Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.899
Filtrar
1.
Microb Ecol ; 87(1): 82, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831142

RESUMO

Denitrification and anaerobic ammonium oxidation (anammox) are key processes for nitrogen removal in aquaculture, reducing the accumulated nitrogen nutrients to nitrogen gas or nitrous oxide gas. Complete removal of nitrogen from aquaculture systems is an important measure to solve environmental pollution. In order to evaluate the nitrogen removal potential of marine aquaculture ponds, this study investigated the denitrification and anammox rates, the flux of nitrous oxide (N2O) at the water-air interface, the sediment microbial community structure, and the gene expression associated with the nitrogen removal process in integrated multi-trophic aquaculture (IMTA) ponds (Apostistius japonicus-Penaeus japonicus-Ulva) with different culture periods. The results showed that the denitrification and anammox rates in sediments increased with the increase of cultivation periods and depth, and there was no significant difference in nitrous oxide gas flux at the water-air interface between different cultivation periods (p > 0.05). At the genus and phylum levels, the abundance of microorganisms related to nitrogen removal reactions in sediments changed significantly with the increase of cultivation period and depth, and was most significantly affected by the concentration of particulate organic nitrogen (PON) in sediments. The expression of denitrification gene (narG, nirS, nosZ) in surface sediments was significantly higher than that in deep sediments (p < 0.05), and was negatively correlated with denitrification rate. All samples had a certain anammox capacity, but no known anammox bacteria were found in the microbial diversity detection, and the expression of gene (hzsB) related to the anammox process was extremely low, which may indicate the existence of an unknown anammox bacterium. The data of this study showed that the IMTA culture pond had a certain potential for nitrogen removal, and whether it could make a contribution to reducing the pollution of culture wastewater still needed additional practice and evaluation, and also provided a theoretical basis for the nitrogen removal research of coastal mariculture ponds.


Assuntos
Aquicultura , Bactérias , Desnitrificação , Microbiota , Nitrogênio , Óxido Nitroso , Penaeidae , Lagoas , Nitrogênio/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Lagoas/microbiologia , Animais , Penaeidae/microbiologia , Óxido Nitroso/metabolismo , Óxido Nitroso/análise , Sedimentos Geológicos/microbiologia , Oxirredução , Compostos de Amônio/metabolismo
2.
Mar Pollut Bull ; 204: 116528, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38833950

RESUMO

Anthropogenic input of excess nutrients stimulates massive nitrous oxide (N2O) production in estuaries with distinct seasonal variations. Here, nitrogen isotopic and isotopomeric signatures were utilized to investigate the seasonal dynamics of N2O production and nitrification at the middle reach of the eutrophic Pearl River Estuary in the south of China. Elevated N2O production primarily via ammonia oxidation (> 1 nM-N d-1) occurred from April to November, along with increased temperature and decreased dissolved oxygen concentration. This consistently oxygenated water column showed active denitrification, contributing 20-40 % to N2O production. The water column microbial N2O production generally constituted a minor fraction (10-15 %) of the estuarine water-air interface efflux, suggesting that upstream transport and tidal dilution regulated the dissolved N2O inventory in the middle reach of the estuary. Nitrification (up to 3000 nM-N d-1) played a critical role in bioavailable nitrogen conversion and N2O production, albeit with N2O yields below 0.05 %.


Assuntos
Monitoramento Ambiental , Estuários , Isótopos de Nitrogênio , Óxido Nitroso , Estações do Ano , Óxido Nitroso/análise , China , Isótopos de Nitrogênio/análise , Nitrificação , Eutrofização , Rios/química
3.
Sci Total Environ ; 941: 173740, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38839002

RESUMO

Constructed wetlands (CWs) have been used to enhance pollutant removal by filling several types of material as substrates. However, research on substrate filling order remains still limited, particularly regarding the effects of greenhouse gas (GHG) emissions. In this study, six CWs were constructed using zeolite and ferric­carbon micro-electrolysis (Fe-C) fillers to evaluate the effect of changing the filling order and ratio on pollutant removal, GHGs emissions, and associated microbial structure. The results showed that the order of substrate filling significantly impacted pollutant removal performance on CWs. Specifically, CWs filled with zeolite in the top layer exhibited superior NH4+-N removal compared to those filled in the lower layer. Moreover, the highest NH4+-N removal (95.0 % ± 1.9 %) was observed in CWs with a zeolite to Fe-C volume ratio of 8:2 (CWZe-1). Moreover, zeolite-filled at the top had lower GHGs emissions, with the lowest CH4 (0.22 ± 0.10 mg m-2 h-1) and N2O (167.03 ± 61.40 µg m-2 h-1) fluxes in the CWZe-1. In addition, it is worth noting that N2O is the major contributor to integrated global warming potential (GWP) in the six CWs, accounting for 81.7 %-90.8 %. The upper layer of CWs filled with zeolite exhibited higher abundances of nirK, nirS and nosZ genes. The order in which the substrate was filled affected the microbial community structure and the upper layer of CWs filled with zeolite had higher relative abundance of nitrifying genera (Nitrobacter, Nitrosomonas) and denitrifying genera (Zoogloea, Denitratisoma). Additionally, N2O emission was reduced by approximately 41.2 %-64.4 % when the location of the aeration of the CWs was changed from the bottom to the middle. This study showed that both the order of filling the substrate and the aeration position significantly affected the GHGs emissions from CWs, and that CWs had lower GHGs emissions when zeolites were filled in the upper layer and the aeration position was in the middle.


