RESUMO
Borosilicate glass was developed to enhance the mechanical behavior and smoothness of dental zirconia as an alternative to conventional glaze. This study assessed the mechanical and optical properties of 3 mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) coated with borosilicate glass or a commercial glaze fired for an extended period of time. Disc-shaped 3Y-TZP zirconia specimens (Zpex, Tosoh) were sintered at 1550°C for 2 hours. The specimens were divided into three groups: as-sintered (control, C); commercial glaze (G); and borosilicate glass (SL). The glaze and borosilicate glass were applied over the zirconia and fired for 20 minutes at 950°C and 1200°C, respectively. Biaxial flexural strength, fractography, X-ray diffraction (XRD), roughness (Ra and Rz), fracture toughness (Vickers indentation method), color difference (∆E00), and translucency (TP00) analyses were conducted. The t-test or the one-way ANOVA and Tukey's tests were used to analyze the data (α = 0.05). Flexural strength data were subjected to the Weibull analysis. The SL group exhibited the highest flexural strength (1025.8 MPa), whereas the C (859.41 MPa) and G (816.0 MPa) groups exhibited similar values. The SL group also had the highest characteristic strength. The fracture origin in all groups was on the zirconia surface. XRD analysis revealed that the specimens from the SL group contained tetragonal, cubic, and monoclinic phases. The SL group presented the lowest surface roughness. Fracture toughness in the SL group was lower than in the C group, but similar to that observed in the G group. The translucency and color differences observed in the G and SL groups were similar. Borosilicate glass enhanced the flexural strength of 3Y-TZP, promoted the smoothest surface, and exhibited optical properties similar to those of the glaze.
Assuntos
Vidro , Teste de Materiais , Propriedades de Superfície , Difração de Raios X , Ítrio , Zircônio , Zircônio/química , Ítrio/química , Vidro/química , Análise de Variância , Fatores de Tempo , Resistência à Flexão , Silicatos/química , Reprodutibilidade dos Testes , Valores de Referência , Estatísticas não Paramétricas , Cor , Fenômenos Ópticos , Testes de Dureza , Materiais Dentários/químicaRESUMO
This study aimed to produces and characterize bovine hydroxyapatite (HA) bioceramic with 3Y-TZP addition and analyze different sintering curves. HA was extracted from bovine bones and nanoparticulated. HA discs (0, 1, 5 and 10 wt% 3Y-TZP) were subjected to uniaxial and isostatic pressing. Dilatometry analysis was performed and the groups were sintered using 3 different firing curves (conventional, 1300 °C; 2-step, 1292 °C; 2-step, 1420 °C). The samples were analyzed by X-ray diffraction (XRD), biaxial flexural strength (BFS), Vickers microhardness (VH) and Field emission scanning electron microscopy (FE-SEM). The dilatometry results signaled the need for sintering optimization in groups added with 3Y-TZP. XRD demonstrated the characteristic crystallographic peaks of HA in the pure groups and with 1% 3Y-TZP, and decomposition of HA into ß-TCP and formation of calcium zirconate in the groups with 5 and 10% 3Y-TZP. Considering each composition, the groups of pure HA (131.3 ± 13.5 MPa; 401 ± 12.7 GPa) sintered by the conventional curve and HA+1%3Y-TZP (145 ± 8.6 MPa; 507 ± 47.9 GPa), HA+5%3Y-TZP (68.1 ± 14.2 MPa; 183 ± 9.8 GPa) and HA+10%3Y-TZP (55.6 ± 5.1 MPa; 96.1 ± 7.64 GPa) sintered by the 2-step curve at 1420 °C, combined the best BFS and VH results. The addition of 1 wt% 3Y-TZP and optimization in the sintering process improved the mechanical and microstructural properties of HA bioceramics and maintenance of its crystalline characteristics. Refinement in material processing is necessary for the future use of this bioceramic in dentistry.
Assuntos
Cerâmica , Durapatita , Teste de Materiais , Ítrio , Zircônio , Animais , Durapatita/química , Zircônio/química , Bovinos , Ítrio/química , Cerâmica/química , Dureza , Materiais Biocompatíveis/química , Fenômenos MecânicosRESUMO
PURPOSE: To evaluate the effect of toothbrushing with conventional and whitening dentifrices on the color difference (ΔE00), gloss (Δgloss), and surface roughness (SR) of stained stabilized zirconia with 5 mol% of yttrium oxide (5Y-TZP) after polishing or glazing. METHODS: Specimens were divided into four groups (n=20): C (control), S (staining), SG (staining and glazing) and SP (staining and polishing). 50,000 toothbrushing cycles were performed with conventional (n=10) and whitening (n= 10) dentifrice slurries. The ΔE00 and Δgloss were measured using a spectrophotometer and CIEDE2000 system while SR was measured by laser confocal microscope. The ΔE00 and Δgloss data were analyzed using 2-way ANOVA, and SR data were analyzed using the linear repeated measures model, with Bonferroni's complementary test (α= 0.05). RESULTS: The ΔE00 values were beyond the acceptability threshold and no differences were found among the groups. There was no difference among groups to Δgloss after toothbrushing with conventional dentifrice while SP presented the highest values of Δgloss after toothbrushing with whitening dentifrice. Conventional dentifrice decreased the SR of stained groups and whitening dentifrice decreased SR of S and SG. The toothbrushing with conventional and whitening dentifrices promoted color difference, but did not impair gloss and surface roughness of stained 5Y-TZP. CLINICAL SIGNIFICANCE: Monolithic zirconia has been routinely used for esthetic restorations, however the type of finishing procedures that is carried out on it must be taken into consideration, in addition to the fact that brushing can influence the color difference of the material as well as interfere with surface roughness and gloss.
