Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
Biochim Biophys Acta Biomembr ; 1866(7): 184364, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-38901662

RESUMO

The combined application of electric fields and ultrasonic waves has shown promise in controlling cell membrane permeability, potentially resulting in synergistic effects that can be explored in the biotechnology industry. However, further clarification on how these processes interact is still needed. The objective of the present study was to investigate the atomic-scale effects of these processes on a DPPC lipid bilayer using molecular dynamics simulations. For higher electric fields, capable of independently forming pores, the application of an ultrasonic wave in the absence of cavitation yielded no additional effects on pore formation. However, for lower electric fields, the reduction in bilayer thickness induced by the shock wave catalyzed the electroporation process, effectively shortening the mean path that water molecules must traverse to form pores. When cavitation was considered, synergistic effects were evident only if the wave alone was able to generate pores through the formation of a water nanojet. In these cases, sonoporation acted as a mean to focus the electroporation effects on the initial pore formed by the nanojet. This study contributes to a better understanding of the synergy between electric fields and ultrasonic waves and to an optimal selection of processing parameters in practical applications of these processes.


Assuntos
Eletroporação , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Ondas Ultrassônicas , Bicamadas Lipídicas/química , Eletroporação/métodos , Eletricidade , Permeabilidade da Membrana Celular , 1,2-Dipalmitoilfosfatidilcolina/química
2.
Langmuir ; 40(26): 13583-13595, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38907731

RESUMO

The growing reliance on pesticides for pest management in agriculture highlights the need for new analytical methods to detect these substances in food and water. Our research introduces a SPRWG-(C18H37) lipopeptide (LP) as a functional analog of acetylcholinesterase (AChE) for glyphosate detection in environmental samples using phosphatidylcholine (PC) monolayers. This LP, containing hydrophilic amino acids linked to an 18-carbon aliphatic chain, alters lipid assembly properties, leading to a more flexible system. Changes included reduced molecular area and peak pressure in Langmuir adsorption isotherms. Small angle X-ray scattering (SAXS) and atomic force microscopy (AFM) analyses provided insights into the LP's structural organization within the membrane and its interaction with glyphosate (PNG). Structural and geometric parameters, as derived from in silico molecular dynamics simulations (MD), substantiated the impact of LP on the monolayer structure and the interaction with PNG. Notably, the presence of the LP and glyphosate increased charge transfer resistance, indicating strong adherence of the monolayer to the indium tin oxide (ITO) surface and effective pesticide interaction. A calibration curve for glyphosate concentration adjustment revealed a detection limit (LOD) of 24 nmol L-1, showcasing the high sensitivity of this electrochemical biosensor. This LOD is significantly lower than that of a similar colorimetric biosensor in aqueous media with a detection limit of approximately 0.3 µmol L-1. Such an improvement in sensitivity likely stems from adding a polar residue to the amino acid chain of the LP.


Assuntos
1,2-Dipalmitoilfosfatidilcolina , Glicina , Glifosato , Lipopeptídeos , Simulação de Dinâmica Molecular , Glicina/química , Glicina/análogos & derivados , Glicina/análise , 1,2-Dipalmitoilfosfatidilcolina/química , Lipopeptídeos/química , Lipopeptídeos/análise , Água/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Propriedades de Superfície
3.
Biochim Biophys Acta Biomembr ; 1866(5): 184328, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38688404

RESUMO

The interaction of L-Phe with the membrane components, i.e., lipids and proteins, has been discussed in the current literature due to the interest to understand the effect of single amino acids in relation to the formation of amyloid aggregates. In the present work, it is shown that L-Phe interacts with 9:1 DMPC (1,2-dimyristoyl-sn-glycero-3 phosphocholine)/DPPC (1,2-dipalmitoyl-sn-glycero-3 phosphocholine) mixtures but not in the 1:9 one. An important observation is that the interaction disappears when DPPC is replaced by diether PC (2-di-O-hexadecyl-sn-glycero-3-phosphocholine) a lipid lacking carbonyl groups (CO). This denotes that CO groups may interact specifically with L-Phe in accordance with the appearance of a new peak observed by Infrared spectroscopy (FTIR-ATR). The interaction of L-Phe affects the compressibility pattern of the 9:1 DMPC/DPPC mixture which is congruent with the changes observed by Raman spectra. The specific interaction of L-Phe with CO, propagates to phosphate and choline groups in this particular mixture as analyzed by FTIR-ATR spectroscopy and is absent when DMPC is dopped with diether PC.