Assuntos
Poluentes Atmosféricos , Metano , Óxido Nitroso , Eliminação de Resíduos Líquidos , Áreas Alagadas , Metano/análise , Óxido Nitroso/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Atmosféricos/análise , Zeolitas/química , Gases de Efeito Estufa/análise
4.
J Environ Manage ; 364: 121472, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38879968

RESUMO

Aquaculture systems are expected to act as potential hotspots for nitrous oxide (N2O) emissions, largely attributed to substantial nutrient loading from aquafeed applications. However, the specific patterns and contributions of N2O fluxes from these systems to the global emissions inventory are not well characterized due to limited data. This study investigates the patterns of N2O flux across 127 freshwater systems in China to elucidate the role of aquaculture ponds and lakes/reservoirs in landscape N2O emission. Our findings show that the average N2O flux from aquaculture ponds was 3.63 times higher (28.73 µg N2O m-2 h-1) than that from non-aquaculture ponds. Additionally, the average N2O flux from aquaculture lakes/reservoirs (15.65 µg N2O m-2 h-1) increased 3.05 times compared to non-aquaculture lakes/reservoirs. The transition from non-aquaculture to aquaculture practices has resulted in a net annual increase of 7589 ± 2409 Mg N2O emissions in China's freshwater systems from 2003 to 2022, equivalent to 20% of total N2O emissions from China's inland water. Particularly, the robust negative regression relationship between N2O emission intensity and water area suggests that small ponds are hotspots of N2O emissions, a result of both elevated nutrient concentrations and more vigorous biogeochemical cycles. This indicates that N2O emissions from smaller aquaculture ponds are larger per unit area compared to equivalent larger water bodies. Our findings highlight that N2O emissions from aquaculture systems can not be proxied by those from natural water bodies, especially small water bodies exhibiting significant but largely unquantified N2O emissions. In the context of the rapid global expansion of aquaculture, this underscores the critical need to integrate aquaculture into global assessments of inland water N2O emissions to advance towards a low-carbon future.


Assuntos
Aquicultura , Óxido Nitroso , Óxido Nitroso/análise , China , Lagos , Monitoramento Ambiental
5.
Sci Total Environ ; 944: 173906, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38871319

RESUMO

Drained agricultural peat soils pollute both the atmosphere and watercourses. Biochar has been observed to decrease greenhouse gas (GHG) emissions and nutrient loading in mineral soils. We studied effects of three biochar types with two application rates (10 and 30 Mg ha-1) on GHG fluxes as well as N and P leaching on peat soil. Peat monoliths were drilled from a long-term cultivated field and were watered either slightly (five dry periods) or heavily (four rainfall periods) during an 11-month laboratory experiment with intact peat columns. The incubation of bare peat profiles enhanced peat decomposition leading to high CO2 (up to 1300 mg CO2 m-2 h-1) and N2O emissions (even 10,000-50,000 µg N2O m-2 h-1) and NO3--N leaching (even 300-700 mg L-1) in all treatments. In the beginning of the experiment, the lower application rate of pine bark biochars increased N2O emission compared to control, but otherwise none of the biochars or their application rates significantly affected gas fluxes or nutrient leaching. These results indicate that moderate softwood biochar application does not help to mitigate the environmental problems of agricultural peat soils. Higher application rate of biochar pyrolyzed at high temperature is recommended for further studies with peat soils.


Assuntos
Carvão Vegetal , Óxido Nitroso , Solo , Carvão Vegetal/química , Solo/química , Óxido Nitroso/análise , Nitrogênio/análise , Agricultura/métodos , Poluentes Atmosféricos/análise , Gases de Efeito Estufa/análise , Poluentes do Solo/análise
6.
J Hazard Mater ; 474: 134735, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38823103

