Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.199
Filtrar
1.
Molecules ; 29(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38930901

RESUMO

This study presents fibers based on methacrylic acid-methyl methacrylate (Eudragit L100) as Cu(II) adsorbents, resulting in antimicrobial complexes. Eudragit L100, an anionic copolymer synthesized by radical polymerization, was electrospun in dimethylformamide (DMF) and ethanol (EtOH). The electrospinning process was optimized through a 22-factorial design, with independent variables (copolymer concentration and EtOH/DMF volume ratio) and three repetitions at the central point. The smallest average fiber diameter (259 ± 53 nm) was obtained at 14% w/v Eudragit L100 and 80/20 EtOH/DMF volume ratio. The fibers were characterized using scanning electron microscopy (SEM), infrared spectroscopy in attenuated total reflectance mode (FTIR-ATR), and differential scanning calorimetry (DSC). The pseudo-second-order mechanism explained the kinetic adsorption toward Cu(II). The fibers exhibited a maximum adsorption capacity (qe) of 43.70 mg/g. The DSC analysis confirmed the Cu(II) absorption, indicating complexation between metallic ions and copolymer networks. The complexed fibers showed a lower degree of swelling than the non-complexed fibers. The complexed fibers exhibited bacteriostatic activity against Gram-negative (Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacteria. This study successfully optimized the electrospinning process to produce thin fibers based on Eudragit L100 for potential applications as adsorbents for Cu(II) ions in aqueous media and for controlling bacterial growth.


Assuntos
Cobre , Ácidos Polimetacrílicos , Cobre/química , Ácidos Polimetacrílicos/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Adsorção , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Metacrilatos/química , Cinética , Varredura Diferencial de Calorimetria , Testes de Sensibilidade Microbiana
2.
Eur J Orthod ; 46(4)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38884540

RESUMO

AIM: The aim of the present study was to assess the alterations in morphology, roughness, and composition of the surfaces of a conventional and a flowable composite attachment engaged with aligners, and to evaluate the release of resin monomers and their derivatives in an aqueous environment. METHODS: Zirconia tooth-arch frames (n = 20) and corresponding thermoformed PET-G aligners with bonded attachments comprising two composite materials (universal-C and flowable-F) were fabricated. The morphological features (stereomicroscopy), roughness (optical profilometry), and surface composition (ATR-FTIR) of the attachments were examined before and after immersion in water. To simulate intraoral use, the aligners were removed and re-seated to the frames four times per day for a 7-day immersion period. After testing, the eluents were analyzed by LC-MS/MS targeting the compounds Bis-GMA, UDMA, 2-HEMA, TEGDMA and BPA and by LC-HRMS for suspect screening of the leached dental material compounds and their degradation products. RESULTS: After testing, abrasion-induced defects were found on attachment surfaces such as scratches, marginal cracks, loss of surface texturing, and fractures. The morphological changes and debonding rate were greater in F. Comparisons (before-after testing) revealed a significantly lower Sc roughness parameter in F. The surface composition of the aligners after testing showed minor changes from the control, with insignificant differences in the degree of C = C conversion, except for few cases with strong evidence of hydrolytic degradation. Targeted analysis results revealed a significant difference in the compounds released between Days 1 and 7 in both materials. Insignificant differences were found when C was compared with F in both timeframes. Several degradation products were detected on Day 7, with a strong reduction in the concentration of the targeted compounds. CONCLUSIONS: The use of aligners affects the surface characteristics and degradation rate of composite attachments in an aqueous environment, releasing monomers, and monomer hydrolysates within 1-week simulated use.


Assuntos
Resinas Compostas , Teste de Materiais , Metacrilatos , Propriedades de Superfície , Zircônio , Zircônio/química , Resinas Compostas/química , Metacrilatos/química , Polietilenoglicóis/química , Ácidos Polimetacrílicos/química , Poliuretanos/química , Bis-Fenol A-Glicidil Metacrilato/química , Materiais Dentários/química , Técnicas In Vitro , Humanos , Técnicas de Movimentação Dentária/instrumentação , Técnicas de Movimentação Dentária/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
3.
Dent Mater ; 40(7): 1025-1030, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38755042

RESUMO

OBJECTIVES: Resin composites may release bisphenol A (BPA) due to impurities present in the monomers. However, there is a lack of knowledge regarding the leaching characteristics of BPA from resin composites. Therefore, experimental resin composites were prepared with known amounts of BPA. The objective of this study was (1) to determine which amount of BPA initially present in the material leaches out in the short term and, (2) how this release is influenced by the resin composition. METHODS: BPA (0, 0.001, 0.01, or 0.1 wt%) was added to experimental resin composites containing 60 mol% BisGMA, BisEMA(3), or UDMA, respectively, as base monomer and 40 mol% TEGDMA as diluent monomer. Polymerized samples (n = 5) were immersed at 37 °C for 7 days in 1 mL of water, which was collected and refreshed daily. BPA release was quantified with UPLC-MS/MS after derivatization with pyridine-3-sulfonyl chloride. RESULTS: Between 0.47 to 0.67 mol% of the originally added BPA eluted from the resin composites after 7 days. Similar elution trends were observed irrespective of the base monomer. Two-way ANOVA showed a significant effect of the base monomer on BPA release, but the differences were small and not consistent. SIGNIFICANCE: The released amount of BPA was directly proportional to the quantity of BPA present in the resin composite as an impurity. BPA release was mainly diffusion-based, while polymer composition seemed to play a minor role. Our results underscore the importance for manufacturers only to use monomers of the highest purity in dental resin composites to avoid unnecessary BPA exposure in patients.