Assuntos
Dimiristoilfosfatidilcolina , Fenilalanina , Fenilalanina/química , Fenilalanina/metabolismo , Dimiristoilfosfatidilcolina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/química , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo
4.
Colloids Surf B Biointerfaces ; 229: 113465, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37490807

RESUMO

5SO3H-8-hydroxyquinoline coordinated to Europium (Eu-5SO3-HQ) was incorporated in biomembrane models using Langmuir monolayers. Dipalmitoyl phosphatidylcholine (DPPC) and dipalmitoyl phosphatidylserine (DPPS) were employed, representing mammalian cells and dioctadecyldimethylammonium bromide (DODAB) as a positively charged lipid to study the contrast with negatively charged lipids. Tensiometric, rheological and spectroscopic techniques were employed to characterize Eu-5SO3-HQ- lipid monolayer interactions. The complex condenses all the monolayer indicating interactions with the lipids' polar heads, but with distinctive effects on the mechanical and rheological properties. While the complex decreases the compression and elastic moduli of DPPC and DPPS monolayers, it increases for DODAB, also decreasing its lateral viscosity. Infrared spectroscopy shows that the interaction of Eu-5-SO3-HQ alters the ordering of the lipids' alkyl chains, impacting the monolayer's molecular packing. These results show that the interaction of Eu-5SO3-HQ with lipid monolayers at the air-water is modulated by the composition of the polar head, which can be supportive in the preparation of nanodevices for molecular probing.


Assuntos
Európio , Quinolinas , Água/química , 1,2-Dipalmitoilfosfatidilcolina/química , Compostos de Amônio Quaternário/química , Propriedades de Superfície
5.
Langmuir ; 39(25): 8603-8611, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37320858

RESUMO

Physical membrane models permit to study and quantify the interactions of many external molecules with monitored and simplified systems. In this work, we have constructed artificial Langmuir single-lipid monolayers with dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylethanolamine (DPPE), dipalmitoylphosphatidylserine (DPPS), or sphingomyelin to resemble the main lipid components of the mammalian cell membranes. We determined the collapse pressure, minimum area per molecule, and maximum compression modulus (Cs-1) from surface pressure measurements in a Langmuir trough. Also, from compression/expansion isotherms, we estimated the viscoelastic properties of the monolayers. With this model, we explored the membrane molecular mechanism of toxicity of the well-known anticancer drug doxorubicin, with particular emphasis in cardiotoxicity. The results showed that doxorubicin intercalates mainly between DPPS and sphingomyelin, and less between DPPE, inducing a change in the Cs-1 of up to 34% for DPPS. The isotherm experiments suggested that doxorubicin had little effect on DPPC, partially solubilized DPPS lipids toward the bulk of the subphase, and caused a slight or large expansion in the DPPE and sphingomyelin monolayers, respectively. Furthermore, the dynamic viscoelasticity of the DPPE and DPPS membranes was greatly reduced (by 43 and 23%, respectively), while the reduction amounted only to 12% for sphingomyelin and DPPC models. In conclusion, doxorubicin intercalates into the DPPS, DPPE, and sphingomyelin, but not into the DPPC, membrane lipids, inducing a structural distortion that leads to decreased membrane stiffness and reduced compressibility modulus. These alterations may constitute a novel, early step in explaining the doxorubicin mechanism of action in mammalian cancer cells or its toxicity in non-cancer cells, with relevance to explain its cardiotoxicity.


