways, altering cell growth.


Assuntos
Adesivos Dentinários/farmacologia , Metacrilatos/farmacologia , Ácidos Fosfatídicos/metabolismo , Análise de Variância , Animais , Autorradiografia , Células Cultivadas , Cromatografia em Camada Fina , Diacilglicerol Quinase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Hidrólise , Rim/citologia , Rim/efeitos dos fármacos , Rim/metabolismo , Ácido Oleico/metabolismo , Ácidos Fosfatídicos/antagonistas & inibidores , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosforilação , Coelhos , Compostos Radiofarmacêuticos , Estatística como Assunto , Trítio
16.
Transplantation ; 63(12): 1840-3, 1997 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-9210515

RESUMO

We have previously shown the existence of migratory hematopoietic stem cells in adult solid organs. This study demonstrates that granulocyte colony-stimulating factor (G-CSF) and lisofylline, a phosphatidic acid inhibitor that suppresses hematopoiesis-inhibiting cytokines, can enhance the engraftment of organ-based hematopoietic stem cells. When syngeneic heart grafts or liver nonparenchymal cells were transplanted into lethally irradiated (9.5 Gy) Lewis rats, complete hematopoietic reconstitution and animal survival were significantly improved by treating the recipient with G-CSF or, to a lesser extent, with lisofylline. Pretreatment of hepatic nonparenchymal cell donors with G-CSF, but not lisofylline, also resulted in striking improvement of recipient survival which was associated with an augmented subpopulation of donor stem cells. The results suggest that these drugs can be used to enhance the chimerism that we postulate to be the basis of organ allograft acceptance.


Assuntos
Adjuvantes Imunológicos/farmacologia , Fator Estimulador de Colônias de Granulócitos/farmacologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Leucócitos/efeitos dos fármacos , Pentoxifilina/análogos & derivados , Ácidos Fosfatídicos/antagonistas & inibidores , Irradiação Corporal Total , Animais , Transplante de Medula Óssea , Transplante de Coração , Transplante de Fígado , Pentoxifilina/farmacologia , Ratos , Ratos Endogâmicos Lew
17.
Am J Respir Crit Care Med ; 155(3): 928-36, 1997 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9117028

RESUMO

The effects of lisofylline [(R)-1-(5-hydroxyhexyl)-3,7-dimethylxanthine] (LSF), an inhibitor of de novo phosphatidic acid (PA) generation, on sepsis-induced acute lung injury was studied using Hanford minipigs weighing 18 to 25 kg. Sepsis was induced by an intravenous infusion of Pseudomonas aeruginosa (1 x 10(6)/colony-forming units/kg/min over 2 h). Saline was used as the control vehicle. Six groups were studied: saline control group (SALINE: n = 5); sepsis control group (SEPSIS: n = 5); LSF control group (LSF: n = 5), which received a 25-mg/kgbolus of LSF 30 min before time zero followed by continuous infusion of 10 mg/kg/h throughout the study; LSF-treated septic groups, which were treated with LSF 30 min prior to sepsis (Pre: n = 5), 1 h postonset (Post-1 h: n = 8) or h postonset (Post-2 h: n = 8) of the bacterial infusion. Hemodynamics PaO2, neutrophil counts, and plasma porcine tumor necrosis factor-alpha concentrations were monitored for 6 h. After the minipigs were killed, lung tissue was sampled to measured wet-to-dry weight ratio (W/D), tissue albumin index (TAI), thiobarbituric acid-reactive material content (TBARM), and myeloperoxidase (MPO) activity. Compared with the SALINE group, the SEPSIS group showed significant systemic hypotension, pulmonary hypertension, arterial hypoxemia, neutropenia, and increase in TNF-alpha, MPO activity, W/D, TBARM, and TAI. LSF treatment attenuated sepsis-induced pulmonary hypertension, neutropenia, and hypoxemia, and increased MPO activity and lung injury measurements in the Pre and Post-1 h groups, but its efficacy was blunted in the Post-2 h group. Plasma TNF-alpha was decreased only in the Pre group. Thus, inhibition of intracellular PA generation through de novo pathways attenuates sepsis-induced acute lung injury.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Pentoxifilina/análogos & derivados , Ácidos Fosfatídicos/antagonistas & inibidores , Síndrome do Desconforto Respiratório/prevenção & controle , Choque Séptico/prevenção & controle , Adjuvantes Imunológicos/administração & dosagem , Animais , Modelos Animais de Doenças , Feminino , Hemodinâmica , Pulmão/patologia , Masculino , Pentoxifilina/administração & dosagem , Pentoxifilina/uso terapêutico , Infecções por Pseudomonas , Síndrome do Desconforto Respiratório/etiologia , Choque Séptico/microbiologia , Choque Séptico/fisiopatologia , Suínos , Porco Miniatura , Fatores de Tempo
18.
Endocrinology ; 137(12): 5421-8, 1996 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-8940366

