Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 57(48): 6679-6687, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30398055

RESUMO

3-Deoxy-d- arabinoheptulosonate 7-phosphate (DAHP) oxime is a transition state mimic inhibitor of bacterial DAHP synthase, with K i = 1.5 µM and a residence time of tR = 83 min. Unexpectedly, DAHP oxime inhibition is competitive with respect to the essential metal ion, Mn2+, even though the inhibitor and metal ion do not occupy the same physical space in the active site. This is problematic because DAHP synthase is activated by multiple divalent metal cations, some of which have significant intracellular concentrations and some of which dissociate slowly. The nature of DAHP oxime's competition with the metal ion was investigated. Inhibition shifted from metal-competitive at physiological pH to metal-noncompetitive at pH > 8.7 in response to deprotonation of the Cys61 side chain. The modes of inhibition of DAHP synthase mutants and inhibitor fragments demonstrated that metal-competitive inhibition arose from interactions between Mn2+, DAHP oxime's O4 hydroxyl group, and the Cys61 and Asp326 side chains. The majority of potent DAHP synthase inhibitors in the literature possess a 4-hydroxyl group. Removing it could avoid metal-competitive inhibition and avoid them being outcompeted by metal ions in vivo.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/antagonistas & inibidores , 3-Desoxi-7-Fosfo-Heptulonato Sintase/química , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/química , 3-Desoxi-7-Fosfo-Heptulonato Sintase/genética , Substituição de Aminoácidos , Sítios de Ligação/genética , Ligação Competitiva , Domínio Catalítico/genética , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Concentração de Íons de Hidrogênio , Cinética , Metais/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oximas/química , Oximas/farmacologia , Açúcares Ácidos/química , Açúcares Ácidos/farmacologia
2.
Biochemistry ; 56(4): 592-601, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28045507

RESUMO

3-Deoxy-d-arabino-heptulosonate-7-phosphate (DAHP) synthase catalyzes an aldol-like reaction of phosphoenolpyruvate (PEP) with erythrose 4-phosphate (E4P) to form DAHP in the first step of the shikimate biosynthetic pathway. DAHP oxime, in which an oxime replaces the ketone, is a potent inhibitor, with Ki = 1.5 µM. Linear free energy relationship (LFER) analysis of DAHP oxime inhibition using DAHP synthase mutants revealed an excellent correlation between transition state stabilization and inhibition. The equations of LFER analysis were rederived to formalize the possibility of proportional, rather than equal, changes in the free energies of transition state stabilization and inhibitor binding, in accord with the fact that the majority of LFER analyses in the literature demonstrate nonunity slopes. A slope of unity, m = 1, indicates that catalysis and inhibitor binding are equally sensitive to perturbations such as mutations or modified inhibitor/substrate structures. Slopes <1 or >1 indicate that inhibitor binding is less sensitive or more sensitive, respectively, to perturbations than is catalysis. LFER analysis using the tetramolecular specificity constant, that is, plotting log(KM,MnKM,PEPKM,E4P/kcat) versus log(Ki), revealed a slope, m, of 0.34, with r2 = 0.93. This provides evidence that DAHP oxime is mimicking the first irreversible transition state of the DAHP synthase reaction, presumably phosphate departure from the tetrahedral intermediate. This is evidence that the oxime group can act as a functional, as well as structural, mimic of phosphate groups.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/antagonistas & inibidores , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/química , Oximas/química , Proteínas Recombinantes de Fusão/química , Fosfatos Açúcares/química , 3-Desoxi-7-Fosfo-Heptulonato Sintase/química , 3-Desoxi-7-Fosfo-Heptulonato Sintase/genética , 3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biocatálise , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Modelos Moleculares , Mimetismo Molecular , Mutação , Fosfoenolpiruvato/química , Fosfoenolpiruvato/metabolismo , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ácido Chiquímico/química , Ácido Chiquímico/metabolismo , Fosfatos Açúcares/metabolismo , Termodinâmica
3.
Biochemistry ; 55(48): 6617-6629, 2016 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-27933795