Assuntos
Cardiotoxicidade , Esfingomielinas , Animais , Humanos , 1,2-Dipalmitoilfosfatidilcolina/química , Doxorrubicina/farmacologia , Membrana Celular/química , Propriedades de Superfície , Mamíferos
6.
Biophys Chem ; 296: 106975, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36842251

RESUMO

Biseugenol (1), a neolignan with antiprotozoal activity against Trypanosoma cruzi, was partially methylated, and the compound obtained - methyl biseugenol (2) - had its activity evaluated against the extracellular (trypomastigotes) and intracellular (amastigotes) forms of T. cruzi. It was observed that both compounds 1 and 2 exhibited similar effects against trypomastigotes (IC50 of 11.7 and 16.2 µM, respectively), whereas compound 2 displayed higher activity against amastigotes (IC50 = 8.2 µM) in comparison with biseugenol (IC50 = 15.4 µM). Additionally, reduced toxicity against NCTC cells for compound 2 was observed (CC50 > 200 µM), differently from compound 1 with CC50 = 58.0 µM. Aiming to understand better the molecular mechanism of the biological action of compound 2, the prodrug was incorporated into cellular membrane models constituted of Langmuir monolayers of the lipids dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylethanolamine (DPPE), dipalmitoylphosphatidylserine (DPPS), and dipalmitoylphosphatidylglycerol (DPPG). The lipid-drug interaction was inferred through tensiometry, surface potential, infrared spectroscopy (PM-IRRAS), and Brewster angle microscopy (BAM). The prodrug expanded DPPC and DPPG monolayers and condensed DPPE ones, as well as presented characteristic behaviors regarding the chemical structure of the lipid considering expansion-compression curves, surface potential-area isotherms, and stability of previously compressed monolayers to relevant-biological surface pressures. PM-IRRAS indicated a molecular disorder for DPPC and DPPS alkyl chains in the presence of the drug. BAM revealed the presence of domains in the DPPG and DPPE monolayers, which was probably induced by the prodrug. These data suggest, in general, that the lipid composition modulates the interaction of compound 2, whose results are expected to correlate to its trypanocidal activity, which involves the plasma membrane of T. cruzi as the primary target, i.e., the first barrier that the compound should encounter to interact with the microorganism.


Assuntos
Pró-Fármacos , Metilação , Membrana Celular/química , 1,2-Dipalmitoilfosfatidilcolina/química , Propriedades de Superfície
7.
J Biomol Struct Dyn ; 41(21): 11510-11517, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36715129

RESUMO

The octanol-water partition coefficient of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) was investigated using atomistic molecular dynamics simulations via thermodynamic integration and multistate Bennett acceptance ratio methods. The GAFF and CHARMM36 force fields were used with six water models widely used in molecular dynamics simulations. The OPC4 water model provided the best agreement with the experimental octanol-water partition coefficient of DPPC using the two force fields. However, there is still plenty of room for improvement in water models with correct estimation of surface tension that uses better and suitable non-bonded interaction parameters between water-water and water-DPPC. The Gibbs free energy of transferring DPPC from octanol to water phase was calculated to be 19.8 ± 0.3 and 20.2 ± 0.3 kcal mol-1, giving a partition coefficient of 14.5 ± 0.4 and 14.8 ± 0.3 for the GAFF and CHARMM36 force fields, respectively. This study reinforces the importance of developing new water models that reproduce experimental surface tensions to reconcile the water-water and water-DPPC non-bonded interactions and the existing discrepancy between experimental measurements of amphiphilic molecules that are important in many areas of scientific applications and industry such as biophysics, surfactant, colloids, membranes, medicine, nanotechnology, and food and pharmaceutical industries, and so on. It raises two important open questions: Is the experimental octanol-water partition coefficient of DPPC reliable? Or is its calculation accurate using the OPC4 water model? With respect to the experimental measurements, there may be non-treated aspects such as the formation of aggregates in aqueous phase and limit of detection of the applied method. And, in the calculation, some effects are not possible to be considered in a correct way or viable time such as calculating quantum effects, sampling all conformations, considering phase transitions, and correctly evaluating the intermolecular forces to estimate an accurate surface tension.Communicated by Ramaswamy H. Sarma.


