Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Environ Res ; 195: 106365, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295610

RESUMO

Climate change (CC) induces significant worldwide alterations in salinity and temperature, impacting ecosystems and their services. Marine organisms, susceptible to these changes, may experience modified vulnerability to anthropogenic contaminants, including rare-earth elements (REEs) such as yttrium (Y) derived from electronic waste. This study investigated the influence of temperature and salinity changes on the impacts of Y in Mytilus galloprovincialis mussels. Organisms were subjected to Y (0 and 10 µg/L) for 28 days under three salinity scenarios (20, 30 (control), and 40, at a control temperature of 17 °C) or to two temperatures (17 and 22 °C, at the control salinity of 30). Under these conditions, Y bioaccumulation and different biomarkers were evaluated. Results showed that salinity and temperature did not affect Y accumulation, indicating effective detoxification mechanisms and physiological adaptations in the exposed organisms. However, in Y-exposed mussels effects were intensified under decreased salinity, evidenced by increased metabolism, defense enzyme activities, and acetylcholinesterase (AChE) levels. Similar responses occurred under heat stress with enhanced metabolic capacity, AChE activity, and activation of defense mechanisms such as glutathione S-transferases. These defense mechanisms mitigated cellular damage caused by Y, but under the highest temperature and especially lower salinity, Y-exposed mussels exhibited increased oxidative stress and decreased efficiency of activated defense enzymes, resulting in cellular damage compared to their uncontaminated counterpart. The present study sheds light on the effects that interactions between temperature, salinity, and the presence of emerging contaminants like REEs may have on marine organisms. Such assessments are crucial for developing effective strategies to mitigate the impacts of CC and protect the long-term health and resilience of marine ecosystems.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Temperatura , Ítrio/metabolismo , Salinidade , Acetilcolinesterase , Ecossistema , Poluentes Químicos da Água/análise , Estresse Oxidativo , Biomarcadores/metabolismo , Mytilus/fisiologia
2.
Nanotoxicology ; 17(4): 385-399, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37428876

RESUMO

The attention to rare earth oxide nanoparticles (NPs), including yttrium oxide (Y2O3), has increased in many fields due to their unique structural characteristics and functional properties. The aim of our study was to investigate the mechanisms by which bio-corona formation on Y2O3 NPs affects their environmental fate and toxicity. The Y2O3 NPs induced toxicity to freshwater filter feeder Daphnia magna at particle concentrations of 1 and 10 mg/L, regardless of particle size. Interactions between naturally excreted biomolecules (e.g. protein, lipids, and polysaccharides) derived from D. magna, and the Y2O3 NPs (30-45 nm) resulted in the formation of an eco-corona, which reduced their toxic effects toward D. magna at a particle concentration of 10 mg/L. No effects were observed at lower concentrations or for the other particle sizes investigated. Copper-zinc (Cu-Zn) superoxide dismutase, apolipophorins, and vitellogenin-1 proteins proved to be the most prominent proteins of the adsorbed corona, and possibly a reason for the reduced toxicity of the 30-45 nm Y2O3 NPs toward D. magna.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Poluentes Químicos da Água , Animais , Daphnia , Taxa de Sobrevida , Nanopartículas/toxicidade , Ítrio/toxicidade , Ítrio/metabolismo , Poluentes Químicos da Água/toxicidade , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química
3.
Environ Toxicol Chem ; 42(1): 166-177, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36511525

RESUMO

The production of electrical and electronic equipment waste (e-waste) is increasing at an alarming rate worldwide. This may eventually lead to its accumulation in aquatic environments, mainly because of the presence of nonbiodegradable components. The rare-earth element yttrium (Y) is particularly relevant because it is present in a wide variety of electro-based equipment. Within this context, the present study investigated the biological consequences of anthropogenic Y exposure in Mytilus galloprovincialis. Mussels were exposed to Y (0, 5, 10, 20, 40 µg/L) for 28 days, and their bioaccumulation and biomarkers related to metabolism, oxidative stress defenses, cellular damage, and neurotoxicity were evaluated. The results revealed that tissue Y content increased at increasing exposure concentrations (though the bioconcentration factor decreased). At the lowest Y dosage (5 µg/L), mussels lowered their electron transport system (ETS) activity, consumed more energy reserves (glycogen), and activated superoxide dismutase activity, thus preventing cellular damage. At the highest Y dosage (40 µg/L), mussels reduced their biotransformation activities with no signs of cellular damage, which may be associated with the low toxicity of Y and the lower/maintenance of ETS activity. Although only minor effects were observed, the present findings raise an environmental concern for aquatic systems where anthropogenic Y concentrations are generally low but still may compromise organisms' biochemical performance. Particularly relevant are the alterations in energy metabolism and detoxification processes for their longer-term impacts on growth and reproduction but also as defense mechanisms against other stressors. Environ Toxicol Chem 2023;42:166-177. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Resíduo Eletrônico , Poluentes Ambientais , Mytilus , Poluentes Químicos da Água , Animais , Ítrio/metabolismo , Ítrio/farmacologia , Poluentes Ambientais/metabolismo , Poluentes Químicos da Água/metabolismo , Estresse Oxidativo , Biomarcadores/metabolismo
4.
J Agric Food Chem ; 70(51): 16390-16400, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36524925

RESUMO

Given that increasing temperature may aggravate the toxicity of pollutants, it is a daunting challenge to evaluate the realistic risks of rare earth elements (REEs) under global warming. Here, we studied how elevated temperatures (27 and 32 °C) impact the effect of yttrium (Y) on wheat plants (Triticum aestivum L.) at concentrations not causing effects (0, 0.5, and 1 µM) at the control temperature (22 °C) in a hydroponic system. After 14 days of exposure, significant inhibition (p < 0.05, 29.5%) of root elongation was observed only at 1 µM of Y at 32 °C. Exposure to Y at 27 °C showed no visible effects on root length, but induced significant (p < 0.05) metabolic disorders of a range of carbohydrates and amino acids related to galactose, phenylalanine, and glutamate metabolisms. Such cases were even shifted to substantial perturbation of the nucleotide pool reallocation involved in the disruption of purine and pyrimidine metabolism at 32 °C. These observations were regulated by sets of genes involved in these perturbed pathways. Using weighted gene co-expression network analysis, the disorder of nucleotide metabolism was shown to be responsible for the aggravated Y phytotoxicity at the extreme high temperature. Although the temperature fluctuation considered seems to be in an extreme range, unexpected implications driven by high temperature cannot be neglected. Our findings thus reduce the gaps of knowledge in REE toxicity to plants under future climate warming scenarios and highlight the importance of incorporating environmental temperature into the framework of the risk assessment of REEs.


Assuntos
Metais Terras Raras , Ítrio , Ítrio/metabolismo , Ítrio/farmacologia , Triticum/química , Temperatura , Metais Terras Raras/toxicidade , Metais Terras Raras/análise , Plantas/metabolismo
5.
Ecotoxicol Environ Saf ; 242: 113939, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35930836

RESUMO

The potential toxicity and ecological risks of rare-earth nanoparticles in the environment have become a concern due to their widespread application and inevitable releases. The integration of hydroponics experiments, partial least squares structural equation modeling (PLS-SEM), and Transmission Electron Microscopy (TEM) were utilized to investigate the physiological toxicity, uptake and translocation of yttrium oxide nanoparticles (Y2O3 NPs) under different hydroponic treatments (1, 5, 10, 20, 50 and 100 mg·L-1 of Y2O3 NPs, 19.2 mg·L-1 Y(NO3)3 and control) in tomato (Lycopersicon esculentum) seedlings. The results indicated that Y2O3 NPs had a phytotoxic effect on tomato seedlings' germination, morphology, physiology, and oxidative stress. The Y2O3 NPs and soluble YIII reduced the root elongation, bud elongation, root activity, chlorophyll, soluble protein content and superoxide dismutase and accelerated the proline and malondialdehyde in the plant with increasing concentrations. The phytotoxic effects of Y2O3 NPs on tomato seedlings had a higher phytotoxic effect than soluble YIII under the all treatments. The inhibition rates of different levels of Y2O3 NPs in shoot and root biomass ranged from 0.2% to 6.3% and 1.0-11.3%, respectively. The bioaccumulation and translocation factors were less than 1, which suggested that Y2O3 NPs significantly suppressed shoot and root biomass of tomato seedlings and easily bioaccumulated in the root. The observations were consistent with the process of concentration-dependent uptake and translocation factor and confirmed by TEM. Y2O3 NPs penetrate the epidermis, enter the cell wall, and exist in the intercellular space and cytoplasm of mesophyll cells of tomato seedlings by endocytic pathway. Moreover, PLS-SEM revealed that the concentration of NPs significantly negatively affects the morphology and physiology, leading to the change in biomass of plants. This study demonstrated the possible pathway of Y2O3 NPs in uptake, phytotoxicity and translocation of Y2O3 NPs in tomato seedlings.


Assuntos
Nanopartículas , Solanum lycopersicum , Nanopartículas/toxicidade , Óxidos/farmacologia , Raízes de Plantas/metabolismo , Plantas , Plântula , Ítrio/metabolismo
6.
J Cosmet Dermatol ; 21(10): 4378-4382, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35150199

RESUMO

OBJECTIVE: To investigate the effects of intense pulsed light (IPL) and ablative 2.940 nm erbium-doped yttrium aluminum garnet (Er: YAG) laser on dynamic changes in collagen by quantitative analysis of type I collagen (Col I) and type III collagen (Col III), transforming growth factor (TGF), and matrix metalloproteinases (MMPs) in the dermis of rabbits. METHODS: Backs of ten rabbits were divided into four treatment areas: IPL normal energy group, IPL high-energy group, erbium laser normal energy group, and erbium laser high-energy group. HE staining was performed immediately after the first treatment and two weeks after the first treatment. Col I, Col III, TGF-ß1, and MMP-1 were collected by real-time PCR at baseline, 2 weeks after each session, and three months after the entire treatment monthly. RESULTS: HE staining showed that collagen fibers in the superficial layer of the dermis in the four treatment groups were increased and thickened to different degrees. Real-time PCR showed that statistically differences were noted in each checkpoint before and after treatments in the four groups, whereas no significant difference in the change in the four biomarkers was found among the four treatment groups. CONCLUSION: Both the IPL and Er: YAG laser can effectively upregulate collagens, but in this experiment, there was no significant difference in the therapeutic effect among the four irradiation groups. Moreover, the high-energy level group tended to bring more serious epidermal injury.


Assuntos
Lasers de Estado Sólido , Envelhecimento da Pele , Animais , Coelhos , Lasers de Estado Sólido/uso terapêutico , Érbio/metabolismo , Pele/metabolismo , Colágeno/metabolismo , Ítrio/metabolismo , Alumínio/metabolismo
7.
ACS Appl Mater Interfaces ; 14(3): 4285-4296, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35020352

RESUMO

Scalability, process control, and modularity are some of the advantages that make flow biocatalysis a key-enabling technology for green and sustainable chemistry. In this context, rigid porous solid membranes hold the promise to expand the toolbox of flow biocatalysis due to their chemical stability and inertness. Yttrium-stabilized zirconia (YSZ) fulfills these properties; however, it has been scarcely exploited as a carrier for enzymes. Here, we discovered an unprecedented interaction between YSZ materials and His-tagged enzymes that enables the fabrication of multifunctional biocatalytic membranes for bioredox cascades. X-ray photoelectron spectroscopy suggests that enzyme immobilization is driven by coordination interactions between the imidazole groups of His-tags and both Zr and Y atoms. As model enzymes, we coimmobilized in-flow a thermophilic hydroxybutyryl-CoA dehydrogenase (TtHBDH-His) and a formate dehydrogenase (His-CbFDH) for the continuous asymmetric reduction of ethyl acetoacetate with in situ redox cofactor recycling. Fluorescence confocal microscopy deciphered the spatial organization of the two coimmobilized enzymes, pointing out the importance of the coimmobilization sequence. Finally, the coimmobilized system succeeded in situ, recycling the redox cofactor, maintaining the specific productivity using only 0.05 mM NADH, and accumulating a total enzyme turnover number of 4000 in 24 h. This work presents YSZ materials as ready-to-use carriers for the site-directed enzyme in-flow immobilization and the application of the resulting heterogeneous biocatalysts for continuous biomanufacturing.


Assuntos
3-Hidroxiacil-CoA Desidrogenases/metabolismo , Materiais Biocompatíveis/metabolismo , Formiato Desidrogenases/metabolismo , Ítrio/metabolismo , Zircônio/metabolismo , 3-Hidroxiacil-CoA Desidrogenases/química , Materiais Biocompatíveis/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Formiato Desidrogenases/química , Teste de Materiais , Ítrio/química , Zircônio/química
8.
ACS Appl Mater Interfaces ; 13(2): 2327-2335, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33401893

RESUMO

This study presents a controlled synthesis of NaYbF4@NaYF4 core-shell upconversion nanoparticles using the hot-injection technique. NaYF4 shells with tunable morphologies including long-rod, short-rod, and quasi-sphere are grown on identical NaYbF4 core nanoparticles by controlled injection of acetate or trifluoroacetate precursors. Mechanistic investigations reveal that anisotropic interfacial strain accounts for the preferential growth of shell layers along the c-axis. However, the strain effect can be offset by the fast injection of shell precursors, leading to nearly isotropic growth of NaYF4 shells over the NaYbF4 core nanoparticles. The core-shell nanoparticles are further modified with DNA molecules and incubated with adenocarcinomic human alveolar basal epithelial cells. Based on a combination of characterizations by flow cytometry and confocal microscopy, favorable cellular uptake and DNA delivery are observed for the quasi-sphere nanoparticles, owing to the high dispersibility and easy membrane wrapping. The method described here could be extended to synthesize other types of functional nanostructures for the study of morphology-dependent properties.


Assuntos
Portadores de Fármacos/química , Fluoretos/química , Nanopartículas/química , Itérbio/química , Ítrio/química , Células A549 , DNA/administração & dosagem , DNA/farmacocinética , Portadores de Fármacos/metabolismo , Fluoretos/metabolismo , Técnicas de Transferência de Genes , Humanos , Nanopartículas/metabolismo , Nanopartículas/ultraestrutura , Nanotecnologia , Itérbio/metabolismo , Ítrio/metabolismo
9.
ACS Appl Bio Mater ; 4(2): 1191-1210, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014473

RESUMO

This review summarizes essential information about the chemical stability of NaYF4-based upconverting nanoparticles (UCNPs) in aqueous solutions, a crucial aspect for achieving high quality standards for biomedical materials. We present an in-depth analysis of the major experimental evidence and proposed mechanisms that provide a theoretical framework for understanding UCNPs degradation, destabilization, and dissolution under different conditions such as media composition, temperature, particle size, and the synthetic methods employed. The ion release and disintegration of the UCNP crystal structure may trigger cytotoxic events within living organisms and impact on their optical properties, precluding their safe use in biological environments. Also, we present a summary of the characterization techniques' toolbox employed for monitoring and detecting these degradation processes. Closing the existing "information gap" that links UCNP physicochemical properties, such as solubility and chemical stability, with the biological response of living organisms or tissues, is vital for using these nanoparticles as biological tracer probes, theranostic vehicles, or for clinical purposes. The understanding of chemical phenomena at the nanoparticle solid-liquid interface is mandatory to complete the molecular picture of nanosized objects, orienting in a rational manner the efforts of research and development in the early stages of these functional materials.


Assuntos
Fluoretos/metabolismo , Nanopartículas Metálicas/química , Ítrio/metabolismo , Animais , Linhagem Celular Tumoral , Estabilidade de Medicamentos , Fluoretos/química , Fluoretos/efeitos da radiação , Fluoretos/toxicidade , Humanos , Luz , Nanopartículas Metálicas/efeitos da radiação , Nanopartículas Metálicas/toxicidade , Fenômenos Ópticos , Ítrio/química , Ítrio/efeitos da radiação , Ítrio/toxicidade
10.
Ecotoxicol Environ Saf ; 203: 110951, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32678752

RESUMO

The growing use of rare-earth doped upconversion nanoparticles (UCNPs) has caused increasing concern about their biosafety. Here, to understand the toxicity of UCNPs and their mechanism in HepG2 cells, we systematically study the cytotoxicity, uptake and elimination behaviors of three types of UCNPs combined multiple cytotoxicity evaluation means with inductively coupled plasma mass spectrometry (ICP-MS) detection. Sodium yttrium fluoride, doped with 18% (molar ratio) ytterbium and 2% erbium (NaYF4: Yb3+, Er3+) was selected as the model UCNPs with two sizes (35 and 55 nm), and the poly(acrylic acid) and polyethylenimine were selected as the representatives of negative and positive surface coating of UCNPs, respectively. UCNPs were found to induce cytotoxicity in time- and dose-dependent manners, which might be mediated by reactive oxygen species generation and oxidative stress. Apoptosis, inflammation, and metabolic process were enhanced after cells exposed to 200 mg/L UCNPs for 48 h. Increase in the protein levels of cleaved caspased-9, cleaved caspase-3 and Bax and decrease in the anti-apoptotic protein, Bcl-2 suggested that the mitochondria mediated pathway was involved in UCNP-induced apoptosis. With the aid of ICP-MS, it demonstrated that the cytotoxicity was associated with internalized amount of UCNPs, which largely relied on their surface properties rather than size in the tested range. By comparing UCNPs with Y3+ ions, it demonstrated that NPs properties played a nonnegligible role in the cytotoxicity of UCNPs. These findings provide new insights for fundamental understanding of cytotoxicity of UCNPs and may contribute to more rational use of these materials in the future.


Assuntos
Endocitose/efeitos dos fármacos , Érbio/toxicidade , Fluoretos/toxicidade , Nanopartículas/toxicidade , Itérbio/toxicidade , Ítrio/toxicidade , Apoptose/efeitos dos fármacos , Técnicas de Cultura de Células , Sobrevivência Celular , Érbio/química , Érbio/metabolismo , Fluoretos/química , Fluoretos/metabolismo , Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Nanopartículas/química , Nanopartículas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Propriedades de Superfície , Itérbio/química , Itérbio/metabolismo , Ítrio/química , Ítrio/metabolismo
11.
J Biomed Mater Res B Appl Biomater ; 108(3): 709-716, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31172661

RESUMO

The "Window to the Brain" is a transparent cranial implant under development, based on nanocrystalline yttria-stabilized zirconia (nc-YSZ) transparent ceramic material. Previous work has demonstrated the feasibility of this material to facilitate brain imaging over time, but the long-term stability of the material over decades in the body is unknown. In this study, the low-temperature degradation (LTD) of nc-YSZ of 3, 6, and 8 mol % yttria is compared before and after accelerated ageing treatments following ISO standards for assessing the ageing resistance of zirconia ceramics. After 100 hr of accelerated ageing (equivalent to many decades of ageing in the body), the samples do not show any signs of phase transformation to monoclinic by X-ray diffraction and micro-Raman spectroscopy. Moreover, the mechanical hardness of the samples did not decrease, and changes in optical transmittance from 500 to 1000 nm due to ageing treatments was minimal (below 3% for all samples), and unlikely to be due to phase transformation of surface crystals to monoclinic. These results indicate the nc-YSZ has excellent ageing resistance and can withstand long-term implantation conditions without exhibiting LTD.


Assuntos
Cerâmica/química , Nanopartículas/química , Próteses e Implantes , Ítrio/química , Zircônio/química , Cerâmica/metabolismo , Cristalização , Dureza , Temperatura Alta , Humanos , Teste de Materiais , Nanopartículas/metabolismo , Transição de Fase , Pressão , Crânio , Propriedades de Superfície , Difração de Raios X , Ítrio/metabolismo , Zircônio/metabolismo
12.
Anal Chem ; 92(1): 1470-1476, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31762255

RESUMO

This work reports a ZIF-8 (ZIF: Zeolitic Imidazolate Framework)-assisted NaYF4:Yb,Tm@ZnO upconverter for the photoelectrochemical (PEC) biosensing of carcinoembryonic antigen (CEA) under near-infrared (NIR) irradiation on a homemade 3D-printed device with DNA walker-based amplification strategy. The composite photosensitive material NaYF4:Yb,Tm@ZnO, as converter to transfer NIR import to photocurrent output, was driven from annealed NaYF4:Yb,Tm@ZIF-8. Yb3+ and Tm3+-codoped NaYF4 (NaYF4:Yb,Tm) converted NIR excitation into UV emission, matching with the absorption of ZnO for in situ excitation to generate the photocurrent. Upon target CEA introduction, the swing arm of DNA walker including the sequence of CEA aptamer carried out the sandwiched bioassembly with CEA capture aptamer on the G-rich anchorage DNA tracks-functionalized magnetic beads. Thereafter, DNA walker was triggered, and the swing arm DNA was captured by the G-rich anchorage DNA according to partly complementary pairing and Exonuclease III (Exo III) consumed anchorage DNA by a burnt-bridge mechanism to go into the next cycle. The released guanine (G) bases from DNA walker enhanced the photocurrent response on a miniature homemade 3D-printed device consisting of the detection cell, dark box, and light platform. Under optimal conditions, NaYF4:Yb,Tm@ZnO-based NIR light-driven PEC biosensor presented high sensitivity and selectivity for CEA sensing with a detection limit of 0.032 ng mL-1. Importantly, our strategy provides a new horizon for the development of NIR-based PEC biosensors in the aspect of developing MOF-derived photoelectric materials, flexible design of a 3D-printed device, and effective signal amplification mode.


Assuntos
Técnicas Biossensoriais , DNA/metabolismo , Técnicas Eletroquímicas , Exodesoxirribonucleases/metabolismo , DNA/química , Exodesoxirribonucleases/química , Fluoretos/química , Fluoretos/metabolismo , Humanos , Raios Infravermelhos , Processos Fotoquímicos , Túlio/química , Túlio/metabolismo , Itérbio/química , Itérbio/metabolismo , Ítrio/química , Ítrio/metabolismo , Zeolitas/química , Zeolitas/metabolismo , Óxido de Zinco/química , Óxido de Zinco/metabolismo
13.
Environ Pollut ; 258: 113804, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31874439

RESUMO

Our knowledge of the processes leading to the bioaccumulation of rare earth elements (REE) in aquatic biota is limited. As the contamination of freshwater ecosystems by anthropogenic REE have recently been reported, it becomes increasingly urgent to understand how these metals are transferred to freshwater organisms in order to develop appropriate guidelines. We exposed rainbow trout (Oncorhynchus mykiss) to an REE, yttrium (Y), to either a range of Y-contaminated prey (Daphnia magna) or a range of Y-contaminated water. For the feeding experiment, the relationship between the Y assimilation by O. mykiss and the Y subcellular fractionation in D. magna was evaluated. Assimilation efficiency of Y by O. mykiss was low, ranging from 0.8 to 3%. These values were close to the proportion of Y accumulated in D. magna cytosol, 0.6-2%, a theoretical trophically available fraction. Moreover, under our laboratory conditions, water appeared as a poor source of Y transfer to O. mykiss. Regardless of the source of contamination, a similar pattern of Y bioaccumulation among O. mykiss tissues was revealed: muscles < liver < gills < intestine. We conclude that the trophic transfer potential of Y is low and the evaluation of Y burden in prey cytosol appears to be a relevant predictor of Y assimilation by their consumers.


Assuntos
Oncorhynchus mykiss/metabolismo , Poluentes Químicos da Água/metabolismo , Ítrio/metabolismo , Animais , Bioacumulação , Ecossistema , Brânquias
14.
Biochemistry ; 58(2): 120-125, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30352145

RESUMO

Lanmodulin (LanM) is a high-affinity lanthanide (Ln)-binding protein recently identified in Methylobacterium extorquens, a bacterium that requires Lns for the function of at least two enzymes. LanM possesses four EF-hands, metal coordination motifs generally associated with CaII binding, but it undergoes a metal-dependent conformational change with a 100 million-fold selectivity for LnIIIs and YIII over CaII. Here we present the nuclear magnetic resonance solution structure of LanM complexed with YIII. This structure reveals that LanM features an unusual fusion of adjacent EF-hands, resulting in a compact fold to the best of our knowledge unique among EF-hand-containing proteins. It also supports the importance of an additional carboxylate ligand in contributing to the protein's picomolar affinity for LnIIIs, and it suggests a role of unusual N i+1-H···N i hydrogen bonds, in which LanM's unique EF-hand proline residues are engaged, in selective LnIII recognition. This work sets the stage for a detailed mechanistic understanding of LanM's Ln selectivity, which may inspire new strategies for binding, detecting, and sequestering these technologically important metals.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Methylobacterium extorquens/metabolismo , Ítrio/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Cálcio/metabolismo , Motivos EF Hand , Elementos da Série dos Lantanídeos/química , Elementos da Série dos Lantanídeos/metabolismo , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Prolina/química , Conformação Proteica , Ítrio/química
15.
Ecotoxicol Environ Saf ; 165: 662-670, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30245300

RESUMO

Samarium (Sm) and yttrium (Y) are commonly used rare earth elements (REEs) but there is a scarcity of information concerning their biological effects in non-target aquatic organisms. The purpose of this study was to determine the bioavailability of those REEs and their toxicity on Dreissena polymorpha after exposure to increasing concentration of Sm and Y for 28 days at 15 °C. At the end of the exposure period, the gene expression of superoxide dismutase (SOD), catalase (CAT), metallothionein (MT), glutathione-S-transferase (GST), cytochrome c oxidase 1 (CO1) and cyclin D (Cyc D) were analysed. In addition, we examined lipid peroxidation (LPO), DNA strand breaks (DSB), GST and prostaglandin cyclooxygenase (COX) activities. Results showed a concentration dependent increase in the level of the REEs accumulated in the soft tissue of mussels. Both REEs decreased CAT but did not significantly modulated SOD and MT expressions. Furthermore, Sm3+ up-regulated GST, CO1 and Cyc D, while Y3+ increased and decreased GST and CO1 transcripts levels, respectively. Biomarker activities showed no oxidative damage as evidenced by LPO, while COX activity was decreased and DNA strand breaks levels were changed suggesting that Sm and Y exhibit anti-inflammatory and genotoxic effects. Factorial analysis revealed that the major impacted biomarkers by Sm were LPO, CAT, CO1 and COX, while GST gene expression, COX, Cyc D and CAT as the major biomarkers affected by Y. We conclude that these REEs display different mode of action but further investigations are required in order to define the exact mechanism involved in their toxicity.


Assuntos
Dreissena/efeitos dos fármacos , Samário/toxicidade , Poluentes Químicos da Água/toxicidade , Ítrio/toxicidade , Animais , Biomarcadores/metabolismo , Catalase/metabolismo , Dano ao DNA , Dreissena/metabolismo , Água Doce/química , Glutationa Transferase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Metalotioneína/metabolismo , Samário/metabolismo , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/metabolismo , Ítrio/metabolismo
16.
Sci Total Environ ; 643: 1117-1126, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30189529

RESUMO

Salt marshes act as natural deposits of different metals (e.g. heavy-metals), while halophyte plants are known to retain and accumulate them in the different tissues. Scarce data exists on accumulation, partition and fractionation of YREE in these plants. To study the relationship between halophyte plants and YREE, contents of these metals were determined by ICP-MS in sediment, and in the different plants organs, from Rosário's salt marsh, in Tagus estuary (SW Europe). Results show significant differences (p < 0.001) in YREE contents between sediments. In non-colonised sediment Y was lower (5.0-18 mg·kg-1) compared to the Sarcocornia fruticosa and Spartina maritima sediment cores (19-26 and 20-26 mg·kg-1, respectively). The same was observed for ΣREE, with lower values in non-colonised sediment (32-138 mg·kg-1), while colonised ones presented higher contents (146-174 and 151-190 mg·kg-1, for S. fruticosa and S. maritima, respectively). These significant differences (p < 0.05) are explained by the sediments' nature. Yttrium and ΣREE Al-normalised ratios in non-colonised sediment ranged from 1.5 to 2.3 and 11 to 13, respectively. The colonised sediments revealed significant higher ratios (particularly for ΣREE/Al ratios; p < 0.001), varying from Y/Al: 1.8-2.3 and ΣREE: 13-16 for S. fruticosa, and Y/Al: 1.4-2.3 and ΣREE: 12-18, for S. maritima. Results suggest that these plants may promote YREE enrichment in the sediments. No differences in fractionation patterns among sediments and in both species roots were found, but fractionation was different from those in the sediment, with similar middle-REE (MREE) enrichment and no light-REE (LREE) and heavy-REE (HREE) fractionation. No evidence of YREE transfer to aboveground organs was observed. Different fractionation patterns in stems and leaves were registered, with clear enrichment of LREE relative to HREE and an increase in the MREE enrichment. Therefore, these plants showed low ability to accumulate and translocate YREE but may promote its enrichment in the sediments.


Assuntos
Metais Terras Raras/metabolismo , Plantas Tolerantes a Sal/metabolismo , Áreas Alagadas , Ítrio/metabolismo , Monitoramento Ambiental , Europa (Continente) , Sedimentos Geológicos
17.
J Nanobiotechnology ; 14: 23, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-27015946

RESUMO

BACKGROUND: The potential transfer of engineered nanoparticles (ENPs) from plants into the food chain has raised widespread concerns. In order to investigate the effects of ENPs on plants, young cabbage plants (Brassica oleracea) were exposed to a hydroponic system containing yttrium oxide (yttria) ENPs. The objective of this study was to reveal the impacts of NPs on plants by using K-edge subtraction imaging technique. RESULTS: Using synchrotron dual-energy X-ray micro-tomography with K-edge subtraction technique, we studied the uptake, accumulation, distribution and concentration mapping of yttria ENPs in cabbage plants. It was found that yttria ENPs were uptaken by the cabbage roots but did not effectively transferred and mobilized through the cabbage stem and leaves. This could be due to the accumulation of yttria ENPs blocked at primary-lateral-root junction. Instead, non-yttria minerals were found in the xylem vessels of roots and stem. CONCLUSIONS: Synchrotron dual-energy X-ray micro-tomography is an effective method to observe yttria NPs inside the cabbage plants in both whole body and microscale level. Furthermore, the blockage of a plant's roots by nanoparticles is likely the first and potentially fatal environmental effect of such type of nanoparticles.


Assuntos
Brassica/metabolismo , Nanopartículas/metabolismo , Ítrio/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Caules de Planta/metabolismo , Microtomografia por Raio-X/métodos
18.
Mikrobiologiia ; 84(2): 216-24, 2015.
Artigo em Russo | MEDLINE | ID: mdl-26263628

RESUMO

A method for leaching rare earth elements from coal ash in the presence of elemental sulfur using communities of acidophilic chemolithotrophic microorganisms was proposed. The optimal parameters determined for rare element leaching in reactors were as follows: temperature, 45 degrees C; initial pH, 2.0; pulp density, 10%; and the coal ash to elemental sulfur ratio, 10 : 1. After ten days of leaching, 52.0, 52.6, and 59.5% of scandium, yttrium, and lanthanum, respectively, were recovered.


Assuntos
Crescimento Quimioautotrófico/fisiologia , Cinza de Carvão/química , Lantânio/isolamento & purificação , Consórcios Microbianos/fisiologia , Escândio/isolamento & purificação , Ítrio/isolamento & purificação , Acidithiobacillus/metabolismo , Reatores Biológicos , Clostridium/metabolismo , Cinza de Carvão/metabolismo , Concentração de Íons de Hidrogênio , Lantânio/metabolismo , Escândio/metabolismo , Enxofre/metabolismo , Temperatura , Ítrio/metabolismo
19.
J Am Chem Soc ; 137(25): 8199-205, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26020685

RESUMO

Dynamically regulating cell-molecule interactions is fundamental to a variety of biological and biomedical applications. Herein, for the first time, by utilizing spiropyran conjugated multishell upconversion nanoparticles (UCNPs) as a new generation of single-wavelength near-infrared (NIR)-controlled photoswitch, we report a simple yet versatile strategy for controlling cell adhesion/detachment reversibly and noninvasively. Specifically, the two-way isomerization of the photoswitch was merely dependent on the excitation power density of the 980 nm laser. At high power density, the ring-opening was prominent, whereas its reverse ring-closing process occurred upon irradiation by the same laser but with the lower power density. Such transformations made the interactions between spiropyran and cell surface protein fibronectin switchable, thus leading to reversible cell adhesion and detachment. Moreover, efficient adhesion-and-detachment of cells could be realized even after 10 cycles. Most importantly, the utilization of NIR not only showed little damage toward cells, but also improved penetration depth. Our work showed promising potential for in vivo dynamically manipulating cell-molecule interactions and biological process.


Assuntos
Benzopiranos/química , Adesão Celular/efeitos da radiação , Indóis/química , Substâncias Luminescentes/química , Nanopartículas/química , Nitrocompostos/química , Benzopiranos/metabolismo , Érbio/química , Érbio/metabolismo , Fibronectinas/metabolismo , Fluoretos/química , Fluoretos/metabolismo , Células HeLa , Humanos , Indóis/metabolismo , Raios Infravermelhos , Isomerismo , Lasers , Substâncias Luminescentes/metabolismo , Nanopartículas/metabolismo , Nanopartículas/ultraestrutura , Nitrocompostos/metabolismo , Processos Fotoquímicos , Itérbio/química , Itérbio/metabolismo , Ítrio/química , Ítrio/metabolismo
20.
Oper Dent ; 40(2): 163-71, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25136900

RESUMO

The aims of this study were to investigate 1) the influence of cleansing methods after saliva contamination and 2) aging conditions (thermocycling and water storage) on zirconia shear bond strength (SBS) with a resin cement. One hundred and eighty zirconia specimens were sandblasted with 50 µm aluminum oxide particles, immersed in saliva for one minute (with the exception of the control group, [C]), and divided into groups according to the cleansing method, as follows: water rinse (W); 37% phosphoric acid gel (PA); cleaning paste (ie, Ivoclean®) containing mainly zirconium oxide (IC); and 70% isopropanol (AL). Scanning electron microscopy was done to qualitatively evaluate the zirconia surface after each cleansing method. For the SBS test, resin cement buttons were bonded to the specimens using a dedicated jig. SBS was evaluated according to standard protocols after 24 hours, 5000 thermal cycles (TC), or 150 days of water storage. Statistical analysis was performed using two-way analysis of variance and Tukey test (p<0.05). Data showed a significant effect for the 150 days of water storage, TC, and 24 hours of water storage (150 days < TC < 24 hours). Group comparisons showed that PA < AL and W < IC and C. SBS ranged from 10.4 to 21.9 MPa (24 hours), from 6.4 to 14.8 MPa (TC), and from 2.9 to 7.0 MPa (150 days). Failure analysis revealed a greater percentage of mixed failures for the majority of the specimens and a smaller percentage of adhesive failures at the ceramic-resin cement interface. Our findings suggest that Ivoclean® was able to maintain adequate SBS values after TC and 150 days of storage, comparable to the uncontaminated zirconia.


Assuntos
Cimentos de Resina/metabolismo , Saliva/metabolismo , Ítrio/metabolismo , Zircônio/metabolismo , Colagem Dentária , Análise do Estresse Dentário , Humanos , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...