Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 169: 144-160, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31837411

RESUMO

Since the early 2010s, dietary trans-palmitoleic acid (trans-9-hexadecenoic acid, trans-9-C16:1 in the Δ-nomenclature, trans-C16:1 n-7 in the Ω-nomenclature, TPA) has been epidemiologically associated with a lower risk of type 2 diabetes in humans. Thanks to these findings, TPA has become a nutrient of interest. However, there is a lot of unresolved crucial questions about this dietary fatty acid. Is TPA a natural trans fatty acid? What kind of foods ensures intakes in TPA? What about its metabolism? How does dietary TPA act to prevent type 2 diabetes? What are the biological mechanisms involved in this physiological effect? Clearly, it is high time to answer all these questions with the very first review specifically dedicated to this intriguing fatty acid. Aiming at getting an overview, we shall try to give an answer to all these questions, relying on appropriate and accurate scientific results. Briefly, this review underlines that TPA is indeed a natural trans fatty acid which is metabolically linked to other well-known natural trans fatty acids. Knowledge on physiological impacts of dietary TPA is limited so far to epidemiological data, awaiting for supplementation studies. In this multidisciplinary review, we also emphasize on methodological topics related to TPA, particularly when it comes to the quantification of TPA in foods and human plasma. As a conclusion, we highlight promising health benefits of dietary TPA; however, there is a strong lack in well-designed studies in both the nutritional and the analytical area.


Assuntos
Doenças Cardiovasculares/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Suplementos Nutricionais , Ácidos Graxos Monoinsaturados/metabolismo , Obesidade/metabolismo , Ácidos Graxos trans/metabolismo , Animais , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/prevenção & controle , Ensaios Clínicos como Assunto , Diabetes Mellitus Tipo 2/fisiopatologia , Diabetes Mellitus Tipo 2/prevenção & controle , Dieta/métodos , Ácidos Graxos Monoinsaturados/administração & dosagem , Ácidos Graxos Monoinsaturados/síntese química , Ácidos Graxos Monoinsaturados/isolamento & purificação , Humanos , Hidrogenação , Ácidos Linoleicos Conjugados/administração & dosagem , Ácidos Linoleicos Conjugados/metabolismo , Carne/análise , Leite/química , Obesidade/fisiopatologia , Obesidade/prevenção & controle , Ruminantes/metabolismo , Estereoisomerismo , Ácidos Graxos trans/administração & dosagem , Ácidos Graxos trans/síntese química , Ácidos Graxos trans/isolamento & purificação
2.
J Oleo Sci ; 67(3): 273-281, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29459509

RESUMO

The intake of trans fatty acids (TFAs) in foods changes the ratio of low density lipoprotein (LDL) to high density lipoprotein (HDL) cholesterol in blood, which causes cardiovascular disease. TFAs are formed by trans isomerization of unsaturated fatty acids (UFAs). The most recognized formation mechanisms of TFAs are hydrogenation of liquid oil to form partially hydrogenated oil (PHO,) and biohydrogenation of UFAs to form TFA in ruminants. Heating oil also forms TFAs; however, the mechanism of formation, and the TFA isomers formed have not been well investigated. In this study, the trans isomerization mechanism of unsaturated fatty acid formation by heating was examined using the model compounds oleic acid, trioleate, linoleic acid, and trilinoleate for liquid plant oil. The formation of TFAs was found to be suppressed by the addition of an antioxidant and argon gas. Furthermore, the quantity of formed TFAs correlated with the quantity of formed polymer in trioleate heated with air and oxygen. These results suggest that radical reactions form TFAs from UFAs by heating. Furthermore, trans isomerization by heating oleic acid and linoleic acid did not change the original double bond positions. Therefore, the distribution of TFA isomers formed was very simple. In contrast, the mixtures of TFA isomers formed from PHO and ruminant UFAs are complicated because migration of double bonds occurs during hydrogenation and biohydrogenation. These findings suggest that trans isomerization by heating is executed by a completely different mechanism than in hydrogenation and biohydrogenation.