RESUMO

3-Deoxy-d-arabinoheptulosonate-7-phosphate (DAHP) synthase catalyzes the first step in the shikimate pathway. It catalyzes an aldol-like reaction of phosphoenolpyruvate (PEP) with erythrose 4-phosphate (E4P) to form DAHP. The kinetic mechanism was rapid equilibrium sequential ordered ter ter, with the essential divalent metal ion, Mn2+, binding first, followed by PEP and E4P. DAHP oxime, in which an oxime group replaces the keto oxygen, was a potent inhibitor, with Ki = 1.5 ± 0.4 µM, though with residual activity at high inhibitor concentrations. It displayed slow-binding inhibition with a residence time, tR, of 83 min. The crystal structure revealed that the oxime functional group, combined with two crystallographic waters, bound at the same location in the catalytic center as the phosphate group of the tetrahedral intermediate. DAHP synthase has a dimer-of-dimers homotetrameric structure, and DAHP oxime bound to only one subunit of each tight dimer. Inhibitor binding was competitive with respect to all three substrates in the subunits to which it bound. DAHP oxime did not overlap with the metal binding site, so the cause of their mutually exclusive binding was not clear. Similarly, there was no obvious structural reason for inhibitor binding in only two subunits; however, changes in global hydrogen/deuterium exchange showed large scale changes in protein dynamics upon inhibitor binding. The kcat value for the residual activity at high inhibitor concentrations was 3-fold lower, and the apparent KM,E4P value decreased at least 10-fold. This positive cooperativity of binding between DAHP oxime in subunits B and C, and E4P in subunits A and D appears to be the dominant cause for incomplete inhibition at high inhibitor concentrations. In spite of its lack of obvious structural similarity to phosphate, the oxime and crystallographic waters acted as a small, neutral phosphate mimic.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/antagonistas & inibidores , Proteínas de Escherichia coli/antagonistas & inibidores , Oximas/farmacologia , Açúcares Ácidos/farmacologia , 3-Desoxi-7-Fosfo-Heptulonato Sintase/química , 3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Algoritmos , Biocatálise/efeitos dos fármacos , Cristalografia por Raios X , Medição da Troca de Deutério , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Cinética , Modelos Moleculares , Estrutura Molecular , Oximas/química , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Açúcares Ácidos/química
4.
Eur J Med Chem ; 105: 182-93, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26491981

RESUMO

Tuberculosis, caused by Mycobacterium tuberculosis, remains a serious global health threat, highlighting the urgent need for novel antituberculosis drugs. The shikimate pathway, responsible for aromatic amino acid biosynthesis, is required for the growth of Mycobacterium tuberculosis and is a potential drug target. 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (mtDAH7Ps) catalyzes the first step in shikimate pathway. E-pharmacophore models for inhibitors of mtDAH7Ps - tyrosine, phenylalanine, phosphoenolpyruvate and (2S)-2,7-bis(phosphonooxy)heptanoic acid were screened against ZINC synthetic and natural compounds databases. The shortlisted compounds were subjected to induce fit docking and validated by Prime/Molecular Mechanics Generalized Born Surface Area calculation to predict ligand binding energy and ligand strain energy for ligand and receptor. The lead compounds were screened for their inhibitory activity against purified mtDAH7Ps enzyme. Lead compounds inhibited mtDAH7Ps in a concentration-dependent manner; with an IC50 value of 21 µM, 42 µM and 54 µM for α-Tocopherol, rutin and 3-Pyridine carboxyaldehyde respectively. Molecular Dynamics analysis for 50 ns of the active compounds-mtDAH7Ps complexes showed that the backbone of mtDAH7Ps was stable. These results suggest that α-tocopherol, 3 - Pyridine carboxyaldehyde and rutin could be novel drug leads to inhibit mtDAH7Ps in M. tuberculosis.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/antagonistas & inibidores , Aldeídos/farmacologia , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos , Mycobacterium tuberculosis/enzimologia , Piridinas/farmacologia , Rutina/farmacologia , alfa-Tocoferol/farmacologia , 3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Aldeídos/química , Antituberculosos/química , Antituberculosos/farmacologia , Relação Dose-Resposta a Droga , Simulação de Dinâmica Molecular , Estrutura Molecular , Piridinas/química , Rutina/química , Relação Estrutura-Atividade , alfa-Tocoferol/química
5.
Metab Eng ; 31: 181-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26292030