Assuntos
Simulação de Dinâmica Molecular , Água , 1,2-Dipalmitoilfosfatidilcolina , Octanóis , Termodinâmica
8.
Colloids Surf B Biointerfaces ; 222: 113045, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36446237

RESUMO

Lysicamine, an alkaloid with tumorigenic activity, was incorporated in cell membrane models made of lipid Langmuir monolayers. Dipalmitoylphosphocholine (DPPC), dioleoylphosphocholine (DOPC), and palmitoyloleoylcholine (POPC) represented non-tumorigenic cell membranes, and dipalmitoylphosphoserine (DPPS), dioleoylphosphoserine (DOPS), and palmitoyloleoylserine (POPS), tumorigenic ones. The monolayers were characterized by tensiometry, infrared spectroscopy, and Brewster Angle Microscopy (BAM). No significant shifts of the isotherms were observed for the saturated lipids (DPPC and DPPS), while for the others (DOPC, POPS, DOPS, and POPS), more significant changes were observed not only in the compression isotherms but also in the surface pressure-time curve for pre-compressed monolayers. The molecular organization, as well as the morphology of the drug-lipid monolayers, could be inferred with infrared spectroscopy and BAM. While the first revealed that the alkyl chain ordering changed upon lysicamine incorporation, the second showed how the drug could distinctly change the state of aggregation of molecular domains at the air-water interface. In conclusion, lysicamine could interact distinctly with each lipid at the air-water interface, showing the dependence not only on the lipid polar groups but also on the level of unsaturation of the alkyl chains.


Assuntos
Fosfatidilgliceróis , Água , Água/química , Propriedades de Superfície , Membrana Celular/química , 1,2-Dipalmitoilfosfatidilcolina/química
9.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36012211

RESUMO

The biochemical machinery involved in matrix vesicles-mediated bone mineralization involves a specific set of lipids, enzymes, and proteins. Annexins, among their many functions, have been described as responsible for the formation and stabilization of the matrix vesicles' nucleational core. However, the specific role of each member of the annexin family, especially in the presence of type-I collagen, remains to be clarified. To address this issue, in vitro mineralization was carried out using AnxA6 (in solution or associated to the proteoliposomes) in the presence or in the absence of type-I collagen, incubated with either amorphous calcium phosphate (ACP) or a phosphatidylserine-calcium phosphate complex (PS-CPLX) as nucleators. Proteoliposomes were composed of 1,2-dipalmitoylphosphatidylcholine (DPPC), 1,2-dipalmitoylphosphatidylcholine: 1,2-dipalmitoylphosphatidylserine (DPPC:DPPS), and DPPC:Cholesterol:DPPS to mimic the outer and the inner leaflet of the matrix vesicles membrane as well as to investigate the effect of the membrane fluidity. Kinetic parameters of mineralization were calculated from time-dependent turbidity curves of free Annexin A6 (AnxA6) and AnxA6-containing proteoliposomes dispersed in synthetic cartilage lymph. The chemical composition of the minerals formed was investigated by Fourier transform infrared spectroscopy (FTIR). Free AnxA6 and AnxA6-proteoliposomes in the presence of ACP were not able to propagate mineralization; however, poorly crystalline calcium phosphates were formed in the presence of PS-CPLX, supporting the role of annexin-calcium-phosphatidylserine complex in the formation and stabilization of the matrix vesicles' nucleational core. We found that AnxA6 lacks nucleation propagation capacity when incorporated into liposomes in the presence of PS-CPLX and type-I collagen. This suggests that AnxA6 may interact either with phospholipids, forming a nucleational core, or with type-I collagen, albeit less efficiently, to induce the nucleation process.