Assuntos
Temperatura Alta , Ácido Linoleico/química , Ácido Oleico/química , Óleos de Plantas/química , Ácidos Graxos trans/química , Ácidos Graxos trans/síntese química , Ar , Antioxidantes , Argônio , Gasometria , Ácidos Graxos Insaturados/química , Hidrogenação , Isomerismo , Oxigênio
3.
J Agric Food Chem ; 61(6): 1189-95, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23350869

RESUMO

In the present study, zero-trans α-linolenic acid (ALA) and medium-chain fatty acids (MCFA)-enriched plastic fats were synthesized through enzymatic interesterification reactions from highly hydrogenated soybean oil (HSO), Cinnamomum camphora seed oil (CCSO), and perilla oil (PO). The reactions were performed by incubating the blending mixtures of HSO, CCSO, and PO at different weight ratios (60:40:100, 70:30:100, 80:20:100) using 10% (total weight of substrate) of Lipozyme TL IM at 65 °C for 8 h. After reaction, the physical properties (fatty acids profile, TAG composition, solid fat content, slip melting point, contents of tocopherol, polymorphic forms, and microstructures) of the interesterified products and their physical blends were determined, respectively. Results showed that the fatty acid compositions of the interesterified products and physical blends had no significant changes, while the content of MCFA in both interesterified products and physical blends increased to 8.58-18.72%. Several new types of TAG species were observed in interesterified products (SSL/SLS, PLO/LLS, and OLLn/LnLO/LOLn). It should be mentioned that no trans fatty acids (TFA) were detected in all products. As the temperature increased, the solid fat content (SFC) of interesterified products was obviously lower than that of physical blends. The SFCs of interesterified products (60:40:100, 70:30:100, and 80:20:100, HSO:CCSO:PO) at 25 °C were 6.5%, 14.6%, and 16.5%, respectively, whereas the counterparts of physical blends were 32.5%, 38.5%, and 43.5%, respectively. Meanwhile, interesterified products showed more ß' polymorphs than physical blends, in which ß' polymorph is a favorite form for production of margarine and shortening. Such zero-trans ALA and MCFA-enriched fats may have desirable physical and nutritional properties for shortenings and margarines.


Assuntos
Cinnamomum camphora/química , Ácidos Graxos/química , Ácidos Graxos/síntese química , Tecnologia de Alimentos/métodos , Lipase/química , Óleo de Soja/química , Ácidos Graxos trans/síntese química , Ácido alfa-Linolênico/síntese química , Hidrogenação , Óleos de Plantas/química , Sementes/química , Ácidos Graxos trans/química , Ácido alfa-Linolênico/química
4.
J Agric Food Chem ; 59(5): 1968-73, 2011 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-21291247

RESUMO

trans-Fatty acids in humans not only may be obtained exogenously from food intake but also could be generated endogenously in tissues. The endogenous generation of trans-fatty acids, especially in the cell membranes induced by radical stress, is an inevitable source for the living species. Thiyl radicals generated from thiols act as the catalyst for the cis-trans isomerization of fatty acids. Arachidonic acid (5c,8c,11c,14c-20:4) with only two of the four double bonds deriving from linoleic acid in the diet can be used to differentiate the exogenous or endogenous formation of double bonds. The aim of this study is to evaluate the effective compounds in preventing thiyl radical-induced trans-arachidonic acid formation during UV irradiation in vitro. The trans-arachidonic acids were found to be 75% after 30 min UV irradiation of all-cis-arachidonic acid. Myricetin, luteolin, and quercetin had the highest thiyl radical scavenging activities, whereas sesamol, gallic acid, and vitamins A, C, and E had the lowest. The structures of flavonoids with higher thiyl radical scavenging activities were a 3',4'-o-dihydroxyl group in the B ring and a 2,3-double bond combined with a 4-keto group in the C ring. These effective compounds found in the present work may be used as lead compounds for the potential inhibitors in the formation of trans-fatty acids in vivo.