RESUMO

Aromatic amino acids are precursors of numerous plant secondary metabolites with diverse biological functions. Many of these secondary metabolites are already being used as active pharmaceutical or nutraceutical ingredients, and there are numerous exploratory studies of other compounds with promising applications. p-Coumaric acid is derived from aromatic amino acids and, besides being a valuable chemical building block, it serves as precursor for biosynthesis of many secondary metabolites, such as polyphenols, flavonoids, and some polyketides. Here we developed a p-coumaric acid-overproducing Saccharomyces cerevisiae platform strain. First, we reduced by-product formation by knocking out phenylpyruvate decarboxylase ARO10 and pyruvate decarboxylase PDC5. Second, different versions of feedback-resistant DAHP synthase and chorismate mutase were overexpressed. Finally, we identified shikimate kinase as another important flux-controlling step in the aromatic amino acid pathway by overexpressing enzymes from Escherichia coli, homologous to the pentafunctional enzyme Aro1p and to the bifunctional chorismate synthase-flavin reductase Aro2p. The highest titer of p-coumaric acid of 1.93 ± 0.26 g L(-1) was obtained, when overexpressing tyrosine ammonia-lyase TAL from Flavobacterium johnsoniaeu, DAHP synthase ARO4(K229L), chorismate mutase ARO7(G141S) and E. coli shikimate kinase II (aroL) in Δpdc5Δaro10 strain background. To our knowledge this is the highest reported titer of an aromatic compound produced by yeast. The developed S. cerevisiae strain represents an attractive platform host for production of p-coumaric-acid derived secondary metabolites, such as flavonoids, polyphenols, and polyketides.


Assuntos
Aminoácidos Aromáticos/biossíntese , Ácidos Cumáricos/metabolismo , Engenharia Metabólica , Saccharomyces cerevisiae/metabolismo , 3-Desoxi-7-Fosfo-Heptulonato Sintase/antagonistas & inibidores , Corismato Mutase/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Propionatos , Piruvato Descarboxilase/genética , Saccharomyces cerevisiae/genética
6.
Bioorg Chem ; 57: 242-250, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25245459

RESUMO

3-Deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS) catalyses the first committed step of the shikimate pathway, which produces the aromatic amino acids as well as many other aromatic metabolites. DAH7PS catalyses an aldol-like reaction between phosphoenolpyruvate and erythrose 4-phosphate. Three phosphoenolpyruvate mimics, (R)-phospholactate, (S)-phospholactate and vinyl phosphonate [(E)-2-methyl-3-phosphonoacrylate], were found to competitively inhibit DAH7PS from Neisseria meningitidis, which is the pathogen responsible for bacterial meningitis. The most potent inhibitor was the vinyl phosphonate with a Ki value of 3.9±0.4µM. We report for the first time crystal structures of these compounds bound in the active site of a DAH7PS enzyme which reveals that the inhibitors bind to the active site of the enzyme in binding modes that mimic those of the predicted oxocarbenium and tetrahedral intermediates of the enzyme-catalysed reaction. Furthermore, the inhibitors accommodate the binding of a key active site water molecule. Together, these observations provide strong evidence that this active site water participates directly in the DAH7PS reaction, enabling the facial selectivity of the enzyme-catalysed reaction sequence to be delineated.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/antagonistas & inibidores , 3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Inibidores Enzimáticos/química , Meningite Meningocócica/microbiologia , Neisseria meningitidis/enzimologia , Fosfoenolpiruvato/análogos & derivados , 3-Desoxi-7-Fosfo-Heptulonato Sintase/química , Domínio Catalítico , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Humanos , Meningite Meningocócica/tratamento farmacológico , Meningite Meningocócica/enzimologia , Modelos Moleculares , Neisseria meningitidis/química , Neisseria meningitidis/efeitos dos fármacos , Fosfoenolpiruvato/farmacologia , Água/química
7.
J Bacteriol ; 196(11): 1980-91, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24659765

RESUMO

In Escherichia coli, aromatic compound biosynthesis is the process that has shown the greatest sensitivity to hydrogen peroxide stress. This pathway has long been recognized to be sensitive to superoxide as well, but the molecular target was unknown. Feeding experiments indicated that the bottleneck lies early in the pathway, and the suppressive effects of fur mutations and manganese supplementation suggested the involvement of a metalloprotein. The 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase (DAHP synthase) activity catalyzes the first step in the pathway, and it is provided by three isozymes known to rely upon a divalent metal. This activity progressively declined when cells were stressed with either oxidant. The purified enzyme was activated more strongly by ferrous iron than by other metals, and only this metalloform could be inactivated by hydrogen peroxide or superoxide. We infer that iron is the prosthetic metal in vivo. Both oxidants displace the iron atom from the enzyme. In peroxide-stressed cells, the enzyme accumulated as an apoprotein, potentially with an oxidized cysteine residue. In superoxide-stressed cells, the enzyme acquired a nonactivating zinc ion in its active site, an apparent consequence of the repeated ejection of iron. Manganese supplementation protected the activity in both cases, which matches the ability of manganese to metallate the enzyme and to provide substantial oxidant-resistant activity. DAHP synthase thus belongs to a family of mononuclear iron-containing enzymes that are disabled by oxidative stress. To date, all the intracellular injuries caused by physiological doses of these reactive oxygen species have arisen from the oxidation of reduced iron centers.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/antagonistas & inibidores , Escherichia coli/enzimologia , Hidrocarbonetos Aromáticos/metabolismo , Peróxido de Hidrogênio/farmacologia , Superóxidos/farmacologia , 3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Manganês/metabolismo , Manganês/farmacologia , Viabilidade Microbiana , Oxirredução , Estresse Oxidativo
8.
FEBS Lett ; 587(18): 3063-8, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23916814