Assuntos
Dentifrícios , Propriedades de Superfície , Escovação Dentária , Zircônio , Zircônio/química , Dentifrícios/uso terapêutico , Cor , Clareadores Dentários/uso terapêutico , Polimento Dentário/métodos , Ítrio/química , Humanos , Teste de Materiais , Clareamento Dental/métodos , Espectrofotometria , Microscopia ConfocalRESUMO
Objective: This in vitro study evaluates the shear bond strength (SBS) of yttria-stabilized tetragonal zirconia (Y-TZP) and resin cement after different surface treatments. Materials and methods: Forty-eight ceramic cubes were divided into four groups (n = 12): G1 (control) sandblasting with Al2O3; G2-sandblasting with silica-coated Al2O3 (Rocatec); G3-Rocatec + CO2 laser; and G4-CO2 laser + Rocatec. A metallic primer was applied to the pretreated ceramic. A rubber ring was adapted on the central area, and then, the resin cement was inserted into the matrix and photoactivated. The samples were evaluated regarding surface roughness (Ra), SBS, failure type, and qualitatively with scanning electron microscopy (SEM). The data were analyzed by one-way analysis of variance followed by Tukey's test (p < 0.05). Results: The mean values of Ra (µm) were as follows: G1-4.52a, G2-4.24a,b, G3-4.10a,b, and G4-2.90b and the mean values of SBS (MPa) were as follows: G1-7.84a , G2-4.41b , G3-4.61b and G4-6.14a,b. SEM analyses showed superficial irregularities for all groups, being more prominent for G1. The presence of silica deposits was observed for G2, G3, and G4, but in the last two groups there were some linear areas, promoted by the fusion of silica, due to the thermomechanical action of the CO2 laser. Conclusions: The surface treatment with CO2 laser + Rocatec, using one MDP-based cement, can be an alternative protocol for the adhesion cementation of Y-TZP ceramic since it was as effective as the conventional pretreatment with aluminum oxide sandblasting.
Assuntos
Cerâmica , Colagem Dentária , Teste de Materiais , Microscopia Eletrônica de Varredura , Cimentos de Resina , Resistência ao Cisalhamento , Propriedades de Superfície , Ítrio , Zircônio , Zircônio/química , Ítrio/química , Cimentos de Resina/química , Cerâmica/química , Colagem Dentária/métodos , Lasers de Gás , Técnicas In Vitro , Dióxido de Silício/química , Óxido de Alumínio/químicaRESUMO
Capsulotomy with neodymium-doped yttriumaluminum-garnet (Nd:YAG) laser is an effective treatment for posterior capsule opacification following cataract surgery. A wide opening of the posterior capsule associated with the ruptured anterior hyaloid can cause anterior chamber vitreous prolapse. Two patients who developed angle-closure glaucoma associated with vitreous prolapse following Nd:YAG laser posterior capsulotomy were successfully treated with antiglaucoma medication and peripheral iridotomies. Patient identification for potential risk factors and a careful postoperative follow-up are essential to avoid these serious complications.
Assuntos
Opacificação da Cápsula , Extração de Catarata , Glaucoma de Ângulo Fechado , Terapia a Laser , Lasers de Estado Sólido , Cápsula do Cristalino , Humanos , Cápsula do Cristalino/cirurgia , Neodímio , Glaucoma de Ângulo Fechado/etiologia , Glaucoma de Ângulo Fechado/cirurgia , Capsulotomia Posterior , Ítrio , Extração de Catarata/efeitos adversos , Prolapso , Terapia a Laser/efeitos adversos , Complicações Pós-Operatórias/etiologia , Lasers de Estado Sólido/efeitos adversosRESUMO
OBJECTIVE: The study aims to evaluate the shear bond and flexural strength fatigue behavior of yttrium-stabilized zirconia (4YSZ) repaired using different resin composites. MATERIALS AND METHODS: Cylindric specimens of 4YSZ were obtained for the bond strength (Ø = 6 mm, 1.5 mm of thickness) and biaxial flexural strength (Ø = 15 mm, 1 mm of thickness) fatigue tests and divided into 3 groups according to the repair resin composite: EVO (nanohybrid), BULK (bulk-fill), and FLOW (flowable). The zirconia surface was air-abraded with alumina particles, a 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) primer was applied, and the resin composite was build-up over the zirconia. Fatigue shear bond strength and flexural fatigue strength tests were performed (n = 15). One-way ANOVA and Tukey post hoc tests were carried out for both outcomes, besides scanning electron microscopy and finite element analysis. RESULTS: The repair material affected the fatigue shear bond strength of zirconia ceramic. The BULK group (18.9 MPa) depicted higher bond strength values than FLOW (14.8 MPa) (p = 0.04), while EVO (18.0 MPa) showed similar results to both groups. No effect was observed for the mechanical behavior (p = 0.53). The stress distribution was similar for all groups. CONCLUSION: The repair of yttrium-stabilized zirconia (4YSZ) ceramics with bulk-fill resin composites was the best option for high fatigue bond strength. However, the fatigue mechanical performance was similar regardless of the applied repair material. CLINICAL RELEVANCE: The repair of yttrium-stabilized zirconia (4YSZ) monolithic restorations may be performed with nanohybrid and bulk-fill resin composites in order to promote longevity in the treatment.