RESUMO

Microplastics (MPs) are emerging contaminants in aquatic ecosystems that can profoundly affect carbon and nitrogen cycling. However, the impact mechanisms of MPs on sedimentary greenhouse gas (GHG) emissions at distinct altitudes remain poorly elucidated. Here, we investigated the effects of polyvinyl chloride (PVC) and polylactic acid (PLA) on sedimentary CO2, CH4, and N2O emissions at distinct altitudes of the Yellow River. PVC increased the relative abundance of denitrifiers (e.g., Xanthobacteriaceae, Rhodocyclaceae) to promote N2O emissions, whereas PLA reduced the abundance of AOA gene and denitrifiers (e.g., Pseudomonadaceae, Sphingomonadaceae), impeding N2O emissions. Both PVC and PLA stimulated the growth of microbes (Saprospiraceae, Aquabacterium, and Desulfuromonadia) associated with complex organics degradation, leading to increased CO2 emissions. Notably, the concurrent inhibition of PLA on mcrA and pmoA genes led to its minimal impact on CH4 emissions. High-altitude MQ sediments, characterized by abundant substrate and a higher abundance of functional genes (AOA, AOB, nirK, mcrA), demonstrated higher GHG emissions. Conversely, lower microbial diversity rendered the low-altitude LJ microbial community more susceptible to PVC, leading to a more significant promotion on GHG emissions. This study unequivocally confirms that MPs exacerbate GHG emissions via microbiome-mediated mechanisms, providing a robust theoretical foundation for microplastic control to mitigate global warming.


Assuntos
Dióxido de Carbono , Sedimentos Geológicos , Gases de Efeito Estufa , Microbiota , Microplásticos , Poliésteres , Sedimentos Geológicos/microbiologia , Microbiota/efeitos dos fármacos , Microplásticos/toxicidade , Dióxido de Carbono/análise , Poliésteres/metabolismo , Altitude , Metano/metabolismo , Cloreto de Polivinila , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Óxido Nitroso/análise , Rios/microbiologia , Rios/química
7.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1283-1292, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38886427

RESUMO

To investigate the effects of different irrigation and nitrogen application modes on nitrogen gaseous loss in winter wheat farmland, we conducted a field experiment at Changqing Irrigation Experiment Station in Shandong Province, with two irrigation levels (80%-90% θf(I1) and 70%-80% θf(I2)) and three nitrogen application levels (conventional nitrogen application of 240 kg·hm-2(N1), nitrogen reduction of 12.5% (N2), and nitrogen reduction of 25% (N3)). The results showed that ammonia volatilization and nitrous oxide emission rate peak appeared within 2-4 days after fertilization or irrigation. The ammonia volatilization rate during the chasing fertilizer period was significantly higher than that during the basal fertilizer period. Compared with other treatments, the ave-rage ammonia volatilization rate of I2N2 treatment during the chasing fertilizer period was reduced by 10.1%-51.6%, and the average nitrous oxide emission rate over the whole growth period was reduced by 15.4%-52.2%. The ammonia volatilization rate was significantly positively associated with surface soil pH value and ammonium nitrogen content, while the nitrous oxide emission rate was significantly positively associated with nitrate content in topsoil. The accumulation amount of soil ammonia volatilization and nitrous oxide emission ranged from 0.83-1.42 and 0.11-0.33 kg·hm-2, respectively. Moderate reduction of irrigation water and nitrogen input could effectively reduce cumulative amounts of ammonia volatilization and nitrous oxide emission from winter wheat farmland. The cumulative amounts of ammonia volatilization and nitrous oxide emission under I1N3 and I2N2 treatments were signi-ficantly lower than those under other treatments. The highest winter wheat yield (5615.6 kg·hm-2) appeared in I2N2 treatment. The irrigation water utilization efficiency of I2 was significantly higher than that of I1, with the maximum increase rate of 45.2%. Compared with N1 and N3 treatments, the maximum increase rate of nitrogen fertilizer productivity and agricultural utilization efficiency in N2 reached 15.2% and 31.8%, respectively. In conclusion, the treatment with 70%-80% θf irrigation level and 210 kg·hm-2 nitrogen input could effectively improve the utilization efficiency of irrigation water and nitrogen fertilization and reduce gaseous loss from winter wheat farmland.


Assuntos
Amônia , Fertilizantes , Nitrogênio , Óxido Nitroso , Triticum , Água , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Óxido Nitroso/análise , Óxido Nitroso/metabolismo , Nitrogênio/análise , Nitrogênio/metabolismo , Amônia/análise , Amônia/metabolismo , China , Água/análise , Água/metabolismo , Irrigação Agrícola/métodos , Estações do Ano , Biomassa , Solo/química
8.
Chemosphere ; 361: 142528, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38838868

RESUMO

Nitrous oxide (N2O) emissions in High Rate Algal Ponds (HRAP) can negatively affect the sustainability of algal-bacterial processes. N2O emissions from a pilot HRAP devoted to biogas upgrading and digestate treatment were herein monitored for 73 days. The influence of the pH (7.5, 8.5, and 9.5), nitrogen sources (100 mg L-1 of N-NO2-, N-NO3-, and N-NH4+) and illumination on N2O emissions from the algal-bacterial biomass of the HRAP was also assessed in batch tests. Significantly higher N2O gas concentrations of 311.8 ± 101.1 ppmv were recorded in the dark compared to the illuminated period (236.9 ± 82.6 ppmv) in the HRAP. The batch tests revealed that the highest N2O emission rates (49.4 mmol g-1 TSS·h-1) occurred at pH 8.5 in the presence of 100 mg N-NO2-/L under dark conditions. This study revealed significant N2O emissions in HRAPs during darkness.