RESUMO

3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAH7PS) catalyses the first step of the shikimate pathway for the biosynthesis of aromatic amino acids. Allosteric regulation of Thermotoga maritima DAH7PS is mediated by L-Tyr binding to a discrete ACT regulatory domain appended to a core catalytic (ß/α)8 barrel. Variants of T. maritima DAH7PS (TmaDAH7PS) were created to probe the role of key residues in inhibitor selection. Substitution Ser31Gly severely reduced inhibition by L-Tyr. In contrast both L-Tyr and L-Phe inhibited the TmaHis29Ala variant, while the variant where Ser31 and His29 were interchanged (His29Ser/Ser31His), was inhibited to a greater extent by L-Phe than L-Tyr. These studies highlight the role and importance of His29 and Ser31 for determining both inhibitory ligand selectivity and the potency of allosteric response by TmaDAH7PS.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/química , Proteínas de Bactérias/química , Fenilalanina/química , Thermotoga maritima/química , Tirosina/química , 3-Desoxi-7-Fosfo-Heptulonato Sintase/antagonistas & inibidores , 3-Desoxi-7-Fosfo-Heptulonato Sintase/genética , Regulação Alostérica , Substituição de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Ensaios Enzimáticos , Cinética , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Relação Estrutura-Atividade , Thermotoga maritima/enzimologia
9.
Protein Sci ; 22(8): 1087-99, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23754471

RESUMO

Neisseria meningitidis is the causative agent of meningitis and meningococcal septicemia is a major cause of disease worldwide, resulting in brain damage and hearing loss, and can be fatal in a large proportion of cases. The enzyme 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS) catalyzes the first reaction in the shikimate pathway leading to the biosynthesis of aromatic metabolites including the aromatic acids l-Trp, l-Phe, and l-Tyr. This pathway is absent in humans, meaning that enzymes of the pathway are considered as potential candidates for therapeutic intervention. As the entry point, feedback inhibition of DAH7PS by pathway end products is a key mechanism for the control of pathway flux. The structure of the single DAH7PS expressed by N. meningitidis was determined at 2.0 Å resolution. In contrast to the other DAH7PS enzymes, which are inhibited only by a single aromatic amino acid, the N. meningitidis DAH7PS was inhibited by all three aromatic amino acids, showing greatest sensitivity to l-Phe. An N. meningitidis enzyme variant, in which a single Ser residue at the bottom of the inhibitor-binding cavity was substituted to Gly, altered inhibitor specificity from l-Phe to l-Tyr. Comparison of the crystal structures of both unbound and Tyr-bound forms and the small angle X-ray scattering profiles reveal that N. meningtidis DAH7PS undergoes no significant conformational change on inhibitor binding. These observations are consistent with an allosteric response arising from changes in protein motion rather than conformation, and suggest ligands that modulate protein dynamics may be effective inhibitors of this enzyme.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/antagonistas & inibidores , 3-Desoxi-7-Fosfo-Heptulonato Sintase/química , Neisseria meningitidis/enzimologia , Fenilalanina/metabolismo , 3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Regulação Alostérica/fisiologia , Substituição de Aminoácidos , Aminoácidos Aromáticos/biossíntese , Aminoácidos Aromáticos/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Estabilidade Enzimática , Retroalimentação Fisiológica , Neisseria meningitidis/patogenicidade , Fenilalanina/química , Multimerização Proteica , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Triptofano/química , Triptofano/metabolismo , Tirosina/química , Tirosina/metabolismo , Difração de Raios X
10.
J Mol Biol ; 425(9): 1582-92, 2013 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-23274137