Assuntos
Colagem Dentária , Metacrilatos , Colagem Dentária/métodos , Propriedades de Superfície , Teste de Materiais , Resinas Compostas/química , Zircônio/química , Cerâmica/química , Resistência ao Cisalhamento , Ítrio/química , Cimentos de Resina/química , Análise do Estresse DentárioRESUMO
OBJECTIVE: The objective of this study was to 1) compare the stress corrosion coefficient (n) of a Y-TZP obtained by two fatigue tests: cyclic and dynamic and 2) evaluate the effect of frequency in the characteristic lifetime and the existence of interaction between the cyclic fatigue and slow crack growth. METHODS: A total of 145 Y-TZP specimens were produced in accordance with the manufacturer's instructions. These specimens, measuring 4.0 × 3.0 × 25.0 mm, were used for dynamic (n = 70) and cyclic fatigue tests (n = 75). The specimens were obtained from CAD/CAM blocks, sectioned, and sintered in a furnace at 1530 °C with a heating rate of 25 °C/min. They were tested in their "as-sintered" form without any additional surface treatment. The fatigue tests were conducted using a four-point bending to obtain the slow crack growth parameters (n). The cyclic fatigue test was also conducted in two frequencies (2 and 10 Hz), using stress levels between 350 and 600 MPa. Data from these tests were analyzed using ASTM C 1368-00 formulas and Weibull statistics. Scanning electron microscope (SEM) was used for fracture surface analysis to identify the origin of the fracture. Critical defect size was measured and used, along with flexural strength values, to estimate fracture toughness. Dynamic fatigue test data were used to obtain subcritical crack growth (SCG) parameters and perform Weibull statistical analysis. The cyclic fatigue data were used in the General Log-linear Model equation using the ALTA PRO software. Data were analyzed using one-way ANOVA followed by Tukey post-hoc tests and Student's t-test at a significance level of p ≤ 0.05. RESULTS: In the dynamic fatigue test, the values obtained for σfo and n were 667 and 54, respectively. This parameter indicates how the strength of the material diminishes over time due to internal cracks. The Weibull parameters obtained from the same test results were m = 7.9, σ0 = 968, 9 and σ5% = 767, which indicates the reliability of the material. The Weibull parameters obtained by cyclic fatigue were statistically similar for the two frequencies used, the m* was 0.17 (2 Hz) and 0.21 (10 Hz); characteristic lifetimes (η) were 1.93 × 106 and 40,768, respectively. The n values obtained by cyclic fatigue were 48 and 40 at frequencies of 2 and 10 Hz, respectively. There was no effect of the frequency, the stress level or the interaction of the two in the Y-TZP lifetime, when analysed by General Log Linear Model. SIGNIFICANCE: the n values obtained by cyclic and dynamic fatigue tests showed no statistically significant difference and the effect of frequency in the characteristic lifetime and the existence of interaction between the cyclic fatigue and subcritical growth were not observed in the tested specimens.
Assuntos
Porcelana Dentária , Resistência à Flexão , Reprodutibilidade dos Testes , Teste de Materiais , Análise do Estresse Dentário , Zircônio , Propriedades de Superfície , Cerâmica , ÍtrioRESUMO
Yttrium is a heavy rare earth element (REE) that acquires remarkable characteristics when it is in oxide form and doped with other REEs. Owing to these characteristics Y2 O3 can be used in the manufacture of several products. However, a supply deficit of this mineral is expected in the coming years, contributing to its price fluctuation. Thus, developing an efficient, cost-effective, and eco-friendly process to recover Y2 O3 from secondary sources has become necessary. In this study, we used phage surface display to screen peptides with high specificity for Y2 O3 particles. After three rounds of enrichment, a phage expressing the peptide TRTGCHVPRCNTLS (DM39) from the random pVIII phage peptide library Cys4 was found to bind specifically to Y2 O3 , being 531.6-fold more efficient than the wild-type phage. The phage DM39 contains two arginines in the polar side chains, which may have contributed to the interaction between the mineral targets. Immunofluorescence assays identified that the peptide's affinity was strong for Y2 O3 and negligible to LaPO4 :Ce3+ ,Tb3+ . The identification of a peptide with high specificity and affinity for Y2 O3 provides a potentially new strategic approach to recycle this type of material from secondary sources, especially from electronic scrap.
Assuntos
Metais Terras Raras , Ítrio , Peptídeos/química , Biblioteca de Peptídeos , Eletrônica , MineraisRESUMO
This study aimed to develop a recycling process for the remnants of milled 3Y-TZP and enhance their properties using glass infiltration. 3Y-TZP powder was gathered from the vacuum system of CAD-CAM milling equipment, calcined and sieved (x < 75 µm). One hundred twenty discs were fabricated and pre-sintered at 1000 °C/h. These specimens were then divided into four groups, categorized by glass infiltration (non-infiltrated [Zr] or glass-infiltrated [Zr-G]) and sintering temperature (1450 °C [Zr-1450] or 1550 °C [Zr-1550]/2h). After sintering, the specimens were characterized by X-Ray Diffraction (XRD), relative density measurement, and scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS). The biaxial flexural strength test was performed according to the ISO 6872 and followed by fractographic analysis. Subsequent results were analyzed using Weibull statistics. Relative density values of the sintered specimens from Zr-1450 and Zr-1550 groups were 86.7 ± 1.5% and 92.2 ± 1.7%, respectively. Particle size distribution revealed particles within the range of 0.1-100 µm. XRD analysis highlighted the presence of the ZrO2-tetragonal in both the Zr-1450 and Zr-1550 groups. Glass infiltration, however, led to the formation of the ZrO2-monoclinic of 9.84% (Zr-1450-G) and 18.34% (Zr-1550-G). SEM micrographs demonstrated similar microstructural characteristics for Zr-1450 and Zr-1550, whereas the glass-infiltrated groups exhibited comparable infiltration patterns. The highest characteristic strength was observed in the glass-infiltrated groups. Fractographic analyses suggested that fracture origins were related to defects on the tensile side, which propagated to the compression side of the samples. Both the sintering temperature and glass infiltration significantly influenced the mechanical properties of the 3Y-TZP recycled.