Assuntos
Biocombustíveis , Óxido Nitroso , Fotobiorreatores , Óxido Nitroso/análise , Biocombustíveis/análise , Biomassa , Bactérias/metabolismo , Concentração de Íons de Hidrogênio , Nitrogênio/análise , Microalgas/metabolismo
9.
Nature ; 630(8016): 421-428, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811724

RESUMO

Farmed soils contribute substantially to global warming by emitting N2O (ref. 1), and mitigation has proved difficult2. Several microbial nitrogen transformations produce N2O, but the only biological sink for N2O is the enzyme NosZ, catalysing the reduction of N2O to N2 (ref. 3). Although strengthening the NosZ activity in soils would reduce N2O emissions, such bioengineering of the soil microbiota is considered challenging4,5. However, we have developed a technology to achieve this, using organic waste as a substrate and vector for N2O-respiring bacteria selected for their capacity to thrive in soil6-8. Here we have analysed the biokinetics of N2O reduction by our most promising N2O-respiring bacterium, Cloacibacterium sp. CB-01, its survival in soil and its effect on N2O emissions in field experiments. Fertilization with waste from biogas production, in which CB-01 had grown aerobically to about 6 × 109 cells per millilitre, reduced N2O emissions by 50-95%, depending on soil type. The strong and long-lasting effect of CB-01 is ascribed to its tenacity in soil, rather than its biokinetic parameters, which were inferior to those of other strains of N2O-respiring bacteria. Scaling our data up to the European level, we find that national anthropogenic N2O emissions could be reduced by 5-20%, and more if including other organic wastes. This opens an avenue for cost-effective reduction of N2O emissions for which other mitigation options are lacking at present.


Assuntos
Produção Agrícola , Fazendas , Aquecimento Global , Óxido Nitroso , Microbiologia do Solo , Solo , Proteínas de Bactérias/metabolismo , Biocombustíveis/provisão & distribuição , Flavobacteriaceae/citologia , Flavobacteriaceae/crescimento & desenvolvimento , Flavobacteriaceae/metabolismo , Aquecimento Global/prevenção & controle , Nitrogênio/metabolismo , Óxido Nitroso/metabolismo , Óxido Nitroso/análise , Solo/química , Produção Agrícola/métodos , Produção Agrícola/tendências , Europa (Continente)
10.
Environ Pollut ; 353: 124190, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38782159

RESUMO

Riparian zones, regarded as hotspots for greenhouse gas (GHG) emissions, where the variation in temperature sensitivity (Q10) of GHG emissions is crucial for assessing GHG budgets under global warming. However, the seasonal Q10 of GHG emissions from high-elevation riparian zones and underlying microbial mechanisms are poorly documented. This study focuses on seasonal Q10 patterns of GHG emissions from riparian zones along the Lhasa River on the Tibetan Plateau. CO2 and CH4 emissions from riparian soils were more sensitive to temperature in spring than in summer. The opposite trend was observed for Q10 of N2O emissions. Soil organic carbon (SOC) had relatively large direct effects on the Q10-CO2 value in summer, whereas soil nitrate nitrogen (SNO3--N) was the determinant of Q10-CO2 value in spring. mcrA:pmoA and soil microbial biomass C (SMBC) had strong direct effects on the Q10 of CH4 emissions in summer; the Q10-CH4 value in spring was significantly affected by the mcrA abundance. SMBC and the nirK + nirS abundance were key factors affecting the Q10-N2O value. Q10-CO2 and Q10-CH4 values exhibited strong seasonalities in the lower reaches of riparian soils, mainly due to the seasonalities of SNO3--N and mcrA:pmoA, respectively. The Q10-N2O value in the middle and upper reaches of riparian soils presented seasonality, which was largely due to the seasonalities of soil ammonia nitrogen and microbial biomass carbon. During thawing, plant productivity increased, substrate carbon was sufficient, microbial biomass increased, and inorganic nitorgen and denitrifier abundance decreased, causing 29.67% and 37.47% decreases in the Q10-CO2 and Q10-CH4 values, respectively, and a 70.85% increase in the Q10-N2O value, indicating that the potential release of N2O from riparian zones along the plateau river was more susceptible to seasonal variations. Our findings are conducive to accurately evaluating the potential contribution of GHG emissions from high-elevation riparian zones to global warming.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Gases de Efeito Estufa , Metano , Estações do Ano , Temperatura , Gases de Efeito Estufa/análise , Monitoramento Ambiental/métodos , Metano/análise , Poluentes Atmosféricos/análise , Solo/química , Dióxido de Carbono/análise , Tibet , Rios/química , Aquecimento Global , Óxido Nitroso/análise
11.
Mar Environ Res ; 198: 106542, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38788475