Assuntos
Compostos Benzidrílicos , Resinas Compostas , Fenóis , Fenóis/análise , Fenóis/química , Compostos Benzidrílicos/química , Resinas Compostas/química , Teste de Materiais , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem , Poliuretanos/química , Ácidos Polimetacrílicos/química , Metacrilatos/química , Metacrilatos/análise , Polietilenoglicóis/química , Polimerização
4.
Dent Mater ; 40(7): 1041-1046, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763819

RESUMO

OBJECTIVE: To evaluate the influence of the barium glass (BG) filler in 3D printing resin-based composites for restorative structures. METHODS: Experimental 3D printing resin-based composites were formulated with UDMA 70%wt, Bis-EMA 20%wt, and TEGDMA 10%wt. Photoinitiators TPO and DFI (2%wt) were used. BG was incorporated at 40%wt and 50%wt. 0%wt BG was used as negative control and the VarseoSmile Crownplus (Bego) was used as a commercial control. Specimens were printed using a 3D printer. Subsequently, specimens were washed and submitted to post-curing with 405 nm at 60ºC for 2 × 20 min at FormCure (FormLabs). 3D printing resin-based composites were evaluated by flexural strength, degree of conversion, softening in solvent, radiopacity, and cytotoxicity against gingival fibroblasts. Data were statistically analyzed using one-way ANOVA (α = 0.05). RESULTS: No significant differences in flexural strength were showed between BG40% (90.5 ± 5,4 MPa), BG50% (102.0 ± 11.7 MPa) and VA (105.2 ± 11.7 MPa). Addition of 40% and 50% of BG showed no influence in the degree of conversion compared to VA (p > 0.05). All groups showed softening in solvent after immersion in ethanol (p < 0.05). All groups showed more than 1mmAl of radiopacity. BG50% showed significantly higher radiopacity (2.8 ± 0.3 mmAl) than other groups (p < 0,05). Cytotoxicity evaluation showed gingival cell viability higher than 80% for all groups. SIGNIFICANCE: Addition of up to 50%wt of barium glass in experimental 3D printing resin-based composites showed promising results for long-term restorative structures.


Assuntos
Compostos de Bário , Resinas Compostas , Teste de Materiais , Metacrilatos , Polietilenoglicóis , Impressão Tridimensional , Resinas Compostas/química , Compostos de Bário/química , Polietilenoglicóis/química , Metacrilatos/química , Poliuretanos/química , Resistência à Flexão , Vidro/química , Ácidos Polimetacrílicos/química , Bis-Fenol A-Glicidil Metacrilato/química , Humanos , Fibroblastos/efeitos dos fármacos , Gengiva , Fotoiniciadores Dentários/química , Polimerização , Propriedades de Superfície , Dióxido de Silício
5.
Dent Mater ; 40(7): 1047-1055, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772841

RESUMO

OBJECTIVE: To investigate the effect of hydrophilic/permeable polymer matrices on water sorption/solubility (WS/SL), Ca2+ release, mechanical properties and hydrolytic degradation of composites containing dicalcium phosphate dihydrate (DCPD) particles. METHODS: Six composites were tested, all with 10 vol% of glass particles and either 30 vol% or 40 vol% DCPD. Composites containing 1BisGMA:1TEGDMA in mols (at both inorganic levels) were considered controls. Four materials were formulated where 0.25 or 0.5 of the BisGMA/TEGDMA was replaced by pyromellitic dianhydride glycerol dimethacrylate (PMGDM)/ polyethylene glycol dimethacrylate (PEGDMA). Composites were tested for degree of conversion (FTIR spectroscopy), WS/SL (ISO 4049) and Ca2+ release (inductively coupled plasma optical emission spectroscopy). Fracture toughness (FT) and biaxial flexural strength/modulus (BFS/FM) were determined after 24 h and 60 days in water. The contributions of diffusional and relaxational mechanisms to Ca2+ release kinetics were analyzed using the semi-empirical Salim-Peppas model. Data were analysed by ANOVA/Tukey test (alpha: 0.05). RESULTS: WS/SL was higher for composites containing PMGDM/PEGDMA compared to the controls (p < 0.001). Only at 40% DCPD the 0.5 PMGDM/PEGDMA composite showed statistically higher Ca2+ release than the control. Relaxation diffusion was the main release mechanism. Initial FT was not negatively affected by matrix composition. BFS (both DCPD fractions) and FM (30% DCPD) were lower for composites with hydrophilic/permeable networks (p < 0.01). After 60 days in water, composites with PMGDM/PEGDMA presented significant reductions in FT, while all composites had reductions in BFS/FM. SIGNIFICANCE: Increasing matrix hydrophilicity/permeability significantly increased Ca2+ release only at a high DCPD fraction.