RESUMO

3-Deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS) catalyzes the first step in the shikimate pathway, the pathway responsible for the biosynthesis of the aromatic amino acids Trp, Phe, and Tyr. Unlike many other organisms that produce up to three isozymes, each feedback-regulated by one of the aromatic amino acid pathway end products, Mycobacterium tuberculosis expresses a single DAH7PS enzyme that can be controlled by combinations of aromatic amino acids. This study shows that the synergistic inhibition of this enzyme by a combination of Trp and Phe can be significantly augmented by the addition of Tyr. We used X-ray crystallography, mutagenesis, and isothermal titration calorimetry studies to show that DAH7PS from M. tuberculosis possesses a Tyr-selective site in addition to the Trp and Phe sites, revealing an unusual and highly sophisticated network of three synergistic allosteric sites on one enzyme. This ternary inhibitory response, by a combination of all three aromatic amino acids, allows a tunable response of the protein to changing metabolic demands.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/antagonistas & inibidores , 3-Desoxi-7-Fosfo-Heptulonato Sintase/biossíntese , Aminoácidos Aromáticos/biossíntese , Mycobacterium tuberculosis/química , 3-Desoxi-7-Fosfo-Heptulonato Sintase/genética , Regulação Alostérica/genética , Sítio Alostérico/genética , Aminoácidos Aromáticos/farmacologia , Cristalografia por Raios X , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Regulação para Cima/genética
11.
Microb Cell Fact ; 11: 155, 2012 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-23216753

RESUMO

BACKGROUND: Flavonoids comprise a large family of secondary plant metabolic intermediates that exhibit a wide variety of antioxidant and human health-related properties. Plant production of flavonoids is limited by the low productivity and the complexity of the recovered flavonoids. Thus to overcome these limitations, metabolic engineering of specific pathway in microbial systems have been envisaged to produce high quantity of a single molecules. RESULT: Saccharomyces cerevisiae was engineered to produce the key intermediate flavonoid, naringenin, solely from glucose. For this, specific naringenin biosynthesis genes from Arabidopsis thaliana were selected by comparative expression profiling and introduced in S. cerevisiae. The sole expression of these A. thaliana genes yielded low extracellular naringenin concentrations (<5.5 µM). To optimize naringenin titers, a yeast chassis strain was developed. Synthesis of aromatic amino acids was deregulated by alleviating feedback inhibition of 3-deoxy-d-arabinose-heptulosonate-7-phosphate synthase (Aro3, Aro4) and byproduct formation was reduced by eliminating phenylpyruvate decarboxylase (Aro10, Pdc5, Pdc6). Together with an increased copy number of the chalcone synthase gene and expression of a heterologous tyrosine ammonia lyase, these modifications resulted in a 40-fold increase of extracellular naringenin titers (to approximately 200 µM) in glucose-grown shake-flask cultures. In aerated, pH controlled batch reactors, extracellular naringenin concentrations of over 400 µM were reached. CONCLUSION: The results reported in this study demonstrate that S. cerevisiae is capable of de novo production of naringenin by coexpressing the naringenin production genes from A. thaliana and optimization of the flux towards the naringenin pathway. The engineered yeast naringenin production host provides a metabolic chassis for production of a wide range of flavonoids and exploration of their biological functions.


Assuntos
Flavanonas/biossíntese , Saccharomyces cerevisiae/metabolismo , 3-Desoxi-7-Fosfo-Heptulonato Sintase/antagonistas & inibidores , 3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Amônia-Liases/genética , Amônia-Liases/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Carboxiliases/antagonistas & inibidores , Carboxiliases/metabolismo , Flavonoides/biossíntese , Engenharia Metabólica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Bioorg Med Chem Lett ; 21(17): 5092-7, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21493065

RESUMO

3-Deoxy-d-arabino-heptulosonate 7-phosphate (DAH7P) synthase catalyses the first step of the shikimate pathway for the biosynthesis of aromatic compounds. Enzymes of this pathway have been identified as potential targets for drug design. The reaction catalysed by DAH7P synthase is an aldol condensation between phosphoenolpyruvate (PEP) and d-erythrose 4-phosphate (E4P). In this study inhibitors of DAH7P synthase were prepared which were designed to fit into the binding sites of both PEP and E4P substrates simultaneously. Inhibitors, known to target the PEP binding site, were extended using a C4 linker to include an appropriately placed phosphate group in order to access the phosphate-binding site of E4P. A small increase in inhibition was observed with this modification, and the inhibition results have been rationalised by induced-fit docking.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , 3-Desoxi-7-Fosfo-Heptulonato Sintase/química , Escherichia coli/enzimologia , Modelos Moleculares
13.
J Biol Chem ; 285(40): 30567-76, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20667835