Assuntos
Resistência à Flexão , Zircônio , Temperatura , Teste de Materiais , Zircônio/química , Ítrio/química , Propriedades de Superfície , Materiais Dentários , Cerâmica/químicaRESUMO
PURPOSE: This study evaluated the effect of coating traditional and translucent Y-TZP with an industrial nanometric colloidal silica or glaze before or after sintering on the adhesion of zirconia with various ytrria concentration. MATERIALS AND METHODS: Specimens of Y-TZP with 3% and 5% yttria were subdivided into 5 groups (n=10), according to the coating applied and moment of application (before or after Y-TZP sintering): Control (no coating), Colloidal Silica/Sintering, Sintering/Colloidal Silica, Glaze/Sintering, Sintering/ Glaze. Lithium disilicate (LD) was used as positive control. Except for Y-TZP controls, groups were conditioned with silane before cementation with a self-adhesive resin cement. After 24 hours, the shear bond strength and failure analysis were performed. Also, analysis of specimens' surface was accomplished with SEM-EDX. Kruskal-Wallis and Dunn tests were applied to analyze differences between groups (p⟨0.05). RESULTS: Overall, the worst and best values of shear bond strength test were control and glaze after sintering groups. Different morphological and chemical aspects were observed in SEM-EDX analysis. CONCLUSIONS: Coating Y-TZP with colloidal silica showed unsatisfactory results. In 3Y-TZP, the surface treatment associated with the best adhesion values was the application of glaze after zirconia sintering. However, in 5Y-TZP, glaze application can be performed before or after the zirconia sintering to optimize clinical steps.
Assuntos
Colagem Dentária , Dióxido de Silício , Propriedades de Superfície , Dióxido de Silício/química , Cimentação , Zircônio/química , Cimentos de Resina , Teste de Materiais , Ítrio/química , Ítrio/uso terapêutico , Colagem Dentária/métodos , Cerâmica/uso terapêuticoRESUMO
Y-TZP/MWCNT-SiO2 nanocomposite was synthesized by co-precipitation and hydrothermal treatment methods. After the characterization of the MWCNT-SiO2 powder, specimens were obtained from the synthesized material Y-TZP/MWCNT-SiO2 by uniaxial pressing for a second characterization and later comparison of its optical and mechanical properties with the conventional Y-TZP. The MWCNT-SiO2 was presented in bundles of carbon nanotubes coated by silica (mean length: 5.10 ± 1.34 µm /D90: 6.9 µm). The composite manufactured was opaque (contrast ratio: 0.9929 ± 0.0012) and had a white color with a slightly difference from the conventional Y-TZP (ΔE00: 4.4 ± 2.2) color. The mechanical properties of Y-TZP/MWCNT-SiO2: vickers hardness (10.14 ± 1.27 GPa; p = 0.25) and fracture toughness (4.98 ± 0.30 MPa m1/2; p = 0.39), showed no significant difference from the conventional Y-TZP (hardness: 8.87 ± 0.89; fracture toughness: 4.98 ± 0.30 MPa m1/2). However, for flexural strength (p = 0.003), a lower value was obtained for Y-TZP/MWCNT-SiO2 (299.4 ± 30.5 MPa) when compared to the control Y-TZP (623.7 ± 108.8 MPa). The manufactured Y-TZP/MWCNT-SiO2 composite presented satisfactory optical properties, however the co-precipitation and hydrothermal treatment methods need to be optimized to avoid the formation of porosities and strong agglomerates, both from Y-TZP particles and MWCNT-SiO2 bundles, which lead to a significant decrease in the material flexural strength.
Assuntos
Nanocompostos , Nanotubos de Carbono , Dióxido de Silício , Teste de Materiais , Zircônio , Ítrio , Propriedades de Superfície , Materiais DentáriosRESUMO
This study set out to develop a thermally compatible glass to be infiltrated into zirconia partially stabilized by yttrium oxide (5Y-PSZ), to characterize it, and to evaluate its structural reliability and mechanical behavior. 5Y-PSZ zirconia discs (N = 90), dimensions 1.5 mm × 15 mm were produced, polished with #600 alumina oxide and #1200 silicon carbide sandpaper in a polisher. Three groups of 5Y-PSZ discs were assigned (n = 30): Zctrl: as sintered zirconia, Zinf-comp: glass-infiltrated zirconia on the occlusal surface, and sintered, and Zinf-tens: glass-infiltrated zirconia on the cementing surface and sintered; for biaxial flexural strength testing (ISO 6872:2015). A gel was synthesized via the sol-gel method and applied to the ceramic surface. Mechanical assay data (MPa) were evaluated via Weibull analysis (α = 5%) and specimens via X-Ray Diffractometry (XRD), Scanning Electron Microscopy (SEM), and fractographic analysis. The Zinf-tens group showed a characteristic strength of 824 MPa and m = 9.9; Zinf-comp 613 MPa and m = 10.2; Zctrl 534 MPa and m = 8; all groups differed statistically (σ0). However, they were similar in structural homogeneity (m). XRD showed 20-50 µm of infiltration, which means dissolution of part of the yttrium and reduction in the size of the cubic grains. In addition, the Zinf-tens group presented a failure origin from inside the material. The developed glass infiltrated into zirconia partially stabilized by yttrium oxide, increasing its characteristic strength and structural homogeneity by reducing surface defects and changing the failure mode.