Assuntos
Anexina A6 , Calcinose , 1,2-Dipalmitoilfosfatidilcolina/química , Anexina A6/metabolismo , Colágeno/metabolismo , Humanos , Fosfatos/metabolismo , Fosfatidilserinas/química , Proteolipídeos
10.
Biointerphases ; 17(3): 031005, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688674

RESUMO

The polysaccharide ß-glucan, found in the cell wall of cereals such as wheat, oats, and barley, is believed to lower the concentration of bad cholesterol in humans, but the molecular-level mechanisms responsible for such an action are unknown. In this study, we use Langmuir monolayers of cholesterol and dipalmitoyl phosphatidyl choline (DPPC) as cell membrane models that are made to interact with ß-glucan. Neat cholesterol and mixed cholesterol/DPPC monolayers were expanded upon incorporating ß-glucan from the aqueous subphase. This incorporation was found to induce ordering in mixed monolayers and dehydration of the carbonyl group at higher cholesterol concentrations. These effects are attributed to hydrophobic interactions as identified with polarization-modulated infrared reflection-absorption spectroscopy. They correlate well with the hypothesis that cholesterol levels can be lowered by the formation of soluble fibers with ß-glucan through hydrophobic interactions, blocking cholesterol absorption by the organism.


Assuntos
beta-Glucanas , 1,2-Dipalmitoilfosfatidilcolina/química , Membrana Celular , Colesterol/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Análise Espectral
11.
Colloids Surf B Biointerfaces ; 216: 112530, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35569254

RESUMO

Pectin, a polysaccharide with potential bioactivity, was inserted in the aqueous subphase of monolayers of the selected lipids DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) and DPPE (1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine), representing mammalian and bacterial membranes, respectively. Pectin condensed both monolayers but made the DPPC monolayer more fluid, while for DPPE, it made its monolayer more rigid, as detected with dynamic interfacial rheology. Complementary data using surface potential, infrared spectroscopy, and Brewster angle microscopy also showed distinctive effects of pectin on DPPE and DPPC. We believe these data can be correlated with the action of this polysaccharide with biological lipidic surfaces with different polar heads, which may be relevant, generally speaking, to understanding the molecular mechanism of this bioactive compound for pharmaceutical purposes.


Assuntos
Pectinas , Água , 1,2-Dipalmitoilfosfatidilcolina/química , Pectinas/farmacologia , Fosfatidiletanolaminas/química , Reologia , Espectrofotometria Infravermelho , Propriedades de Superfície , Água/química
12.
Colloids Surf B Biointerfaces ; 216: 112546, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35588685

RESUMO

Sakuranetin, a natural compound with activity in lipidic biointerfaces, was isolated from Baccharis retusa and studied with two models of lipid membranes: Langmuir monolayers and Molecular Simulation. For that, the mammalian lipid DPPC was chosen. Sakuranetin condensed the monolayers at high surface pressures, decreased the surface compressional modulus, reduced the molecular order of the acyl chains (diminution of all-trans/gauche conformers ratio), and increased the heterogeneity of the interface, forming aggregates. Molecular simulation data gave information on the bioactive compound's most favorable thermodynamic positions along the lipid monolayer, which was the lipid-air interface. These combined results lead to the conclusion that this lipophilic compound may interact with the lipidic layers, preferentially at the lipid-air interface, to minimize the free energy, and reaches this conformation disturbing the thermodynamic, structural, mechanical, rheological, and morphological properties of the well-packed DPPC monolayer.


Assuntos
1,2-Dipalmitoilfosfatidilcolina , Lipídeos , 1,2-Dipalmitoilfosfatidilcolina/química , Membrana Celular/química , Flavonoides , Propriedades de Superfície , Termodinâmica , Água/química
13.
J Phys Chem B ; 126(9): 1941-1950, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35226503