Assuntos
Fosfatos de Cálcio , Resinas Compostas , Resistência à Flexão , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais , Metacrilatos , Polietilenoglicóis , Ácidos Polimetacrílicos , Resinas Compostas/química , Polietilenoglicóis/química , Metacrilatos/química , Fosfatos de Cálcio/química , Ácidos Polimetacrílicos/química , Cálcio/química , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Bis-Fenol A-Glicidil Metacrilato/química , Água/química , Módulo de Elasticidade , Benzoatos
6.
Eur J Pharm Biopharm ; 200: 114335, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38768765

RESUMO

The study endeavors the fabrication of extended-release adipic acid (APA) buccal films employing a quality by design (QbD) approach. The films intended for the treatment of xerostomia were developed utilizing hot-melt extrusion technology. The patient-centered quality target product profile was created, and the critical quality attributes were identified accordingly. Three early-stage formulation development trials, complemented by risk assessment aligned the formulation and process parameters with the product quality standards. Employing a D-optimal mixture design, the formulations were systematically optimized by evaluating three formulation variables: amount of the release-controlling polymer Eudragit® (E RSPO), bioadhesive agent Carbopol® (CBP 971P), and pore forming agent polyethylene glycol (PEG 1500) as independent variables, and % APA release in 1, 4 and 8 h as responses. Using design of experiment software (Design-Expert®), a total of 16 experimental runs were computed and extruded using a Thermofisher ScientificTM twin screw extruder. All films exhibited acceptable content uniformity and extended-release profiles with the potential for releasing APA for at least 8 h. Films containing 30% E RSPO, 10% CBP 971P, and 20% PEG 1500 released 88.6% APA in 8 h. Increasing the CBP concentration enhanced adhesiveness and swelling capacities while decreasing E RSPO concentration yielded films with higher mechanical strength. The release kinetics fitted well into Higuchi and Krosmeyer-Peppas models indicating a Fickian diffusion release mechanism.


Assuntos
Preparações de Ação Retardada , Liberação Controlada de Fármacos , Xerostomia , Xerostomia/tratamento farmacológico , Tecnologia de Extrusão por Fusão a Quente/métodos , Polietilenoglicóis/química , Humanos , Administração Bucal , Química Farmacêutica/métodos , Adipatos/química , Acrilatos/química , Ácidos Polimetacrílicos/química , Polímeros/química , Composição de Medicamentos/métodos
7.
Dent Mater ; 40(6): 941-950, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38719709

RESUMO

OBJECTIVE: Bisphenol A glycidyl methacrylate (Bis-GMA) is of great importance for dental materials as the preferred monomer. However, the presence of bisphenol-A (BPA) core in Bis-GMA structure causes potential concerns since it is associated with endocrine diseases, developmental abnormalities, and cancer lesions. Therefore, it is desirable to develop an alternative replacement for Bis-GMA and explore the intrinsic relationship between monomer structure and resin properties. METHODS: Here, the betulin maleic diester derivative (MABet) was synthesized by a facile esterification reaction using plant-derived betulin and maleic anhydride as raw materials. Its chemical structure was confirmed by 1H and 13C NMR spectra, FT-IR spectra, and HR-MS, respectively. The as-synthesized MABet was then used as polymerizable comonomer to partially or completely substitute Bis-GMA in a 50:50 Bis-GMA: TEGDMA resin (5B5T) to formulate dental restorative resins. These were then determined for the viscosity behavior, light transmittance, real-time degree of conversion, residual monomers, mechanical performance, cytotoxicity, and antibacterial activity against Streptococcus mutans (S. mutans) in detail. RESULTS: Among all experimental resins, increasing the MABet concentration to 50 wt% made the resultant 5MABet5T resin have a maximum in viscosity and appear dark yellowish after polymerization. In contrast, the 1MABet4B5T resin with 10 wt% MABet possessed comparable shear viscosity and polymerization conversion (46.6 ± 1.0% in 60 s), higher flexural and compressive strength (89.7 ± 7.8 MPa; 345.5 ± 14.4 MPa) to those of the 5B5T control (48.5 ± 0.6%; 65.7 ± 6.7 MPa; 223.8 ± 57.1 MPa). This optimal resin also had significantly lower S. mutans colony counts (0.35 ×108 CFU/mL) than 5B5T (7.6 ×108 CFU/mL) without affecting cytocompatibility. SIGNIFICANCE: Introducing plant-derived polymerizable MABet monomer into dental restorative resins is an effective strategy for producing antibacterial dental materials with superior physicochemical property.


Assuntos
Antibacterianos , Bis-Fenol A-Glicidil Metacrilato , Teste de Materiais , Streptococcus mutans , Triterpenos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Triterpenos/química , Triterpenos/farmacologia , Streptococcus mutans/efeitos dos fármacos , Bis-Fenol A-Glicidil Metacrilato/química , Viscosidade , Materiais Dentários/química , Materiais Dentários/farmacologia , Materiais Dentários/síntese química , Polimerização , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/farmacologia , Resinas Compostas/química , Resinas Compostas/síntese química , Resinas Compostas/farmacologia , Polietilenoglicóis/química , Espectroscopia de Infravermelho com Transformada de Fourier , Ácido Betulínico
8.
Anal Methods ; 16(23): 3720-3731, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38808588