Assuntos
Resistência à Flexão , Zircônio , Teste de Materiais , Reprodutibilidade dos Testes , Zircônio/química , Ítrio/química , Cerâmica/química , Propriedades de Superfície , Materiais DentáriosRESUMO
The aim of this study was to evaluate the fatigue behavior of strength-graded zirconia polycrystals used as monolithic three-unit implant-supported prosthesis; complementarily, crystalline phase and micromorphology were also assessed. Fixed prostheses with 3 elements supported by 2 implants were confectioned, as follows: Group 3Y/5Y - monolithic structures of a graded 3Y-TZP/5Y-TZP zirconia (IPS e.max® ZirCAD PRIME); Group 4Y/5Y - monolithic structures of a graded 4Y-TZP/5Y-TZP zirconia (IPS e.max® ZirCAD MT Multi); Group Bilayer - framework of a 3Y-TZP zirconia (Zenostar T) veneered with porcelain (IPS e.max Ceram). The samples were tested for fatigue performance with step-stress analysis. The fatigue failure load (FFL), the number of cycles required until failure (CFF), and the survival rates in each cycle were recorded. The Weibull module was calculated and the fractography analyzed. The crystalline structural content via Micro-Raman spectroscopy and the crystalline grain size via Scanning Electron microscopy were also assessed for graded structures. Group 3Y/5Y showed the highest FFL, CFF, probability of survival, and reliability (based on Weibull modulus). Group 4Y/5Y showed significantly superior FFL and probability of survival than group bilayer. Fractographic analysis revealed catastrophic flaws in the monolithic structure and cohesive fracture of porcelain in bilayer prostheses, all originating from the occlusal contact point. The graded zirconia presented small grain size (≤0.61 µm), with the smallest values at the cervical region. The main composition of graded zirconia was of grains at tetragonal phase. The strength-graded monolithic zirconia, especially the 3Y-TZP/5Y-TZP, showed to be promising for use as monolithic three-unit implant-supported prosthesis.
Assuntos
Cerâmica , Porcelana Dentária , Teste de Materiais , Cerâmica/química , Reprodutibilidade dos Testes , Propriedades de Superfície , Análise do Estresse Dentário , Zircônio/química , Próteses e Implantes , Ítrio/químicaRESUMO
To evaluate the flexural strength (FS) and flexural modulus (FM) of a commercial 3Y-TZ0P ceramic after artificial aging and either without or with two application times of non-thermal plasma treatments (NTP). In addition, changes in crystalline phase transformation and surface nano-topography after NTP application, during different aging periods, were evaluated. Ninety 3Y-TZP bars (45x4x3 mm) were made for FS and FM testing, and assigned to nine groups (n=10): no NTP/no aging (Control); no NTP/4h aging; no NTP/30h aging; 10s NTP/no aging; 10s NTP/4h aging; 10s NTP/30h aging; 60s NTP/no aging; 60s NTP/4h aging and 60s NTP/30h aging. Artificial accelerated aging was simulated using an autoclave (134º C at 2 bar) for up to 30h. FS and FM were assessed using a universal testing machine and data analyzed using a ANOVA and Tukey test (α=0.05). The volume change in zirconia monoclinic phase (MPV) was evaluated using X-ray diffraction and surface nano-topography was assessed using atomic force microscopy (baseline until 30h-aging). NTP application did not influence the FS and FM of zirconia. Compared to the Control (no NTP/no aging), the FS of zirconia samples treated for 30 hours in autoclave ("no NTP/30h aging" group) increased. Artificial aging for 30 hours significantly increased the FM of zirconia, regardless of NTP application. MPV tended to increase following the increase in aging time, which might result in the surface irregularities observed at 30h-aging. NTP did not alter the zirconia properties tested, but 30h-aging can change the zirconia FS, FM and MPV.
Assuntos
Gases em Plasma , Materiais Dentários/química , Argônio , Teste de Materiais , Propriedades de Superfície , Zircônio/química , Cerâmica/química , Ítrio/químicaRESUMO
BACKGROUND: Hypertrophic and keloid scars are common skin conditions resulting from abnormal wound healing. They can cause itching, pain and have a negative physical and psychological impact on patients' lives. Different approaches are used aiming to improve these scars, including intralesional corticosteroids, surgery and more recently, laser therapy. Since laser therapy is expensive and may have adverse effects, it is critical to evaluate the potential benefits and harms of this therapy for treating hypertrophic and keloid scars. OBJECTIVES: To assess the effects of laser therapy for treating hypertrophic and keloid scars. SEARCH METHODS: In March 2021 we searched the Cochrane Wounds Specialised Register, CENTRAL, MEDLINE, Embase, CINAHL EBSCO Plus and LILACS. To identify additional studies, we also searched clinical trials registries for ongoing and unpublished studies, and scanned reference lists of relevant included studies as well as reviews, meta-analyses, and health technology reports. There were no restrictions with respect to language, date of publication, or study setting. SELECTION CRITERIA: We included randomised controlled trials (RCTs) for treating hypertrophic or keloid scars (or both), comparing laser therapy with placebo, no intervention or another intervention. DATA COLLECTION AND ANALYSIS: Two review authors independently selected studies, extracted the data, assessed the risk of bias of included studies and carried out GRADE assessments to assess the certainty of evidence. A third review author arbitrated if there were disagreements. MAIN RESULTS: We included 15 RCTs, involving 604 participants (children and adults) with study sample sizes ranging from 10 to 120 participants (mean 40.27). Where studies randomised different parts of the same scar, each scar segment was the unit of analysis (906 scar segments). The length of participant follow-up varied from 12 weeks to 12 months. All included trials had a high risk of bias for at least one domain: all studies were deemed at high risk of bias due to lack of blinding of participants and personnel. The variability of intervention types, controls, follow-up periods and limitations with report data meant we pooled data for one comparison (and only two outcomes within this). Several review secondary outcomes - cosmesis, tolerance, preference for different modes of treatment, adherence, and change in quality of life - were not reported in any of the included studies. Laser versus no treatment: We found low-certainty evidence suggesting there may be more hypertrophic and keloid scar improvement (that is scars are less severe) in 585-nm pulsed-dye laser (PDL) -treated scars compared with no treatment (risk ratio (RR) 1.96; 95% confidence interval (CI): 1.11 to 3.45; two studies, 60 scar segments). It is unclear whether non-ablative fractional laser (NAFL) impacts on hypertrophic scar severity when compared with no treatment (very low-certainty evidence). It is unclear whether fractional carbon dioxide (CO2) laser impacts on hypertrophic and keloid scar severity compared with no treatment (very low-certainty evidence). Eight studies reported treatment-related adverse effects but did not provide enough data for further analyses. Laser versus other treatments: We are uncertain whether treatment with 585-nm PDL impacts on hypertrophic and keloid scar severity compared with intralesional corticosteroid triamcinolone acetonide (TAC), intralesional Fluorouracil (5-FU) or combined use of TAC plus 5-FU (very low-certainty evidence). It is also uncertain whether erbium laser impacts on hypertrophic scar severity when compared with TAC (very low-certainty evidence). Other comparisons included 585-nm PDL versus silicone gel sheeting, fractional CO2 laser versus TAC and fractional CO2 laser versus verapamil. However, the authors did not report enough data regarding the severity of scars to compare the interventions. As only very low-certainty evidence is available on treatment-related adverse effects, including pain, charring (skin burning so that the surface becomes blackened), telangiectasia (a condition in which tiny blood vessels cause thread-like red lines on the skin), skin atrophy (skin thinning), purpuric discolorations, hypopigmentation (skin colour becomes lighter), and erosion (loss of part of the top layer of skin, leaving a denuded surface) secondary to blistering, we are not able to draw conclusions as to how these treatments compare. Laser plus other treatment versus other treatment: It is unclear whether 585-nm PDL plus TAC plus 5-FU leads to a higher percentage of good to excellent improvement in hypertrophic and keloid scar severity compared with TAC plus 5-FU, as the certainty of evidence has been assessed as very low. Due to very low-certainty evidence, it is also uncertain whether CO2 laser plus TAC impacts on keloid scar severity compared with cryosurgery plus TAC. The evidence is also very uncertain about the effect of neodymium-doped yttrium aluminium garnet (Nd:YAG) laser plus intralesional corticosteroid diprospan plus 5-FU on scar severity compared with diprospan plus 5-FU and about the effect of helium-neon (He-Ne) laser plus decamethyltetrasiloxane, polydimethylsiloxane and cyclopentasiloxane cream on scar severity compared with decamethyltetrasiloxane, polydimethylsiloxane and cyclopentasiloxane cream. Only very low-certainty evidence is available on treatment-related adverse effects, including pain, atrophy, erythema, telangiectasia, hypopigmentation, regrowth, hyperpigmentation (skin colour becomes darker), and depigmentation (loss of colour from the skin). Therefore, we are not able to draw conclusions as to how these treatments compare. AUTHORS' CONCLUSIONS: There is insufficient evidence to support or refute the effectiveness of laser therapy for treating hypertrophic and keloid scars. The available information is also insufficient to perform a more accurate analysis on treatment-related adverse effects related to laser therapy. Due to the heterogeneity of the studies, conflicting results, study design issues and small sample sizes, further high-quality trials, with validated scales and core outcome sets should be developed. These trials should take into consideration the consumers' opinion and values, the need for long-term follow-up and the necessity of reporting the rate of recurrence of scars to determine whether lasers may achieve superior results when compared with other therapies for treating hypertrophic and keloid scars.
Assuntos
Cicatriz Hipertrófica , Hipopigmentação , Queloide , Terapia a Laser , Telangiectasia , Corticosteroides/uso terapêutico , Adulto , Alumínio , Atrofia , Dióxido de Carbono , Criança , Cicatriz Hipertrófica/etiologia , Cicatriz Hipertrófica/radioterapia , Dimetilpolisiloxanos , Érbio , Fluoruracila , Hélio , Humanos , Hipertrofia , Hipopigmentação/etiologia , Queloide/etiologia , Queloide/radioterapia , Terapia a Laser/efeitos adversos , Neodímio , Neônio , Dor/etiologia , Géis de Silicone , Telangiectasia/etiologia , Triancinolona Acetonida , Verapamil , Cicatrização , ÍtrioRESUMO
STATEMENT OF PROBLEM: Information regarding the masking ability of ceramic crowns over different implant abutment materials is scarce. PURPOSE: The purpose of this in vitro study was to evaluate the masking ability of different monolithic or bilayer ceramic materials with different thicknesses over substrates indicated for implant restorations by using opaque and translucent evaluation pastes. MATERIAL AND METHODS: Disk-shaped specimens, shade A1 (VITA Classic; Ø10×1.5 to 2.5 mm), of different ceramics (a bilayer system [yttria-stabilized zirconia infrastructure+porcelain veneer: Zir+Pc] and monolithic systems [lithium disilicate under low, medium, or high translucency: LtLD, MtLD, or HtLD, respectively, and a high-translucent yttria-stabilized zirconia: HtZir]) were made (n=4). The color difference (ΔE00) was assessed by using the CIEDE2000 formula and considering the different ceramic systems over 5 implant abutment materials (A1 shade Zir [Zir A1]; white Zir [White Zir]; A1 low-translucency lithium disilicate [LD]; polyetheretherketone [PEEK]; and titanium [Ti]) when using 2 different evaluation pastes (translucent or opaque). The control comparison was the restorative material positioned over the Zir A1 substrate with a translucent evaluation paste. Statistical analysis was made by using a 2-way ANOVA and Tukey post hoc tests (α=.05) for ΔE00 data considering the restorative material and luting agent factors as their association. Additionally, ΔE00 data were qualitatively analyzed considering the acceptability and perceptibility thresholds. The translucency parameter (TP00) of each restorative material was evaluated, and data were submitted to 1-way ANOVA and Tukey post hoc tests (α=.05). RESULTS: The most predictable masking ability was seen with Zir+Pc regardless of the evaluation paste used. Nevertheless, under 1.5-mm thickness, Zir+Pc did not adequately mask Ti (ΔE00>1.77). Most monolithic ceramics did not mask discolored substrates (PEEK or Ti, ΔE00>1.77). The exception was HtZir, which presented acceptable masking ability over PEEK at 2.5-mm thickness with both evaluation pastes (ΔE00<1.77). Regardless of the restorative material thickness, Zir+Pc showed the lowest (P<.05) TP00 values (TP00=3.45 at 1.5-mm thickness; TP00=2.00 at 2.5-mm thickness), and HtLD presented the highest (P<.05, TP00=23.50 at 1.5-mm thickness; TP00=13.36 at 2.5-mm thickness). HtZir showed similar TP00 to MtLD at 1.5-mm thickness and similar TP00 to Zir+Pc when used at 2.5-mm thickness (P>.05). CONCLUSIONS: Monolithic ceramics should be used with caution over discolored implant abutments. Bilayer systems (Zir+Pc) were the most predictable approach to adequately masking discolored substrates such as PEEK or Ti. An increased restoration thickness provided higher masking ability for all restorative materials tested.
Assuntos
Implantes Dentários , Porcelana Dentária , Benzofenonas , Cerâmica/uso terapêutico , Cor , Coroas , Cimentos Dentários , Materiais Dentários , Teste de Materiais , Polímeros , Propriedades de Superfície , Titânio , Ítrio , ZircônioRESUMO
OBJECTIVE: This study evaluated the microshear bond strength of a resin cement to Y-TZP after different methods of TiO2 nanotubes (nTiO2) incorporation on pre-sintered Y-TZP surfaces. METHODS: nTiO2 were synthesized and incorporated on Y-TZP slices as follows (n = 15): 1) nTiO2 mixed with isopropyl alcohol/manual application (MAl); 2) nTiO2 mixed with acetone/manual application (MAc); 3) nTiO2 mixed with isopropyl alcohol/high-pressure vacuum application (HPVAl); 4) nTiO2 mixed with acetone/high-pressure vacuum application (HPVAc). As controls, surfaces were sandblasted with Al2O3 (OX) or Rocatec silicatization (ROC). All ceramics were sintered after nTiO2 incorporation. Surface treatments of OX and ROC were made after sintering. Surfaces were characterized by confocal laser microscopy, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). Resin composite cylinders (1.40 mm diameter and 1 mm height) were cemented with a resin cement, stored in water at 37 °C for 24 h and thermocycled for 10 000 cycles before microshear bond strength evaluation. Data were analyzed with one-way ANOVA and Games-Howell (α = 0.05), and fracture analysis was performed using a stereomicroscope. RESULTS: EDS confirmed the presence of TiO2 on treated Y-TZP. The confocal analysis showed higher roughness for HPVAc and OX. There were significant differences between surface treatments (p < 0.001). HPVAl (22.96 ± 10.3), OX (34.16 ± 7.9) and ROC (27.71 ± 9.4) showed higher microshear bond strengths and were statistically similar (p > 0.05). MAC showed intermediary values, and HPVAc and MAl presented decreased bond strength, with a high percentage of premature debonding. CONCLUSION: High-pressure vacuum application of nTiO2 mixed with isopropyl alcohol was able to produce bond strength values compared to conventional air abrasion and Rocatec silicatization. SIGNIFICANCE: The infiltration of TiO2 nanostructures on the pre-sintered Y-TZP is an interesting approach that can improve bond strength without the need of sandblasting methods.