RESUMO

In this work, the free energy change in the process of transferring ibuprofenate from the bulk solution to the center of a model of the dipalmitoylphosphatidylcholine bilayer at different NaCl concentrations was calculated. Two minima were found in the free energy profile: a local minimum, located in the vicinity of the membrane, and the global free energy minimum, found near the headgroup region. The downward shift of free energy minima with increasing NaCl concentration is consistent with the results of previous works. Conversely, the upward shift of the free energy maximum with increasing ionic strength is due to the competition of sodium ions and lipids molecules to coordinate with ibuprofenate and neutralize its charge. In addition, normal molecular dynamics simulations were performed to study the effects of the ibuprofenate on the lipid bilayer and in the presence of a high ibuprofenate concentration. The effect of ionic strength on the properties of the lipid bilayer and on lipid-drug interactions was analyzed. The area per lipid shrinking with increasing ionic strength, volume of lipids, and thickness of the bilayer is consistent with the experimental results. At a very high ibuprofenate concentration, the lipid bilayer dehydrates, and it consequently transforms into the gel phase, thus blocking the permeation.


Assuntos
1,2-Dipalmitoilfosfatidilcolina , Bicamadas Lipídicas , Adsorção , Simulação de Dinâmica Molecular , Concentração Osmolar , Cloreto de Sódio , Termodinâmica
14.
Colloids Surf B Biointerfaces ; 209(Pt 2): 112146, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34634541

RESUMO

Langmuir monolayers are used to simulate the biological membrane environment, acting as a mimetic system of the outer or the inner membrane leaflet. Herein, we analyze the interaction of membrane models with a partially N-acetylated chitosan (Ch35%) possessing a quasi-ideal random pattern of acetylation, full water solubility up to pH ≈ 8.5 and unusually high weight average molecular weight. Lipid monolayers containing dipalmitoyl phosphatidyl choline (DPPC), dipalmitoyl phosphatidyl ethalonamine (DPPE), dipalmitoyl phosphatidyl glycerol (DPPG) or E. coli total lipid extract were spread onto subphases buffered at pH 4.5 or 7.4. The incorporation of Ch35% chitosan caused monolayer expansion and a general trend of decreasing monolayer rigidity with Ch35% concentration. Due to its relatively high content of N-acetylglucosamine (GlcNAc) units, Ch35% interactions with negatively charged monolayers and with E. coli extract were weaker than those involving zwitterionic monolayers or lipid rafts. While the smaller interaction with negatively charged lipids was unexpected, this finding can be attributed to the degree of acetylation (35%) which imparts a small number of charged groups for Ch35% to interact. Chitosan properties are therefore determinant for interactions with model cell membranes, which explains the variability in chitosan bactericide activity in the literature. This is the first study on the effects from chitosans on realistic models of bacterial membranes under physiological pH.


Assuntos
Quitosana , 1,2-Dipalmitoilfosfatidilcolina , Membrana Celular , Escherichia coli , Concentração de Íons de Hidrogênio , Membranas Artificiais
15.
Colloids Surf B Biointerfaces ; 205: 111889, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34098365

RESUMO

The composition of Langmuir monolayers used as cell membrane models is an essential factor for the interaction with biologically-relevant molecules, including pharmaceutical drugs. In this paper, we report the modulation of effects from the antineoplastic drug paclitaxel by the relative concentration of cholesterol in the Langmuir monolayers of ternary mixtures of dipalmitoylphosphatidylcholine, sphingomyelin, and cholesterol. Since the dependence on cholesterol concentration for these monolayers simulating lipid rafts is non-monotonic, we analyzed the surface pressure and compressibility modulus data with the multidimensional projection technique referred to as interactive document mapping (IDMAP). The maximum expansion induced by paclitaxel in surface pressure isotherms was observed for 27% cholesterol, while the compressibility modulus decreased most strongly for the monolayer with 48% cholesterol. Therefore, the physiological action of paclitaxel may vary depending on whether it is associated with penetration in the membrane or with changes in the membrane elasticity.