RESUMO

The shikimate pathway, responsible for aromatic amino acid biosynthesis, is required for the growth of Mycobacterium tuberculosis and is a potential drug target. The first reaction is catalyzed by 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS). Feedback regulation of DAH7PS activity by aromatic amino acids controls shikimate pathway flux. Whereas Mycobacterium tuberculosis DAH7PS (MtuDAH7PS) is not inhibited by the addition of Phe, Tyr, or Trp alone, combinations cause significant loss of enzyme activity. In the presence of 200 µm Phe, only 2.4 µm Trp is required to reduce enzymic activity to 50%. Reaction kinetics were analyzed in the presence of inhibitory concentrations of Trp/Phe or Trp/Tyr. In the absence of inhibitors, the enzyme follows Michaelis-Menten kinetics with respect to substrate erythrose 4-phosphate (E4P), whereas the addition of inhibitor combinations caused significant homotropic cooperativity with respect to E4P, with Hill coefficients of 3.3 (Trp/Phe) and 2.8 (Trp/Tyr). Structures of MtuDAH7PS/Trp/Phe, MtuDAH7PS/Trp, and MtuDAH7PS/Phe complexes were determined. The MtuDAH7PS/Trp/Phe homotetramer binds four Trp and six Phe molecules. Binding sites for both aromatic amino acids are formed by accessory elements to the core DAH7PS (ß/α)(8) barrel that are unique to the type II DAH7PS family and contribute to the tight dimer and tetramer interfaces. A comparison of the liganded and unliganded MtuDAH7PS structures reveals changes in the interface areas associated with inhibitor binding and a small displacement of the E4P binding loop. These studies uncover a previously unrecognized mode of control for the branched pathways of aromatic amino acid biosynthesis involving synergistic inhibition by specific pairs of pathway end products.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Aminoácidos Aromáticos/biossíntese , Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/metabolismo , 3-Desoxi-7-Fosfo-Heptulonato Sintase/antagonistas & inibidores , Regulação Alostérica/fisiologia , Proteínas de Bactérias/antagonistas & inibidores , Cinética , Fosfatos Açúcares/metabolismo
14.
Mol Gen Mikrobiol Virusol ; (4): 34-6, 2005.
Artigo em Russo | MEDLINE | ID: mdl-16334224

RESUMO

The regulation of activity and synthesis of DAHP-synthase in Pseudomonas aurantiaca B-162 was studied. Analysis of partially purified preparations of the enzyme revealed two isoenzymes: DAHP-synthase [tyr] and DAHP-synthase [phe], each of them being regulated by a corresponding amino acid. DAHP-synthase [tyr] is a dominant isoenzyme presenting 78 % of the enzyme activity, 50 % inhibition of which is possible by 1,3 x 10(-5) M of tyrosine. DAHP-synthase [phe] is minor isoenzyme (sharing 22 % of enzyme activity) and is controlled by phenylalanine. In this case, 50% of inhibition of activity is possible by adding 5,5 10(-6) M of corresponding amino acid. Synthesis of DAHP-synthase is constitutive.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Pseudomonas/enzimologia , 3-Desoxi-7-Fosfo-Heptulonato Sintase/antagonistas & inibidores , 3-Desoxi-7-Fosfo-Heptulonato Sintase/genética , Relação Dose-Resposta a Droga , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Isoenzimas/metabolismo , Mutação , Fenilalanina/farmacologia , Tirosina/farmacologia
15.
Carbohydr Res ; 340(4): 529-37, 2005 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-15721322

RESUMO

KDO8PS (3-deoxy-D-manno-2-octulosonate-8-phosphate synthase) and DAH7PS (3-deoxy-D-arabino-2-heptulosonate-7-phosphate synthase) are attractive targets for the development of new anti-infectious agents. Both enzymes appear to proceed via a common mechanism involving the reaction of phosphoenolpyruvate (PEP) with arabinose 5-phosphate or erythrose-4-phosphate, to produce the corresponding ulosonic acids, KDO8P and DAH7P, respectively. The synthesis of new inhibitors closely related to the supposed tetrahedral intermediate substrates for the enzymes is described. The examination of the antibacterial activity of these derivatives is reported.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/antagonistas & inibidores , Aldeído Liases/antagonistas & inibidores , Antibacterianos/síntese química , Antibacterianos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , 3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Aldeído Liases/metabolismo , Catálise , Cristalografia por Raios X , Bactérias Gram-Negativas/efeitos dos fármacos , Espectrometria de Massas , Estrutura Molecular , Pentosefosfatos/metabolismo , Fosfoenolpiruvato/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , Fosfatos Açúcares/metabolismo
16.
J Mol Biol ; 320(5): 1147-56, 2002 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-12126632