RESUMO

In recent years, there has been a growing interest in the thriving monoclonal antibody (mAb) industry due to the wide utilization of mAbs in clinical therapies. Robust and accurate bioanalytical methods are required to enable fast quantification of mAbs in biological matrices, especially in the context of pharmacokinetics (PKs)/pharmacodynamics (PDs) and therapeutic drug monitoring (TDM) studies. In this investigation, we presented a novel immuno-magnetic capture coupled with a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method designed for the quantification of immunoglobulin G-kappa-based mAbs in biological fluids. The immunoaffinity absorbent for mAb drug purification was meticulously crafted by immobilizing protein L onto monosize, magnetic poly(glycidyl methacrylate) (m-pGMA) beads, synthesized through dispersion polymerization. The microspheres were acquired with an average size of 1.6 µm, and the optimal binding of mAbs from the aqueous mAb solution was determined to be 45.82 mg g-1. The quantification of mAbs in 10 µL serum samples was achieved through affinity purification using m-pGMA@protein L beads (employing rituximab as an internal standard (IS)), on-bead reduction, and rapid tryptic digestion. Remarkably, the entire process, taking less than 2.5 hours, held significant potential for simplifying pretreatment procedures and minimizing analytical time. Furthermore, the developed method underwent validation in accordance with the European Medicines Agency (EMA) guidelines. The assay demonstrated commendable linearity within the 2-400 µg mL-1 range for both daratumumab and pembrolizumab. Intra- and inter-assay coefficients of variation fell within the range of 0.7% to 13.4%, meeting established acceptance criteria. Other validation parameters also conformed to regulatory standards. Ultimately, the efficacy of the method was substantiated in a pharmacokinetic study following a single-dose intravenous administration to mice, underscoring its applicability and reliability in real-world scenarios.


Assuntos
Anticorpos Monoclonais , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/imunologia , Cromatografia Líquida/métodos , Humanos , Animais , Ácidos Polimetacrílicos/química , Camundongos , Microesferas , Separação Imunomagnética/métodos , Espectrometria de Massa com Cromatografia Líquida
9.
Int J Biol Macromol ; 270(Pt 2): 132388, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754685

RESUMO

Cyclodextrin-based electrospun nanofibers are promising for encapsulating and preserving unstable compounds, but quick dissolution of certain nanofibers hinders their delivery application. In this study, hydroxypropyl-ß-cyclodextrin (HPßCD) was used as an effective carrier of resveratrol (RSV) to obtain the RSV/HPßCD inclusion complex (HPIC), which was then incorporated into pullulan nanofibers. For enhancement of RSV release toward colon target, multilayer structure with a pullulan/HPIC film sandwiched between two layers of hydrophobic Eudragit S100 (ES100) nanofibers was employed. The relationship between the superiority of the ES100-pullulan/HPIC-ES100 film and its multilayer structure was verified. The intimate interactions of hydrogen bonds between two adjacent layers enhanced thermal stability, and the hydrophobic outer layers improved water contact resistance. According to release results, multilayer films also showed excellent colon-targeted delivery property and approximately 78.58 % of RSV was observed to release in colon stage. In terms of release mechanism, complex mechanism best described RSV colonic release. Additionally, ES100-pullulan/HPIC-ES100 multilayer films performed higher encapsulation efficiency when compared to the structures without HPIC, which further increased the antioxidant activity and total release amount of RSV. These results suggest a promising strategy for designing safe colonic delivery systems based on multilayer and HPIC structures with superior preservation for RSV.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina , Colo , Glucanos , Nanofibras , Resveratrol , Nanofibras/química , Glucanos/química , Resveratrol/química , Resveratrol/farmacologia , Resveratrol/administração & dosagem , Resveratrol/farmacocinética , 2-Hidroxipropil-beta-Ciclodextrina/química , Colo/metabolismo , Colo/efeitos dos fármacos , Ácidos Polimetacrílicos/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Sistemas de Liberação de Medicamentos
10.
Int J Pharm ; 658: 124191, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38701909

RESUMO

Conventional spray drying using a 2-fluid nozzle forms matrix microparticles, where drug is distributed throughout the particle and may not effectively mask taste. In contrast, spray drying using a 3-fluid nozzle has been reported to encapsulate material. The objective of this study was to spray dry Eudragit® E-PO (EE) with acetaminophen (APAP), a water-soluble model drug with a bitter taste, using 2- and 3-fluid nozzles for taste masking. Spray drying EE with APAP, however, resulted in yields of ≤ 13 %, irrespective of nozzle configuration. Yields improved when Eudragit® L 100-55 (EL) or Methocel® E6 (HPMC) was used in the inner fluid stream of the 3-fluid nozzle or in place of EE for the 2-fluid nozzle. Drug release from microparticles prepared with the 2-fluid nozzle was relatively rapid. Using EE in the outer fluid stream of the 3-fluid nozzle resulted in comparatively slower drug release, although drug release was observed, indicating that encapsulation was incomplete. Results from these studies also show that miscible polymers used in the two fluid streams mix during the spray drying process. In addition, findings from this study indicate that the polymer used in the inner fluid stream can impact drug release.