Assuntos
1,2-Dipalmitoilfosfatidilcolina , Paclitaxel , Membrana Celular , Colesterol , Membranas Artificiais , Esfingomielinas
16.
Amino Acids ; 53(4): 609-619, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33710434

RESUMO

Cationic amino acid-based surfactants are known to interact with the lipid bilayer of microorganism resulting in cell death through a disruption of the membrane topology. To elucidate the interaction of a cationic surfactant synthesized in our lab, investigations involving Nα-benzoyl-arginine decyl amide (Bz-Arg-NHC10), and model membranes composed by 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) were done. Bz-Arg-NHC10was able to penetrate into DPPC monolayers up to a critical pressure of 59.6 mN m-1. Differential scanning calorimetry revealed that as the concentration of Bz-Arg-NHC10 increased, the main transition temperature of DPPC slightly decreased. Atomic force microscopy (AFM) in situ experiments performed on supported DPPC bilayers on mica allowed monitoring the changes induced by Bz-Arg-NHC10. DPPC bilayer patches were partially removed, mainly in borders and bilayer defects for 50 µM Bz-Arg-NHC10 solution. Increasing the concentration to 100 µM resulted in a complete depletion of the supported bilayers. Surface plasmon resonance (SPR) experiments, carried out with fully DPPC bilayers covered chips, showed a net increase of the SPR signal, which can be explained by Bz-Arg-NHC10 adsorption. When patchy DPPC bilayers were formed on the substrate, a SPR signal net decrease was obtained, which is consistent with the phospholipids' removal observed in the AFM images. The results obtained suggest that the presence of the benzoyl group attached to the polar head of our compound would be the responsible of the increased antimicrobial activity against gram-negative bacteria when compared with other arginine-based surfactants.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Arginina/análogos & derivados , Bicamadas Lipídicas/química , Tensoativos/química , Adsorção , Arginina/química , Varredura Diferencial de Calorimetria , Cátions/química , Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , Microscopia de Força Atômica , Ressonância de Plasmônio de Superfície
17.
J Phys Chem B ; 125(1): 184-192, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33375787

RESUMO

In this work, molecular dynamics simulations were applied to investigate the influence of lipid composition of the model membrane on the insertion of glyphosate (in its charged state, GLYP2-). The profiles of free energy, entropy and enthalpy were obtained through umbrella sampling calculations, for lipid bilayers composed by only 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC), only 1,2-dipalmitoyl-sn-glycerol-3-phosphoserine (DPPS) or a symmetric binary mixture of DPPC and DPPS. In general, the location, the values of minima and maxima of the free energy, and the trend of free energy profiles are influenced by the lipid composition of the lipid bilayer. The driving force in the glyphosate insertion process depends on the lipid composition of the membrane model. If the lipid bilayer is composed solely of DPPS or DPPC, GLYP2- insertion is driven by a favorable enthalpic change. However, if the membrane is composed of a mixture of both lipids, this process is driven by a favorable entropic change. In the lipid bilayer containing DPPS, the glyphosate was found to penetrate hydrated and coordinated with Na+ ions, in contrast to the pure zwitterionic lipid bilayer which penetrated only hydrated. This effect is independent of the concentration of sodium ions present in the bulk solution.


Assuntos
1,2-Dipalmitoilfosfatidilcolina , Bicamadas Lipídicas , Glicerol/análogos & derivados , Glicina/análogos & derivados , Fosforilcolina/análogos & derivados , Termodinâmica , Glifosato
18.
Langmuir ; 36(48): 14793-14801, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33210929

RESUMO

The aggregation of two short peptides, [RF] and [RF]4 (where R = arginine and F = phenylalanine), at dipalmitoylphosphatidylcholine (DPPC) model membranes was investigated at the air-water interface using the Langmuir technique and vesicles in aqueous solutions. The molar ratio of the peptide and lipid components was varied to provide insights into the peptide-membrane interactions, which might be related to their cytotoxicity. Both peptides exhibited affinity to the DPPC membrane interface and rapidly adopted ß-sheet-rich structures upon adsorption onto the surface of the zwitterionic membrane. Results from adsorption isotherm and small-angle X-ray scattering experiments showed changes in the structural and thermodynamic parameters of the membrane with increasing peptide concentration. Using atomic force microscopy, we showed the appearance of pores through the bilayer membranes and peptide aggregation at different interfaces, suggesting that the hydrophobic residues might have an effect on both pore size and layer structure, facilitating the membrane disruption and leading to different cytotoxicity effects.