RESUMO

3-Deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHPS), the first enzyme of the aromatic biosynthetic pathway in microorganisms and plants, catalyzes the aldol-like condensation of phosphoenolpyruvate and D-erythrose-4-phosphate with the formation of 3-deoxy-D-arabino-heptulosonate-7-phosphate. In Escherichia coli, there are three isoforms of DAHPS, each specifically feedback-regulated by one of the three aromatic amino acid end products. The crystal structure of the phenylalanine-regulated DAHPS from E.coli in complex with its inhibitor, L-phenylalanine, phosphoenolpyruvate, and metal cofactor, Mn(2+), has been determined to 2.8A resolution. Phe binds in a cavity formed by residues of two adjacent subunits and is located about 20A from the closest active site. A model for the mechanism of allosteric inhibition has been derived from conformational differences between the Phe-bound and previously determined Phe-free structures. Two interrelated paths of conformational changes transmit the inhibitory signal from the Phe-binding site to the active site of DAHPS. The first path involves transmission within a single subunit due to the movement of adjacent segments of the protein. The second involves alterations in the contacts between subunits. The combination of these two paths changes the conformation of one of the active site loops significantly and shifts the other slightly. This alters the interaction of DAHPS with both of its substrates. Upon binding of Phe, the enzyme loses the ability to bind D-erythrose-4-phosphate and binds phosphoenolpyruvate in a flipped orientation.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/antagonistas & inibidores , Fosfoenolpiruvato/química , Fosfatos Açúcares/química , 3-Desoxi-7-Fosfo-Heptulonato Sintase/química , Regulação Alostérica , Sítios de Ligação , Dimerização , Estrutura Terciária de Proteína , Especificidade por Substrato
17.
Arch Microbiol ; 175(2): 112-21, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11285739

RESUMO

Two novel genes, aroF and aroG, from the filamentous fungus Aspergillus nidulans were isolated and the regulative fine-tuning between the encoded, differentially regulated 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthases was analyzed. A wide range of DAHP synthase isoenzymes of various organisms are known, but only a few have been characterized further. DAHP synthases (EC 4.1.2.15) catalyze the first committed step of the shikimate pathway, which is a putative target for anti-weed drugs. The reaction is the condensation of erythrose-4-phosphate (E4P) and phosphoenolpyruvate (PEP) to yield DAHP. The two purified DAHP synthases showed different affinities for the substrates: 175 microM for PEP and 341 microM for E4P for the aroFp isoenzyme and weaker affinities of 239 microM (PEP) and 475 microM (E4P) for the aroGp isoenzyme. The enzymes are differentially regulated by tyrosine (aroFp) and phenylalanine (aroGp). The calculated kcat values are 7.0 s-1 for the tyrosine-inhibitable (aroFp) and 5.5 s-1 for the phenylalanine inhibitable (aroGp) enzyme. Tyrosine is a competitive inhibitor of the aroFp DAHP synthase in its reaction with PEP. Phenylalanine is a competitive inhibitor of the isoenzyme aroGp in its reaction with E4P. Both enzymes are inhibited by the chelating agent EDTA, which indicates a metal ion as cofactor.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Aspergillus nidulans/enzimologia , Isoenzimas/metabolismo , 3-Desoxi-7-Fosfo-Heptulonato Sintase/antagonistas & inibidores , 3-Desoxi-7-Fosfo-Heptulonato Sintase/química , 3-Desoxi-7-Fosfo-Heptulonato Sintase/genética , Sequência de Aminoácidos , Aminoácidos/metabolismo , Aspergillus nidulans/genética , DNA Complementar , Inibidores Enzimáticos/farmacologia , Retroalimentação , Regulação Bacteriana da Expressão Gênica , Genes Fúngicos , Teste de Complementação Genética , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/genética , Cinética , Dados de Sequência Molecular , Fenilalanina/farmacologia , Temperatura , Tirosina/farmacologia
18.
J Biol Chem ; 275(51): 40258-65, 2000 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-10988284

RESUMO

The enzyme 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAH 7-P) synthase (Phe) is inactivated by diethyl pyrocarbonate (DEPC). The inactivation is first order with respect to enzyme and DEPC concentrations with a pseudo-second order rate constant of inactivation by DEPC of 4.9 +/- 0.8 m(-1) s(-1) at pH 6.8 and 4 degrees C. The dependence of inactivation on pH and the spectral features of enzyme modified at specific pH values imply that both histidine and cysteine residues are modified, which is confirmed by site-directed mutagenesis. Analysis of the chemical modification data indicates that one histidine is essential for activity. DAH 7-P synthase (Phe) is protected against DEPC inactivation by phosphoenolpyruvate, whereas d-erythrose 4-phosphate offers only minimal protection. The conserved residues H-172, H-207, H-268, and H-304 were individually mutated to glycine. The H304G and H207G mutants retain some level of activity, whereas the H268G and H172G mutants are virtually inactive. A comparison of the circular dichroism spectra of wild-type enzyme and the various mutants demonstrates that H-172 may play a structural role. Comparison of the UV spectra of the H268G and wild-type enzymes saturated with Cu(2+) indicates that the metal-binding site of the H268G mutant resembles that of the wild-type enzyme. The residue H-268 may play a catalytic role based on the site-directed mutagenesis and spectroscopic studies. Cysteine 61 appears to influence the pK(a) of H-268 in the wild-type enzyme. The pK(a) of H-268 increases from 6.0 to 7.0 following mutation of C-61 to glycine.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Aldeído Liases/metabolismo , Histidina/metabolismo , 3-Desoxi-7-Fosfo-Heptulonato Sintase/antagonistas & inibidores , 3-Desoxi-7-Fosfo-Heptulonato Sintase/química , 3-Desoxi-7-Fosfo-Heptulonato Sintase/genética , Sequência de Bases , Dicroísmo Circular , Primers do DNA , Cinética , Metais/química , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica
19.
Acta Crystallogr D Biol Crystallogr ; 55(Pt 9): 1586-8, 1999 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10489454

RESUMO

3-Deoxy-D-arabino-heptulosonate-7-phosphate synthase (E.C. 4.1.2.15) catalyses the first step in the biosynthesis of aromatic amino acids: the condensation of phophoenolpyruvate and erythrose 4-phosphate to 3-deoxy-D-arabino-heptulosonate-7-phosphate. Diffraction-quality crystals of the tyrosine-inhibitable form of the enzyme from Saccharomyces cerevisiae have been obtained by the hanging-drop vapour-diffusion method in the presence of polyethylene glycol. The crystals belong to the triclinic space group P1, with unit-cell parameters a = 81.5, b = 94.0, c = 104.6 A, alpha = 65.5, beta = 85.2, gamma = 75.0 degrees, and can be flash-cooled using glycerol as a cryoprotectant. A data set to 2.3 A has been collected at 120 K.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/química , Proteínas Fúngicas/química , Saccharomyces cerevisiae/enzimologia , 3-Desoxi-7-Fosfo-Heptulonato Sintase/antagonistas & inibidores , 3-Desoxi-7-Fosfo-Heptulonato Sintase/isolamento & purificação , Cristalização , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/isolamento & purificação , Tirosina/metabolismo , Tirosina/farmacologia , Difração de Raios X
20.
Structure ; 7(7): 865-75, 1999 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-10425687

RESUMO

BACKGROUND: In microorganisms and plants the first step in the common pathway leading to the biosynthesis of aromatic compounds is the stereospecific condensation of phosphoenolpyruvate (PEP) and D-erythrose-4-phosphate (E4P) giving rise to 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP). This reaction is catalyzed by DAHP synthase (DAHPS), a metal-activated enzyme, which in microorganisms is the target for negative-feedback regulation by pathway intermediates or by end products. In Escherichia coli there are three DAHPS isoforms, each specifically inhibited by one of the three aromatic amino acids. RESULTS: The crystal structure of the phenylalanine-regulated form of DAHPS complexed with PEP and Pb2+ (DAHPS(Phe)-PEP-Pb) was determined by multiple wavelength anomalous dispersion phasing utilizing the anomalous scattering of Pb2+. The tetramer consists of two tight dimers. The monomers of the tight dimer are coupled by extensive interactions including a pair of three-stranded, intersubunit beta sheets. The monomer (350 residues) is a (beta/alpha)8 barrel with several additional beta strands and alpha helices. The PEP and Pb2+ are at the C-ends of the beta strands of the barrel, as is SO4(2-), inferred to occupy the position of the phosphate of E4P. Mutations that reduce feedback inhibition cluster about a cavity near the twofold axis of the tight dimer and are centered approximately 15 A from the active site, indicating the location of a separate regulatory site. CONCLUSIONS: The crystal structure of DAHPS(Phe)-PEP-Pb reveals the active site of this key enzyme of aromatic biosynthesis and indicates the probable site of inhibitor binding. This is the first reported structure of a DAHPS; the structure of its two paralogs and of a variety of orthologs should now be readily determined by molecular replacement.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/química , Escherichia coli/enzimologia , Fenilalanina/metabolismo , 3-Desoxi-7-Fosfo-Heptulonato Sintase/antagonistas & inibidores , 3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Catálise , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...