Assuntos
Acetaminofen , Liberação Controlada de Fármacos , Ácidos Polimetacrílicos , Paladar , Acetaminofen/química , Acetaminofen/administração & dosagem , Ácidos Polimetacrílicos/química , Secagem por Atomização , Composição de Medicamentos/métodos , Derivados da Hipromelose/química , Tamanho da Partícula , Solubilidade , Dessecação/métodos , Resinas Acrílicas
11.
BMC Oral Health ; 24(1): 557, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38735940

RESUMO

BACKGROUND: Dental resin-based composites are widely recognized for their aesthetic appeal and adhesive properties, which make them integral to modern restorative dentistry. Despite their advantages, adhesion and biomechanical performance challenges persist, necessitating innovative strategies for improvement. This study addressed the challenges associated with adhesion and biomechanical properties in dental resin-based composites by employing molecular docking and dynamics simulation. METHODS: Molecular docking assesses the binding energies and provides valuable insights into the interactions between monomers, fillers, and coupling agents. This investigation prioritizes SiO2 and TRIS, considering their consistent influence. Molecular dynamics simulations, executed with the Forcite module and COMPASS II force field, extend the analysis to the mechanical properties of dental composite complexes. The simulations encompassed energy minimization, controlled NVT and NPT ensemble simulations, and equilibration stages. Notably, the molecular dynamics simulations spanned a duration of 50 ns. RESULTS: SiO2 and TRIS consistently emerged as influential components, showcasing their versatility in promoting solid interactions. A correlation matrix underscores the significant roles of van der Waals and desolvation energies in determining the overall binding energy. Molecular dynamics simulations provide in-depth insights into the mechanical properties of dental composite complexes. HEMA-SiO2-TRIS excelled in stiffness, BisGMA-SiO2-TRIS prevailed in terms of flexural strength, and EBPADMA-SiO2-TRIS offered a balanced combination of mechanical properties. CONCLUSION: These findings provide valuable insights into optimizing dental composites tailored to diverse clinical requirements. While EBPADMA-SiO2-TRIS demonstrates distinct strengths, this study emphasizes the need for further research. Future investigations should validate the computational findings experimentally and assess the material's response to dynamic environmental factors.


Assuntos
Materiais Biocompatíveis , Resinas Compostas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Dióxido de Silício , Resinas Compostas/química , Dióxido de Silício/química , Materiais Biocompatíveis/química , Materiais Dentários/química , Metacrilatos/química , Poliuretanos/química , Ácidos Polimetacrílicos/química , Polietilenoglicóis/química , Resinas Acrílicas/química
12.
Se Pu ; 42(5): 410-419, 2024 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-38736384

RESUMO

Protein A affinity chromatographic materials are widely used in clinical medicine and biomedicine because of their specific interactions with immunoglobulin G (IgG). Both the characteristics of the matrix, such as its structure and morphology, and the surface modification method contribute to the affinity properties of the packing materials. The specific, orderly, and oriented immobilization of protein A can reduce its steric hindrance with the matrix and preserve its bioactive sites. In this study, four types of affinity chromatographic materials were obtained using agarose and polyglycidyl methacrylate (PGMA) spheres as substrates, and multifunctional epoxy and maleimide groups were used to fix protein A. The effects of the ethylenediamine concentration, reaction pH, buffer concentration, and other conditions on the coupling efficiency of protein A and adsorption performance of IgG were evaluated. Multifunctional epoxy materials were prepared by converting part of the epoxy groups of the agarose and PGMA matrices into amino groups using 0.2 and 1.6 mol/L ethylenediamine, respectively. Protein A was coupled to the multifunctional epoxy materials using 5 mmol/L borate buffer (pH 8) as the reaction solution. When protein A was immobilized on the substrates by maleimide groups, the agarose and PGMA substrates were activated with 25% (v/v) ethylenediamine for 16 h to convert all epoxy groups into amino groups. The maleimide materials were then converted into amino-modified materials by adding 3 mg/mL 3-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) dissolved in dimethyl sulfoxide (DMSO) and then suspended in 5 mmol/L borate buffer (pH 8). The maleimide groups reacted specifically with the C-terminal of the sulfhydryl group of recombinant protein A to achieve highly selective fixation on both the agarose and PGMA substrates. The adsorption performance of the affinity materials for IgG was improved by optimizing the bonding conditions of protein A, such as the matrix type, matrix particle size, and protein A content, and the adsorption properties of each affinity material for IgG were determined. The column pressure of the protein A affinity materials prepared using agarose or PGMA as the matrix via the maleimide method was subsequently evaluated at different flow rates. The affinity materials prepared with PGMA as the matrix exhibited superior mechanical strength compared with the materials prepared with agarose. Moreover, an excellent linear relationship between the flow rate and column pressure of 80 mL/min was observed for this affinity material. Subsequently, the effect of the particle size of the PGMA matrix on the binding capacity of IgG was investigated. Under the same protein A content, the dynamic binding capacity of the affinity materials on the PGMA matrix was higher when the particle size was 44-88 µm than when other particle sizes were used. The properties of the affinity materials prepared using the multifunctional epoxy and maleimide-modified materials were compared by synthesizing affinity materials with different protein A coupling amounts of 1, 2, 4, 6, 8, and 10 mg/mL. The dynamic and static binding capacities of each material for bovine IgG were then determined. The prepared affinity material was packed into a chromatographic column to purify IgG from bovine colostrum. Although all materials showed specific adsorption selectivity for IgG, the affinity material prepared by immobilizing protein A on the PGMA matrix with maleimide showed significantly better performance and achieved a higher dynamic binding capacity at a lower protein grafting amount. When the protein grafting amount was 15.71 mg/mL, the dynamic binding capacity of bovine IgG was 32.23 mg/mL, and the dynamic binding capacity of human IgG reached 54.41 mg/mL. After 160 cycles of alkali treatment, the dynamic binding capacity of the material reached 94.6% of the initial value, indicating its good stability. The developed method is appropriate for the production of protein A affinity chromatographic materials and shows great potential in the fields of protein immobilization and immunoadsorption material synthesis.