RESUMO

Seagrass meadows act as filters for nitrogen in coastal areas, but whether they are a source or sink for N2O has been still controversy. Additionally, the production pathways of N2O as well as the microbial driving mechanism in seagrass meadows are seldom reported. In this study, the air-sea fluxes, sediment release potential, and production pathway of N2O in a temperate Zostera marina and Z. japonica mixed meadow were investigated by using gas chromatography and 15N isotopic tracing methods. The qPCR and metagenome sequencing were used to compare the difference in functional gene abundance and expression between seagrass vegetated and non-grass sediments. The results showed that the N2O air-sea fluxes in the meadow ranged from -1.97 to -1.77 nmol m⁻2 h⁻1, which was slightly lower in the seagrass region than in the adjacent bare region. Seagrass sediment N2O release potential dramatically increased after warming and nitrogen enrichment treatments. Heterotrophic nitrification was firstly investigated in seagrass meadows, and the process (26.80%-62.41%) and denitrification (37.55%-72.83%) contributed significantly to N2O production in the meadow, affected deeply by sediment organic content, while the contribution of autotrophic nitrification can be neglected. Compared with the bare sediments, the ammonia monooxygenase genes amoA, amoB and amoC, and nitrite oxidoreductase genes nxrA and nxrB, as well as nitrite reductase gene nirS and nitric oxide reductase gene norB were down-regulated, while the nitrous oxide reductase gene nosZ was up-regulated in the seagrass sediments, explaining less N2O emission in seagrass regions from the perspective of molecular. The nosZII-bearing bacteria like Bacteroidia, Polyangia, Anaerolineae, and Verrucomicrobiae could play important roles in N2O reduction in the seagrass meadow. The result is of great significance for highlighting the ability of seagrass meadows to mitigate climate changes.


Assuntos
Óxido Nitroso , Zosteraceae , Zosteraceae/metabolismo , Zosteraceae/genética , Óxido Nitroso/metabolismo , Óxido Nitroso/análise , Monitoramento Ambiental , Sedimentos Geológicos/microbiologia , Desnitrificação , Nitrificação , Poluentes Atmosféricos/análise , Nitrogênio/metabolismo
12.
Environ Pollut ; 355: 124204, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38788989

RESUMO

Greenhouse gas (GHG) emissions from wetlands have exacerbated global warming, attracting worldwide attention. However, the research process and development trends in this field remain unknown. Herein, 1865 papers related to wetlands GHG emissions published from January 2000 to December 2023 were selected, and CiteSpace and VOSviewer were used for bibliometric analysis to visually analyze the publications distribution, research authors, organizations and countries, core journal and keywords, and discussed the research progress, trends and hotspots in the fields. Over the past 24 years, the research has gone through three phases: the "embryonic" stage (2000-2006), the accumulation stage (2007-2014), and the acceleration stage (2015-2023). China has played a pivotal role in this domain, publishing the most papers and working closely with the United States, United Kingdom, Canada, Germany, and Australia. In addition, this study synthesized 311 field observations from 123 publications to analyze the variability in GHG emissions and their driving factors in four different types of natural wetlands. The results suggested that the average carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes in different wetlands were significantly different. River wetlands exhibited the highest GHG fluxes, while marsh wetlands demonstrated greater global warming potential (GWP). The average CO2, CH4 and N2O fluxes were 60.41 mg m-2·h-1, 2.52 mg m-2·h-1 and 0.05 mg m-2·h-1, respectively. The GWP of Chinese natural wetlands was estimated as 648.72 Tg·CO2-eq·yr-1, and CH4 contributed the largest warming effect, accounting for 57.43%. Correlation analysis showed that geographical location, climate factors, and soil conditions collectively regulated GHG emissions from wetlands. The findings provide a new perspective on sustainable wetland management and reducing GHG emissions.


Assuntos
Aquecimento Global , Gases de Efeito Estufa , Metano , Áreas Alagadas , Gases de Efeito Estufa/análise , Metano/análise , China , Monitoramento Ambiental , Dióxido de Carbono/análise , Poluentes Atmosféricos/análise , Óxido Nitroso/análise
13.
Sci Total Environ ; 938: 173353, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38795999

RESUMO

Inevitably, aerobic biological treatment processes generate emissions of ammonia (NH3) and greenhouse gas (GHGs) emissions, especially nitrous oxide (N2O). The rapid bio-drying process (RBD) for food waste (FW) alleviates issues arising from its substantial growth. However, its emissions of NH3 and N2O remain unknown, and the correlation with nitrogen components in the substrate remains unclear, significantly impeding its widespread adoption. Here, the nitrogen loss and its mechanisms in RBD were investigated, and the results are as follows: The total emission of NH3 and N2O were1.42 and 1.16 mg/kg FW (fresh weight), respectively, achieving a 98 % reduction compared to prior studies. Structural equation modeling demonstrates that acid ammonium nitrogen (AN) decomposition chiefly generates NH3 in compost (p < 0.001). Strong correlation (p < 0.001) exists between amino acid nitrogen (AAN) and AN. In-depth analysis of microbial succession during the process reveals that the enrichment of Brevibacterium, Corynebacterium, Dietzia, Fastidiosipila, Lactobacillus, Mycobacterium, Peptoniphilus, and Truepera, are conducive to reducing the accumulation of AN and AAN in the substrate, minimizing NH3 emissions (p < 0.05). While Pseudomonas, Denitrobacterium, Nitrospira, and Bacillus are identified as key species contributing to N2O emissions during the process. Correlation analysis between physicochemical conditions and microbial succession in the system indicates that the moisture content and NO3- levels during the composting process provide suitable conditions for the growth of bacteria that contribute to NH3 and N2O emissions reduction, these enrichment in RBD process minimizing NH3 and N2O emissions. This study can offer crucial theoretical and data support for the resource utilization process of perishable organic solid waste, mitigating NH3 and GHGs emissions.


Assuntos
Amônia , Nitrogênio , Óxido Nitroso , Óxido Nitroso/análise , Amônia/análise , Nitrogênio/análise , Eliminação de Resíduos/métodos , Poluentes Atmosféricos/análise , Resíduos de Alimentos , Gases de Efeito Estufa/análise , Perda e Desperdício de Alimentos
14.
Bioresour Technol ; 404: 130897, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797361

RESUMO

The present work has estimated greenhouse gas emissions in aerobic and anaerobic Wastewater Treatment Plants in Southern Italy. Greenhouse gases emissions from each treatment unit were calculated based on emission factors related to Chemical Oxygen Demand removal for biogenic CO2 and CH4 assessment and on Nitrogen removal for N2O. N2O, biogenic CO2, and CH4 emissions vary for aerobic and anaerobic-based WWTPs respectively from 73 kgCO2eq/PE*y for anaerobic plants to 91 kgCO2eq/PE*y for aerobic plants. In aerobic and anaerobic digestion systems WWTPs the contributions to CO2eq total emissions from N2O, CH4, biogenic CO2, and fossil CO2 are 30 %-33 %, 20 %-29 %, 22 %-25 %, and 26 %-16 %, respectively. N2O emissions from biological processes were found the most contributing sources of greenhouse gases while in the physical processes higher contribution is indirect carbon dioxide related to energy consumption. Compensatory measures are reported to reduce greenhouse gases emissions.


Assuntos
Dióxido de Carbono , Gases de Efeito Estufa , Metano , Águas Residuárias , Gases de Efeito Estufa/análise , Águas Residuárias/química , Dióxido de Carbono/análise , Purificação da Água/métodos , Óxido Nitroso/análise , Anaerobiose , Efeito Estufa
15.
Sci Total Environ ; 935: 173255, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38761936

RESUMO

Elevated CO2 (eCO2) decreases N2O emissions from subtropical paddy fields, but the underlying mechanisms remain to be investigated. Herein, the response of key microbial nitrogen cycling genes to eCO2 (ambient air +200 µmol CO2 mol-1) in four rice cultivars, including two weakly CO2-responsive (W27, H5) and two strongly CO2-responsive cultivars (Y1540, L1988), was investigated. Except for nosZ I, eCO2 did not significantly alter the abundance of the other genes. NosZ I was a crucial factor governing N2O emissions, especially under eCO2 and a strongly responsive cultivar. eCO2 affected the nosZ I gene abundance (p < 0.05), for instance, the nosZ I gene abundance of cultivar W27 increased from 1.53 × 107 to 2.86 × 107 copies g-1 dw soil (p < 0.05). In the nosZ I microbial community, the known taxa were mainly Pseudomonadota (phylum) (19.74-31.72 %) and Alphaproteobacteria (class) (0.56-13.12 %). In the nosZ I community assembly process, eCO2 enhanced the role of stochasticity, increasing from 35 % to 85 % (p < 0.05), thereby inducing diffusion limitations of weakly responsive cultivars to dominate (67 %). Taken together, the increase in nosZ I gene abundance is a potential reason for the alleviation of N2O emissions from subtropical paddy fields under eCO2.


Assuntos
Dióxido de Carbono , Óxido Nitroso , Oryza , Microbiologia do Solo , Dióxido de Carbono/análise , Óxido Nitroso/análise , Poluentes Atmosféricos/análise , Agricultura/métodos , Bactérias
16.
J Environ Manage ; 360: 121206, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38776658

RESUMO

The greenhouse gas (GHG) emissions from wastewater treatment plants (WWTPs), consisting mainly of methane (CH4) and nitrous oxide (N2O), have been constantly increasing and become a non-negligible contributor towards carbon neutrality. The precise evaluation of plant-specific GHG emissions, however, remains challenging. The current assessment approach is based on the product of influent load and emission factor (EF), of which the latter is quite often a single value with huge uncertainty. In particular, the latest default Tier 1 value of N2O EF, 0.016 ± 0.012 kgN2O-N kgTN-1, is estimated based on the measurement of 30 municipal WWTPs only, without involving any industrial wastewater. Therefore, to resolve the pattern of GHG emissions from industrial WWTPs, this work conducted a 14-month monitoring campaign covering all the process units at a full-scale industrial WWTP in Shanghai, China. The total CH4 and N2O emissions from the whole plant were, on average, 447.7 ± 224.5 kgCO2-eq d-1 and 1605.3 ± 2491.0 kgCO2-eq d-1, respectively, exhibiting a 5.2- or 3.9-times more significant deviation than the influent loads of chemical oxygen demand (COD) or total nitrogen (TN). The resulting EFs, 0.00072 kgCH4 kgCOD-1 and 0.00211 kgN2O-N kgTN-1, were just 0.36% of the IPCC recommended value for CH4, and 13.2% for N2O. Besides, the parallel anoxic-oxic (A/O) lines of this industrial WWTP were covered in two configurations, allowing the comparison of GHG emissions from different odor control setup. Unit-specific analysis showed that the replacement of enclosed A/open O with enclosed A/O reduced the CH4 EF by three times, from 0.00159 to 0.00051 kgCH4 kgCOD-1, and dramatically decreased the N2O EF by an order of magnitude, from 0.00376 to 0.00032 kgN2O-N kgTN-1, which was among the lowest of all full-scale WWTPs.


Assuntos
Gases de Efeito Estufa , Metano , Óxido Nitroso , Águas Residuárias , Gases de Efeito Estufa/análise , Águas Residuárias/química , Águas Residuárias/análise , Óxido Nitroso/análise , Metano/análise , Monitoramento Ambiental , Eliminação de Resíduos Líquidos/métodos , China
17.
Glob Chang Biol ; 30(5): e17303, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38741339

RESUMO

Nitrous oxide (N2O) emissions from livestock manure contribute significantly to the growth of atmospheric N2O, a powerful greenhouse gas and dominant ozone-depleting substance. Here, we estimate global N2O emissions from livestock manure during 1890-2020 using the tier 2 approach of the 2019 Refinement to the 2006 IPCC Guidelines. Global N2O emissions from livestock manure increased by ~350% from 451 [368-556] Gg N year-1 in 1890 to 2042 [1677-2514] Gg N year-1 in 2020. These emissions contributed ~30% to the global anthropogenic N2O emissions in the decade 2010-2019. Cattle contributed the most (60%) to the increase, followed by poultry (19%), pigs (15%), and sheep and goats (6%). Regionally, South Asia, Africa, and Latin America dominated the growth in global emissions since the 1990s. Nationally, the largest emissions were found in India (329 Gg N year-1), followed by China (267 Gg N year-1), the United States (163 Gg N year-1), Brazil (129 Gg N year-1) and Pakistan (102 Gg N year-1) in the 2010s. We found a substantial impact of livestock productivity, specifically animal body weight and milk yield, on the emission trends. Furthermore, a large spread existed among different methodologies in estimates of global N2O emission from livestock manure, with our results 20%-25% lower than those based on the 2006 IPCC Guidelines. This study highlights the need for robust time-variant model parameterization and continuous improvement of emissions factors to enhance the precision of emission inventories. Additionally, urgent mitigation is required, as all available inventories indicate a rapid increase in global N2O emissions from livestock manure in recent decades.


Assuntos
Gado , Esterco , Óxido Nitroso , Óxido Nitroso/análise , Esterco/análise , Animais , Poluentes Atmosféricos/análise
18.
Sci Total Environ ; 931: 172942, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38719032

RESUMO

Biochar is increasingly used in climate-smart agriculture, yet its impact on greenhouse gas (GHG) emissions and soil carbon (C) sequestration remains poorly understood. This study examined biochar-mediated changes in soil properties and their contribution to C stabilization and GHG mitigation by evaluating four types of biochar. Soil carbon dioxide (CO2) and nitrous oxide (N2O) emissions, soil chemical and biological properties, and soil organic carbon (SOC) mineralization kinetics were monitored using greenhouse, laboratory, and modeling experiments. Three pine wood biochars pyrolyzed at 460 °C (PB-460), 500 °C (PB-500), 700 °C (PB-700), and one pine bark biochar from gasification at 760 °C (GB-760) were added into soil at 1 % w/w basis. Soils amended with biochar were used to cultivate sorghum for three months in a greenhouse, followed by three months of laboratory incubation. Data obtained from laboratory incubation was modeled using various statistical approaches. The PB-500 and PB-700 reduced cumulative N2O-N emissions by 68.5 % and 73.9 % and CO2 equivalent C emissions by 66.9 % and 72.4 %, respectively, compared to unamended control. The N2O emissions were positively associated with soil nitrate N, available P, and biochar ash content while negatively associated with SOC. The CO2 emission was negatively related to biochar C:N ratio and volatile matter content. Biochar amended soils had 49.2 % (PB-500) to 87.7 % (PB-700) greater SOC and 22.9 % (PB-700) to 48.1 % (GB-760) greater sorghum yield than the control. While PB-700 had more saprophytes than the control, the GB-760 yielded a greater yield than biochars prepared by pyrolysis. Microbial biomass C was 7.23 to 23.3 % greater in biochar amended soils than in control. The double exponential decay model best explained the dynamics of C mineralization, which was associated with initial soil nitrate N and available P positively and total fungi and protozoa biomass negatively. Biochar amendment could be a climate smart agricultural strategy. Pyrolysis pine wood biochar showed the greatest potential to reduce GHG emissions and enhance SOC storage and stability, and gasification biochar contributed more to SOC storage and increased crop yield.