Assuntos
Antioxidantes/farmacologia , Ácido Araquidônico/química , Radicais Livres/farmacologia , Compostos de Sulfidrila/química , Ácidos Graxos trans/antagonistas & inibidores , Ácidos Graxos trans/síntese química , Flavonoides/farmacologia , Luteolina/farmacologia , Mercaptoetanol/química , Mercaptoetanol/efeitos da radiação , Quercetina/farmacologia , Raios Ultravioleta
5.
Biotechnol Adv ; 28(4): 500-18, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20362044

RESUMO

In the last few years, biodiesel has emerged as one of the most potential renewable energy to replace current petrol-derived diesel. It is a renewable, biodegradable and non-toxic fuel which can be easily produced through transesterification reaction. However, current commercial usage of refined vegetable oils for biodiesel production is impractical and uneconomical due to high feedstock cost and priority as food resources. Low-grade oil, typically waste cooking oil can be a better alternative; however, the high free fatty acids (FFA) content in waste cooking oil has become the main drawback for this potential feedstock. Therefore, this review paper is aimed to give an overview on the current status of biodiesel production and the potential of waste cooking oil as an alternative feedstock. Advantages and limitations of using homogeneous, heterogeneous and enzymatic transesterification on oil with high FFA (mostly waste cooking oil) are discussed in detail. It was found that using heterogeneous acid catalyst and enzyme are the best option to produce biodiesel from oil with high FFA as compared to the current commercial homogeneous base-catalyzed process. However, these heterogeneous acid and enzyme catalyze system still suffers from serious mass transfer limitation problems and therefore are not favorable for industrial application. Nevertheless, towards the end of this review paper, a few latest technological developments that have the potential to overcome the mass transfer limitation problem such as oscillatory flow reactor (OFR), ultrasonication, microwave reactor and co-solvent are reviewed. With proper research focus and development, waste cooking oil can indeed become the next ideal feedstock for biodiesel.


Assuntos
Biocombustíveis , Ácidos Graxos/química , Resíduos Industriais , Óleos de Plantas/química , Ácidos Graxos trans/química , Bactérias/química , Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Catálise , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Esterificação , Ácidos Graxos/metabolismo , Indústria Alimentícia , Óleos de Plantas/metabolismo , Ácidos Graxos trans/síntese química , Ácidos Graxos trans/metabolismo
6.
Prostaglandins Other Lipid Mediat ; 84(3-4): 138-53, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17991616

RESUMO

Partially hydrogenated soybean oil (PHSBO) and natural soybean oil (SBO) were obtained from a commercial source and their fatty acids were fractionated into saturates, monoenes and diene fractions. The present study compared the effect of the total, monoene and diene fatty acid fractions of PHSBO with those of the SBO on the fatty acid composition of the cell phospholipids (PL) and the prostacyclin (PGI(2)) release by endothelial cells (EC) in culture. Results showed that arachidonic acid (AA) level decreased significantly and linoleic acid (LA) significantly increased in the cells incubated with the diene fraction or the monoene fraction of PHSBO plus 18:2 at 3:1 ratio compared to the cell incubated with those fractions of SBO. These changes were attributed to the inhibition of LA conversion to AA by trans 18:1 and 18:2 isomers present in the monoene or diene fractions of PHSBO leading to a significant decrease of PGI(2) released by the cells incubated with monoene or diene fractions of PHSBO. The cells incubated with the monoene of PHSBO or SBO plus 18:2 at a 1:1 ratio showed no inhibition of LA conversion to AA and the level of AA was almost equal in their PL, but the PGI(2) released by the cells incubated with the monoene of PHSBO was significantly less than the cells incubated with the monoene of SBO. This decrease was not related to the inhibition of PGI(2) synthesizing enzymes or phospholipase (PLA(2)) activities. Our data show that trans acids in PHSBO inhibited the PGI(2) release by the cells through controlling the level of AA as substrate, either by (a) inhibiting the conversion of LA to AA or (b) by shunting the free AA released by the PLA(2) action to metabolism by another pathway leaving less AA available for PGI(2) synthesis.


Assuntos
Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Epoprostenol/metabolismo , Ácido Linoleico/farmacologia , Óleo de Soja/química , Ácidos Graxos trans/análise , Ácidos Graxos trans/farmacologia , 6-Cetoprostaglandina F1 alfa/metabolismo , Ácido Araquidônico/metabolismo , Linhagem Celular , Membrana Celular/química , Humanos , Hidrogenação , Ácido Linoleico/metabolismo , Fosfolipases A2/metabolismo , Fosfolipídeos/análise , Fosfolipídeos/química , Ácidos Graxos trans/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...