Assuntos
Cromatografia de Afinidade , Proteína Estafilocócica A , Cromatografia de Afinidade/métodos , Proteína Estafilocócica A/química , Adsorção , Imunoglobulina G/química , Ácidos Polimetacrílicos/química , Sefarose/química
13.
BMC Oral Health ; 24(1): 546, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730400

RESUMO

BACKGROUND: Recently, a new generation of high-strength flowable dental composites has been introduced by manufacturers. The manufacturers claim that these materials have enhanced mechanical and physical properties and are suitable for use in a wide range of direct anterior and posterior restorations, even in high-stress bearing areas. AIM: The objective of this study was to assess certain physical and mechanical properties of these recently introduced high-strength flowable composites in comparison to conventional multipurpose dental composites. METHODS: Four types of high-strength flowable composites (Genial Universal FLO, Gaenial Universal Injectable, Beautifil Injectable, and Beautifil Flow Plus) were tested in experimental groups, while a nanohybrid conventional composite (Filtek Z350 XT) was used as the control. For flexure properties, ten rectangular samples (2 × 2 × 25 mm) were prepared from each composite material and subjected to 5000 cycles of thermocycling. Samples were then subjected to flexural strength testing using the universal testing machine. Another twenty disc-shaped specimens of dimensions (5 mm diameter × 2 mm thickness) were fabricated from each composite material for surface roughness (Ra) (n = 10) and hardness (VHN) test (n = 10). All samples underwent 5000 cycles of thermocycling before testing. Additionally, microleakage testing was conducted on 60 standardized class V cavities prepared on molar teeth and divided randomly into five groups (n = 12). Cavities were then filled with composite according to the manufacturer's instructions and subjected to thermocycling for 1000 cycles before testing using methylene blue solution and a stereomicroscope. RESULTS: All tested materials were comparable to the control group in terms of flexural strength and surface roughness (p > 0.05), with Gaenial Universal FLO exhibiting significantly higher flexural strength compared to the other flowable composite materials tested. However, all tested materials demonstrated significantly lower elastic modulus and surface hardness than the control group (p < 0.05). The control group exhibited higher microleakage scores, while the lowest scores were observed in the Gaenial Universal FLO material (p < 0.05) CONCLUSION: The physical and mechanical behaviors of the different high-strength flowable composites investigated in this study varied. Some of these materials may serve as suitable alternatives to conventional composites in specific applications, emphasizing the importance of dentists being familiar with material properties before making material selections.


Assuntos
Resinas Compostas , Infiltração Dentária , Resistência à Flexão , Dureza , Teste de Materiais , Propriedades de Superfície , Técnicas In Vitro , Humanos , Análise do Estresse Dentário , Materiais Dentários/química , Estresse Mecânico , Polietilenoglicóis , Ácidos Polimetacrílicos/química , Bis-Fenol A-Glicidil Metacrilato
14.
Biomaterials ; 309: 122584, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38735180

RESUMO

Inflammatory bowel disease (IBD) is a kind of auto-immune disease characterized by disrupted intestinal barrier and mucosal epithelium, imbalanced gut microbiome and deregulated immune responses. Therefore, the restoration of immune equilibrium and gut microbiota could potentially serve as a hopeful approach for treating IBD. Herein, the oral probiotic Escherichia coli Nissle 1917 (ECN) was genetically engineered to express secretable interleukin-2 (IL-2), a kind of immunomodulatory agent, for the treatment of IBD. In our design, probiotic itself has the ability to regulate the gut microenvironment and IL-2 at low dose could selectively promote the generation of regulatory T cells to elicit tolerogenic immune responses. To improve the bioavailability of ECN expressing IL-2 (ECN-IL2) in the gastrointestinal tract, enteric coating Eudragit L100-55 was used to coat ECN-IL2, achieving significantly enhanced accumulation of engineered probiotics in the intestine. More importantly, L100-55 coated ECN-IL2 could effectively activated Treg cells to regulate innate immune responses and gut microbiota, thereby relieve inflammation and repair the colon epithelial barrier in dextran sodium sulfate (DSS) induced IBD. Therefore, genetically and chemically modified probiotics with excellent biocompatibility and efficiency in regulating intestinal microflora and intestinal inflammation show great potential for IBD treatment in the future.