Assuntos
Colagem Dentária , Nanotubos , 2-Propanol , Acetona , Abrasão Dental por Ar , Colagem Dentária/métodos , Teste de Materiais , Microscopia Eletrônica de Varredura , Cimentos de Resina/química , Resistência ao Cisalhamento , Propriedades de Superfície , Titânio , Ítrio/química , Zircônio/químicaRESUMO
OBJECTIVE: This investigation evaluated the effect of two sintering modes of a translucent zirconia (Y-TZP) on its surface roughness, topography, phase-transformation (t â m), translucency and biaxial flexure fatigue strength. MATERIALS AND METHODS: To do so, 50 Y-TZP discs (Ø = 15 mm; thickness = 1.2 mm; IPS e.max ZirCAD LT) were prepared and divided into two groups: Standard mode (SM) and Fast mode (FM). Staircase fatigue testing was performed (piston-on-three balls set-up, ISO 6872:2015), as well as surface roughness, profilometry, scanning electron microscopy (SEM-FEG), energy dispersive X-ray spectroscopy (EDX), phase transformation (t â m) using X-ray diffraction analysis (XRD), translucency parameter analysis (TP and TP00 ) and fractography. RESULTS: The results showed no statistical significant differences for roughness parameters (p > 0.05, SM: Ra = 0.13 ± 0.02, Rz = 1.21 ± 0.26 and RSm = 24.91 ± 2.19; FM: Ra = 0.14 ± 0.03, Rz = 1.32 ± 0.25 and RSm = 24.68 ± 2.16) or flexural fatigue strength (SM: 512 (464-560) MPa; FM: 542 (472-611) MPa) between the groups. In addition, similarity in surface morphological features (SEM and profilometry), composition and phases (EDX and XRD) was observed between the firing protocols. Fractography showed that the failure origin occurred on the tensile side. Sintering mode did not affect the TP (F = 0.001, p = 0.97) and TP00 (F = 0.12, p = 0.72). CONCLUSIONS: Therefore, the fast-sintering mode is suggested as a viable alternative to the standard mode since it does not influence the evaluated surface morphology, microstructure, fatigue strength and translucency of a translucent monolithic zirconia. CLINICAL SIGNIFICANCE: The fast sintering mode is a viable alternative for zirconia without compromising its topography, microstructure, mechanical performance or translucency.
Assuntos
Cerâmica , Ítrio , Ítrio/química , Cerâmica/química , Teste de Materiais , Propriedades de Superfície , Zircônio/química , Materiais Dentários/químicaRESUMO
OBJECTIVES: This study aimed to evaluate the impact of mechanical fatigue cycling using the step-stress approach along with hydrothermaldegradation (134 ºC with a constant pressure of 2 bars for 20 h), and a novel intercalated hydrothermal/fatigue aging protocol on different aspects of the aging resistance of three generations of dental zirconias. METHODS: "Y"Z T (VITA), INCORIS "T"ZI (Dentsply Sirona) and "K"ATANA UTML (Noritake Kuraray) - 1st, 2nd and 3rd generation, respectively-, zirconia disks (N = 153), were divided into 6 groups (n = 3) for monotonic testing and 9 groups (n = 15) for mechanical fatigue testing, according to 3 proposed treatments for each zirconia: CF (control - only mechanical fatigue cycling); AF (aging in hydrothermal reactor at 134 °C for 20 h + mechanical fatigue cycling); AFA (Alternating protocol: 4 steps of 5 h of hydrothermal aging intercalated with mechanical fatigue cycling). Mechanical fatigue aging was performed according to the step-stress approach through biaxial flexural setup (piston-on-3-balls, initial strength: 100 MPa, step: 50 MPa/10,000, frequency: 20 Hz) until failure. Data were analyzed using Kaplan-Meier and Mantel-Cox test (α = 0.05), in addition to Weibull analysis. Fractured disks were analyzed in stereomicroscope, Scanning Electron Microscopy and X-Ray Diffraction. RESULTS: Continuous hydrothermal and mechanical fatigue cycling decreased the fatigue strength of YAF group (516 ± 38 MPa), while the alternating protocol increased it (730 ± 58 MPa). KATANA UTML showed no differences for both treatments and did not undergo t-m phase transformation. The TAF group showed the highest fatigue strength (810 ± 76 MPa) and cycles for failure (147,000.00 cycles). The fracture origin for all specimens was on the tensile side in pre-existing defects. SIGNIFICANCE: INCORIS TZI zirconia had higher fatigue strength and survival rates after hydrothermal and mechanical fatigue aging. Although less resistant, KATANA UTML did not suffer chemical degradation.
Assuntos
Materiais Dentários , Ítrio , Cerâmica , Teste de Materiais , Estresse Mecânico , Propriedades de Superfície , ZircônioRESUMO
OBJECTIVES: This study investigates the simulation of the mechanical behavior of a bioceramic composite based on (Ce,Y)-TZP reinforced with equiaxed Al2O3 and platelet-shaped hexaaluminate (H6A) grains using Finit Element Method (FEM). METHODS: A commercial (Ce, Y)-TZP/Al2O3 ceramic powder was compacted into disc-shaped specimens that were sintered at 1500 °C for 2 h. The sintered samples were further subjected to hydrothermal degradation in an autoclave at 134 °C, 0.2 MPa, for 10 h and characterized according to their phase composition, microstructure, and relative density. Their flexural strength values were determined by the piston-on-three-ball test, and Weibull statistics was used to evaluate the results. Their hardness, fracture toughness and elastic parameters were also measured. Numerical simulations of the biaxial strength test were performed using the ABAQUS finite element code. RESULTS: The sintered ceramic composite material presented relative density >99%, high resistance to hydrothermal degradation, average hardness of 1435 ± 35 HV, fracture toughness KIC of 9.7 ± 0.5 MPa m1/2, and average biaxial flexural strength of 952.6 ± 88 MPa. The numerical predictions of the biaxial flexural strength showed a consistently lower average biaxial flexural strength value of 880.9 MPa, â¼10% lower than the average experimental results. CONCLUSIONS: The differences observed are attributed to the complex coupled toughness mechanisms of this material, not included in the finite element simulations.