Assuntos
Carbono , Carvão Vegetal , Gases de Efeito Estufa , Solo , Carvão Vegetal/química , Solo/química , Gases de Efeito Estufa/análise , Carbono/análise , Florestas , Sequestro de Carbono , Óxido Nitroso/análise , Dióxido de Carbono/análise , Agricultura/métodos , Poluentes Atmosféricos/análise
19.
Environ Sci Technol ; 58(20): 8736-8747, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38723264

RESUMO

Inland waters (rivers, lakes, and reservoirs) and wetlands (marshes and coastal wetlands) represent large and continuous sources of nitrous oxide (N2O) emissions, in view of adequate biomass and anaerobic conditions. Considerable uncertainties remain in quantifying spatially explicit N2O emissions from aquatic systems, attributable to the limitations of models and a lack of comprehensive data sets. Herein, we conducted a synthesis of 1659 observations of N2O emission rates to determine the major environmental drivers across five aquatic systems. A framework for spatially explicit estimates of N2O emissions in China was established, employing a data-driven approach that upscaled from site-specific N2O fluxes to robust multiple-regression models. Results revealed the effectiveness of models incorporating soil organic carbon and water content for marshes and coastal wetlands, as well as water nitrate concentration and dissolved organic carbon for lakes, rivers, and reservoirs for predicting emissions. Total national N2O emissions from inland waters and wetlands were 1.02 × 105 t N2O yr-1, with contributions from marshes (36.33%), rivers (27.77%), lakes (25.27%), reservoirs (6.47%), and coastal wetlands (4.16%). Spatially, larger emissions occurred in the Songliao River Basin and Continental River Basin, primarily due to their substantial terrestrial biomass. This study offers a vital national inventory of N2O emissions from inland waters and wetlands in China, providing paradigms for the inventorying work in other countries and insights to formulate effective mitigation strategies for climate change.


Assuntos
Lagos , Óxido Nitroso , Áreas Alagadas , China , Óxido Nitroso/análise , Lagos/química , Monitoramento Ambiental , Rios/química
20.
J Environ Manage ; 359: 121043, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38723497

RESUMO

Fertilizer-intensive agriculture leads to emissions of reactive nitrogen (Nr), posing threats to climate via nitrous oxide (N2O) and to air quality and human health via nitric oxide (NO) and ammonia (NH3) that form ozone and particulate matter (PM) downwind. Adding nitrification inhibitors (NIs) to fertilizers can mitigate N2O and NO emissions but may stimulate NH3 emissions. Quantifying the net effects of these trade-offs requires spatially resolving changes in emissions and associated impacts. We introduce an assessment framework to quantify such trade-off effects. It deploys an agroecosystem model with enhanced capabilities to predict emissions of Nr with or without the use of NIs, and a social cost of greenhouse gas to monetize the impacts of N2O on climate. The framework also incorporates reduced-complexity air quality and health models to monetize associated impacts of NO and NH3 emissions on human health downwind via ozone and PM. Evaluation of our model against available field measurements showed that it captured the direction of emission changes but underestimated reductions in N2O and overestimated increases in NH3 emissions. The model estimated that, averaged over applicable U.S. agricultural soils, NIs could reduce N2O and NO emissions by an average of 11% and 16%, respectively, while stimulating NH3 emissions by 87%. Impacts are largest in regions with moderate soil temperatures and occur mostly within two to three months of N fertilizer and NI application. An alternative estimate of NI-induced emission changes was obtained by multiplying the baseline emissions from the agroecosystem model by the reported relative changes in Nr emissions suggested from a global meta-analysis: -44% for N2O, -24% for NO and +20% for NH3. Monetized assessments indicate that on an annual scale, NI-induced harms from increased NH3 emissions outweigh (8.5-33.8 times) the benefits of reducing NO and N2O emissions in all agricultural regions, according to model-based estimates. Even under meta-analysis-based estimates, NI-induced damages exceed benefits by a factor of 1.1-4. Our study highlights the importance of considering multiple pollutants when assessing NIs, and underscores the need to mitigate NH3 emissions. Further field studies are needed to evaluate the robustness of multi-pollutant assessments.


Assuntos
Agricultura , Fertilizantes , Nitrificação , Óxido Nitroso , Fertilizantes/análise , Óxido Nitroso/análise , Poluentes Atmosféricos/análise , Ozônio/análise , Amônia/análise , Espécies Reativas de Nitrogênio/análise , Nitrogênio/análise , Poluição do Ar/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...