Assuntos
Preparações de Ação Retardada , Doenças Inflamatórias Intestinais , Interleucina-2 , Probióticos , Linfócitos T Reguladores , Probióticos/administração & dosagem , Doenças Inflamatórias Intestinais/terapia , Animais , Administração Oral , Interleucina-2/metabolismo , Preparações de Ação Retardada/química , Linfócitos T Reguladores/imunologia , Escherichia coli , Camundongos Endogâmicos C57BL , Humanos , Microbioma Gastrointestinal , Camundongos , Ácidos Polimetacrílicos/química
15.
Int J Pharm ; 658: 124196, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38703933

RESUMO

The aim of this study was to prepare nintedanib nanocrystals (BIBF-NCs) to lower the solubility of the drug in the stomach, maintain the supersaturation of the drug in the intestine, and improve the oral absorption of nintedanib (BIBF). In this study, BIBF-NCs were prepared by acid solubilization and alkaline precipitation following nano granding method, with a particle size of 290.80 nm and a zeta potential of -49.13 mV. Subsequently, Nintedanib enteric-coated nanocrystals (BIBF-NCs@L100) were obtained by coating with Eudragit L100. The microscopic morphology, crystalline characteristics, stability, and in vitro dissolution of BIBF-NCs and BIBF-NCs@L100 were also studied. In addition, the in vivo pharmacokinetic behaviors of Samples prepared according to the prescription process of commercially available soft capsules (soft capsules), BIBF-NCs, and BIBF-NCs@L100 were further investigated. The results showed that the oral bioavailability of BIBF-NCs and BIBF-NCs@L100 were increased by 1.43 and 2.58 times, compared with that of the soft capsules. BIBF-NCs@L100 effectively reduced the release of BIBF in the formulation in the stomach, allowing more drug to reach the intestine in the form of nanocrystals, maintaining the supersaturation in the intestine, thereby improving the oral bioavailability of the drug.


Assuntos
Disponibilidade Biológica , Indóis , Nanopartículas , Tamanho da Partícula , Ácidos Polimetacrílicos , Solubilidade , Nanopartículas/química , Indóis/farmacocinética , Indóis/administração & dosagem , Indóis/química , Animais , Administração Oral , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/farmacocinética , Masculino , Liberação Controlada de Fármacos , Ratos Sprague-Dawley
16.
Biomacromolecules ; 25(5): 2990-3000, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38696732

RESUMO

Recently, we reported the synthesis of a hydrophilic aldehyde-functional methacrylic polymer (Angew. Chem., 2021, 60, 12032-12037). Herein we demonstrate that such polymers can be reacted with arginine in aqueous solution to produce arginine-functional methacrylic polymers without recourse to protecting group chemistry. Careful control of the solution pH is essential to ensure regioselective imine bond formation; subsequent reductive amination leads to a hydrolytically stable amide linkage. This new protocol was used to prepare a series of arginine-functionalized diblock copolymer nanoparticles of varying size via polymerization-induced self-assembly in aqueous media. Adsorption of these cationic nanoparticles onto silica was monitored using a quartz crystal microbalance. Strong electrostatic adsorption occurred at pH 7 (Γ = 14.7 mg m-2), whereas much weaker adsorption occurred at pH 3 (Γ = 1.9 mg m-2). These findings were corroborated by electron microscopy, which indicated a surface coverage of 42% at pH 7 but only 5% at pH 3.


Assuntos
Arginina , Nanopartículas , Nanopartículas/química , Adsorção , Arginina/química , Concentração de Íons de Hidrogênio , Polimerização , Dióxido de Silício/química , Polímeros/química , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/síntese química
17.
PLoS One ; 19(5): e0303177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38781182

RESUMO

Silk fibroin nanoparticles (FNP) have been increasingly investigated in biomedical fields due to their biocompatibility and biodegradability properties. To widen the FNP versatility and applications, and to control the drug release from the FNP, this study developed the Eudragit S100-functionalized FNP (ES100-FNP) as a pH-responsive drug delivery system, by two distinct methods of co-condensation and adsorption, employing the zwitterionic furosemide as a model drug. The particles were characterized by sizes and zeta potentials (DLS method), morphology (electron microscopy), drug entrapment efficiency and release profiles (UV-Vis spectroscopy), and chemical structures (FT-IR, XRD, and DSC). The ES100-FNP possessed nano-sizes of ∼200-350 nm, zeta potentials of ∼ -20 mV, silk-II structures, enhanced thermo-stability, non-cytotoxic to the erythrocytes, and drug entrapment efficiencies of 30%-60%, dependent on the formulation processes. Interestingly, the co-condensation method yielded the smooth spherical particles, whereas the adsorption method resulted in durian-shaped ones due to furosemide re-crystallization. The ES100-FNP adsorbed furosemide via physical adsorption, followed Langmuir model and pseudo-second-order kinetics. In the simulated oral condition, the particles could protect the drug in the stomach (pH 1.2), and gradually released the drug in the intestine (pH 6.8). Remarkably, in different pH conditions of 6.8, 9.5, and 12, the ES100-FNP could control the furosemide release rates depending on the formulation methods. The ES100-FNP made by the co-condensation method was mainly controlled by the swelling and corrosion process of ES100, and followed the Korsmeyer-Peppas non-Fickian transport mechanism. Whereas, the ES100-FNP made by the adsorption method showed constant release rates, followed the zero-order kinetics, due to the gradual furosemide dissolution in the media. Conclusively, the ES100-FNP demonstrated high versatility as a pH-responsive drug delivery system for biomedical applications.