Assuntos
1,2-Dipalmitoilfosfatidilcolina , Peptídeos , Adsorção , Amiloide , Bicamadas Lipídicas , Peptídeos/toxicidade , Termodinâmica
19.
Int J Mol Sci ; 21(18)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957654

RESUMO

Artificial membranes are models for biological systems and are important for applications. We introduce a dry two-step self-assembly method consisting of the high-vacuum evaporation of phospholipid molecules over silicon, followed by a subsequent annealing step in air. We evaporate dipalmitoylphosphatidylcholine (DPPC) molecules over bare silicon without the use of polymer cushions or solvents. High-resolution ellipsometry and AFM temperature-dependent measurements are performed in air to detect the characteristic phase transitions of DPPC bilayers. Complementary AFM force-spectroscopy breakthrough events are induced to detect single- and multi-bilayer formation. These combined experimental methods confirm the formation of stable non-hydrated supported lipid bilayers with phase transitions gel to ripple at 311.5 ± 0.9 K, ripple to liquid crystalline at 323.8 ± 2.5 K and liquid crystalline to fluid disordered at 330.4 ± 0.9 K, consistent with such structures reported in wet environments. We find that the AFM tip induces a restructuring or intercalation of the bilayer that is strongly related to the applied tip-force. These dry supported lipid bilayers show long-term stability. These findings are relevant for the development of functional biointerfaces, specifically for fabrication of biosensors and membrane protein platforms. The observed stability is relevant in the context of lifetimes of systems protected by bilayers in dry environments.


Assuntos
Bicamadas Lipídicas/química , Membranas Artificiais , Microscopia de Força Atômica/métodos , Silício/química , 1,2-Dipalmitoilfosfatidilcolina/química , Transição de Fase , Fosfolipídeos/química , Temperatura , Vácuo , Volatilização
20.
Mater Sci Eng C Mater Biol Appl ; 113: 111002, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32487408

RESUMO

The present investigation reports the modification of Ti substrates by a plasma technique to enhance their physio-chemical properties as biocompatible substrates for the deposition of artificial membranes. For that purpose, nitrogen ions are implanted into Ti substrate using the plasma immersion ion implantation & deposition (PIII&D) technique in a capacitively coupled radio frequency plasma. The plasma was characterized using optical emission spectroscopy, together with radio frequency compensated Langmuir probe, while the ion current towards the substrate was measured during the implantation process using an opto-electronic device. X-ray photoelectron spectroscopy (XPS) was used for chemical analysis of the surface, confirming the presence of δ-TiN. The penetration depth of the nitrogen ions into the Ti substrate was measured using secondary ions mass spectroscopy (SIMS) while the morphological changes were observed using atomic force microscopy (AFM). A calorimetric assay was used to prove that the TiN samples maintain the biocompatibility of the untreated Ti surface with its native oxide layer. The ion implantation increases the load bearing ability of Ti surface by the formation of α-Ti(N) and δ-TiN phases on the sub-surface of Ti, and maintains the bio compatibility of Ti surface. After the plasma treatment a thin layer of chitosan (CH) was deposited in order to provide a moisturizing matrix for the artificial membrane of 1,2-dipalmitoyl-sn-3- phosphor glycerocholine (DPPC). The CH and subsequently the DPPC were deposited on the plasma deposited TiN substrate by using physical vapor deposition. The formation of artificial membranes was confirmed by AFM, measuring the topography at different temperatures and performing force curves.


Assuntos
Materiais Biocompatíveis/química , Membranas Artificiais , Nitrogênio/química , Gases em Plasma/química , Titânio/química , 1,2-Dipalmitoilfosfatidilcolina/química , Animais , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Camundongos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA