Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 37(10): 1944-1955, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28798140

RESUMO

OBJECTIVE: The role of hemoglobin and myoglobin in the cardiovascular system is well established, yet other globins in this context are poorly characterized. Here, we examined the expression and function of cytoglobin (CYGB) during vascular injury. APPROACH AND RESULTS: We characterized CYGB content in intact vessels and primary vascular smooth muscle (VSM) cells and used 2 different vascular injury models to examine the functional significance of CYGB in vivo. We found that CYGB was strongly expressed in medial arterial VSM and human veins. In vitro and in vivo studies indicated that CYGB was lost after VSM cell dedifferentiation. In the rat balloon angioplasty model, site-targeted delivery of adenovirus encoding shRNA specific for CYGB prevented its reexpression and decreased neointima formation. Similarly, 4 weeks after complete ligation of the left common carotid, Cygb knockout mice displayed little to no evidence of neointimal hyperplasia in contrast to their wild-type littermates. Mechanistic studies in the rat indicated that this was primarily associated with increased medial cell loss, terminal uridine nick-end labeling staining, and caspase-3 activation, all indicative of prolonged apoptosis. In vitro, CYGB could be reexpressed after VSM stimulation with cytokines and hypoxia and loss of CYGB sensitized human and rat aortic VSM cells to apoptosis. This was reversed after antioxidant treatment or NOS2 (nitric oxide synthase 2) inhibition. CONCLUSIONS: These results indicate that CYGB is expressed in vessels primarily in differentiated medial VSM cells where it regulates neointima formation and inhibits apoptosis after injury.


Assuntos
Apoptose , Globinas/fisiologia , Músculo Liso Vascular/citologia , Músculo Liso Vascular/fisiopatologia , Remodelação Vascular/fisiologia , Animais , Caspase 3/metabolismo , Diferenciação Celular , Citoglobina , Regulação para Baixo , Ativação Enzimática , Camundongos , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Neointima/fisiopatologia , Óxido Nítrico Sintase Tipo II/toxicidade , Oxirredução , Ratos
2.
Cell Mol Life Sci ; 62(22): 2658-68, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16261264

RESUMO

The influence of the proinflammatory cytokine interleukin (IL)-17 on inducible nitric oxide (NO) synthase (iNOS)-mediated NO release was investigated in the mouse insulinoma cell line MIN6 and mouse pancreatic islets. IL-17 markedly augmented iNOS mRNA/protein expression and subsequent NO production induced in MIN6 cells or pancreatic islets by different combinations of interferon-gamma, tumor necrosis factor-alpha, and IL-1beta. The induction of iNOS by IL-17 was preceded by phosphorylation of p38 mitogen-activated protein kinase (MAPK), and inhibition of p38 MAPK activation completely abolished IL-17-stimulated NO release. IL-17 enhanced the NO-dependent toxicity of proinflammatory cytokines toward MIN6 cells, while IL-17-specific neutralizing antibody partially reduced the NO production and rescued insulinoma cells and pancreatic islets from NO-dependent damage induced by activated T cells. Finally, a significant increase in blood IL-17 levels was observed in a multiple low-dose streptozotocin model of diabetes, suggesting that T cell-derived IL-17 might be involved in NO-dependent damage of beta cells in this disease.


Assuntos
Células Secretoras de Insulina/enzimologia , Interleucina-17/fisiologia , Óxido Nítrico Sintase Tipo II/toxicidade , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Camundongos , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/fisiologia , Proteínas Recombinantes/farmacologia , Linfócitos T/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...