Assuntos
Fibroínas , Furosemida , Nanopartículas , Fibroínas/química , Concentração de Íons de Hidrogênio , Nanopartículas/química , Furosemida/química , Sistemas de Liberação de Medicamentos , Ácidos Polimetacrílicos/química , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Tamanho da Partícula , Animais , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier
18.
Braz Dent J ; 35: e245720, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38775593

RESUMO

This study evaluated a new method of adhesive system application on the bond strength between fiber post and root dentin using two adhesive systems. The canals of sixty bovine incisors were prepared and obturated. The roots were divided into six groups (n=10) according to the adhesive system (Clearfil SE - CSE and Single Bond Universal - SBU) and the application strategy (microbrush - MB; rotary brush - RB; and ultrasonic tip - US). The glass fiber posts were cemented with resin cement (RelyX ARC). The roots were sectioned perpendicularly to their long axis, and three slices per root were obtained. Previously to the push-out test, confocal laser scanning microscopy (CLSM) was performed to illustrate the interfacial adaptation of the cement to the root canal walls. Failure patterns were analyzed with 40x magnification. Shapiro-Wilk indicated a normal distribution of the data. The bond strength values were compared using one-way ANOVA and Tukey's tests. Student's T test analyzed the differences between the adhesive systems within each third and protocol. A significance level of 5% was used. CSE with RB showed higher mean bond strength values compared to MB (conventional technique) (P < 0.05). US application resulted in intermediate bond strength values for CSE (P > 0.05). The application of SBU using RB generated higher mean bond strength values compared to MB and US (P < 0.05). Adhesive failures were predominant (65.5%). CSE and SBU application with the new rotary brush improved the bond strength of fiber posts to root dentin compared to the conventional strategy.


Assuntos
Dentina , Técnica para Retentor Intrarradicular , Cimentos de Resina , Bovinos , Animais , Cimentos de Resina/química , Colagem Dentária/métodos , Bis-Fenol A-Glicidil Metacrilato/química , Adesivos Dentinários/química , Microscopia Confocal , Ácidos Polimetacrílicos/química , Teste de Materiais , Vidro/química , Raiz Dentária , Polietilenoglicóis/química , Análise do Estresse Dentário
19.
Int J Pharm ; 657: 124177, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38697582

RESUMO

We present a promising method for producing amorphous drug particles using a nozzle-free ultrasonic nebulizer with polymers, specifically polyvinylpyrrolidone (PVP), poly(acrylic acid) (PAA), and Eudragit® S 100 (EUD). Model crystalline phase drugs-Empagliflozin, Furosemide, and Ilaprazole-are selected. This technique efficiently produces spherical polymer-drug composite particles and demonstrates enhanced stability against humidity and thermal conditions, compared to the drug-only amorphous particles. The composite particles exhibit improved water dissolution compared to the original crystalline drugs, indicating potential bioavailability enhancements. While there are challenges, including the need for continuous water supply for ultrasonic component cooling, dependency on the solubility of polymers and drugs in volatile organic solvents, and mildly elevated temperatures for solvent evaporation, our method offers significant advantages over traditional approaches. It provides a straightforward, flexible process adaptable to various drug-polymer combinations and consistently yields spherical amorphous solid dispersion (ASD) particles with a narrow size distribution. These attributes make our method a valuable advancement in pharmaceutical drug formulation and delivery.


Assuntos
Nebulizadores e Vaporizadores , Tamanho da Partícula , Polímeros , Polímeros/química , Estabilidade de Medicamentos , Solubilidade , Composição de Medicamentos/métodos , Resinas Acrílicas/química , Povidona/química , Ultrassom , Ácidos Polimetacrílicos/química , Furosemida/química , Química Farmacêutica/métodos
20.
Biomater Sci ; 12(10): 2717-2729, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38619816

RESUMO

Polymeric heart valves (PHVs) present a promising alternative for treating valvular heart diseases with satisfactory hydrodynamics and durability against structural degeneration. However, the cascaded coagulation, inflammatory responses, and calcification in the dynamic blood environment pose significant challenges to the surface design of current PHVs. In this study, we employed a surface-initiated polymerization method to modify polystyrene-block-isobutylene-block-styrene (SIBS) by creating three hydrogel coatings: poly(2-methacryloyloxy ethyl phosphorylcholine) (pMPC), poly(2-acrylamido-2-methylpropanesulfonic acid) (pAMPS), and poly(2-hydroxyethyl methacrylate) (pHEMA). These hydrogel coatings dramatically promoted SIBS's hydrophilicity and blood compatibility at the initial state. Notably, the pMPC and pAMPS coatings maintained a considerable platelet resistance performance after 12 h of sonication and 10 000 cycles of stretching and bending. However, the sonication process induced visible damage to the pHEMA coating and attenuated the anti-coagulation property. Furthermore, the in vivo subcutaneous implantation studies demonstrated that the amphiphilic pMPC coating showed superior anti-inflammatory and anti-calcification properties. Considering the remarkable stability and optimal biocompatibility, the amphiphilic pMPC coating constructed by surface-initiated polymerization holds promising potential for modifying PHVs.


Assuntos
Materiais Revestidos Biocompatíveis , Hidrogéis , Fosforilcolina , Propriedades de Superfície , Fosforilcolina/química , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Teste de Materiais , Poli-Hidroxietil Metacrilato/química , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/farmacologia , Metacrilatos/química , Polímeros/química , Polímeros/farmacologia , Próteses Valvulares Cardíacas , Valvas Cardíacas/efeitos dos fármacos , Humanos , Camundongos , Interações Hidrofóbicas e Hidrofílicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...