RESUMO

The present study was undertaken to determine whether phospholipase D participates in the mitogenic action of arginine vasopressin (AVP) in cultured rat glomerular mesangial cells. AVP promptly increased the phosphatidylethanol formation in a concentration-dependent manner, which indicates the activation of phospholipase D. When cells were preincubated with 2,3-diphosphoglycerate or carbobenzyloxy-leucine-tyrosine-chloromethylketone (zLYCK), inhibitors of phospholipase D, the 1 x 10(-7) M AVP-produced phosphatidylethanol was significantly attenuated. Also, inhibitors of protein kinase C, staurosporine and calphostin C, reduced the AVP-induced increase in phosphatidylethanol. AVP activated mitogen-activated protein (MAP) kinase in a concentration-dependent manner. Such an activation was significantly reduced by 2,3-diphosphoglycerate, zLYCK, or staurosporine. Also, AVP stimulated [3H]thymidine incorporation, an effect significantly less in the presence of 2,3-diphosphoglycerate or zLYCK. Similar results were obtained with exogenous bacterial phospholipase D. Both MAP kinase and [3H]thymidine incorporation were not altered by 2,3-diphosphoglycerate or zLYCK per se. These results indicate that AVP activates phospholipase D and promotes cellular growth mediated through phospholipase D, in addition to a phospholipase C-dependent signal transduction, in glomerular mesangial cells.


Assuntos
Arginina Vasopressina/farmacologia , Mesângio Glomerular/efeitos dos fármacos , Mesângio Glomerular/metabolismo , Glicerofosfolipídeos , Mitógenos/farmacologia , Fosfolipase D/metabolismo , 2,3-Difosfoglicerato , Animais , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Ácidos Difosfoglicéricos/farmacologia , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Mesângio Glomerular/citologia , Masculino , Naftalenos/farmacologia , Ácidos Fosfatídicos/antagonistas & inibidores , Ácidos Fosfatídicos/metabolismo , Fosfolipase D/antagonistas & inibidores , Fosfolipase D/farmacologia , Proteína Quinase C/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Estaurosporina/farmacologia , Acetato de Tetradecanoilforbol/farmacologia
19.
Endocrinology ; 137(11): 4871-7, 1996 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-8895359

RESUMO

Interleukin-1 beta (IL-1 beta) causes rat islet cell dysfunction through mechanisms that involve inducible nitric oxide synthase (iNOS). However, IL-1 beta also activates several lipid pathways, including those generating phosphatidic acid (PA). Lisofylline (LSF), a water-soluble, nontoxic, selective inhibitor of the PA-1 alpha subspecies, which is stimulated by IL-1 beta and tumor necrosis factor-alpha, has been shown to prevent cytokine-induced cytotoxicity in in vivo animal models. To evaluate the effect of LSF on acute IL-1 beta-induced islet dysfunction, rat islets were exposed to IL-1 beta (0.1 ng/ml) with or without LSF (100 microM) for 24 h, followed by 25 mM glucose (G) stimulation, measurement of rat insulin by RIA, and calculation of the insulin secretion rate. In other experiments, rat islets were precultured for 48 h, then treated for 48 h in 25 mM G with or without IL-1 beta (0.1 ng/ml) and LSF (400 microM), and aliquots of medium were removed at 0, 24, and 48 h for measurement of rat insulin. In addition, islets were exposed to 25 mM G with or without IL-1 beta and LSF, lipids were then extracted, and PA subspecies were identified by TLC and mass spectroscopy, and quantitated using normal phase HPLC. Islets were also exposed to IL-1 beta with or without LSF, and Western immunoblots were performed to evaluate the effect of LSF on iNOS protein expression. IL-1 beta caused a 44% decrease in islet G-stimulated insulin secretion compared to that in untreated islets (P < 0.0005), which was totally reversed by LSF. In addition, IL-1 beta decreased the G-stimulated medium insulin content by 75% at 24 h (P = 0.0004) and 86% at 48 h compared to that in control islets (P < 0.0001). LSF-treated islets maintained 70% of medium insulin content at 24 h (P = 0.11) and 50% at 48 h (P < 0.0001) compared to control islets. HPLC quantitation of PA-1 alpha extracted from islets treated with IL-1 beta alone showed an approximately 15-fold increase over the PA-1 alpha content of islets treated with IL-1 beta and LSF. IL-1 beta-induced expression of iNOS was unchanged with the addition of LSF. These results suggest that LSF is effective in reducing IL-1 beta-induced islet dysfunction, thus supporting the role of lipid mediators such as PA in cytokine-induced islet toxicity.


Assuntos
Insulina/metabolismo , Interleucina-1/farmacologia , Ilhotas Pancreáticas/fisiologia , Pentoxifilina/análogos & derivados , Ácidos Fosfatídicos/biossíntese , Adjuvantes Imunológicos/farmacologia , Análise de Variância , Animais , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Interações Medicamentosas , Glucose/farmacologia , Secreção de Insulina , Interleucina-1/antagonistas & inibidores , Ilhotas Pancreáticas/efeitos dos fármacos , Masculino , Pentoxifilina/farmacologia , Ácidos Fosfatídicos/antagonistas & inibidores , Ácidos Fosfatídicos/química , Biossíntese de Proteínas , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas de Bombardeamento Rápido de Átomos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...