Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 410
Filtrar
1.
Org Lett ; 26(24): 5215-5219, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38861677

RESUMO

Bacterial nonulosonic acids (NulOs), which feature a nine-carbon backbone, are associated with the biological functions of bacterial glycans. Here, an orthogonally protected 5-amino-7-azido-3,5,7,9-tetradeoxy-d-glycero-l-gluco-2-nonulosonic acid related to Fusobacterium nucleatum ATCC 23726 NulO was synthesized from N-acetylneuraminic acid with sequential performance of C5,7 azidation, C9 deoxygenation, C4 epimerization, and N5,7 differentiation. The C5 azido group in the obtained 5,7-diazido-NulO can be regioselectively reduced to differentiate the two amino groups.


Assuntos
Ácido N-Acetilneuramínico , Açúcares Ácidos , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/síntese química , Estrutura Molecular , Açúcares Ácidos/química , Açúcares Ácidos/síntese química , Fusobacterium nucleatum/química , Azidas/química
2.
J Agric Food Chem ; 72(19): 10995-11001, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38701424

RESUMO

The titer of the microbial fermentation products can be increased by enzyme engineering. l-Sorbosone dehydrogenase (SNDH) is a key enzyme in the production of 2-keto-l-gulonic acid (2-KLG), which is the precursor of vitamin C. Enhancing the activity of SNDH may have a positive impact on 2-KLG production. In this study, a computer-aided semirational design of SNDH was conducted. Based on the analysis of SNDH's substrate pocket and multiple sequence alignment, three modification strategies were established: (1) expanding the entrance of SNDH's substrate pocket, (2) engineering the residues within the substrate pocket, and (3) enhancing the electron transfer of SNDH. Finally, mutants S453A, L460V, and E471D were obtained, whose specific activity was increased by 20, 100, and 10%, respectively. In addition, the ability of Gluconobacter oxidans WSH-004 to synthesize 2-KLG was improved by eliminating H2O2. This study provides mutant enzymes and metabolic engineering strategies for the microbial-fermentation-based production of 2-KLG.


Assuntos
Proteínas de Bactérias , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Gluconobacter/enzimologia , Gluconobacter/genética , Gluconobacter/metabolismo , Açúcares Ácidos/metabolismo , Açúcares Ácidos/química , Fermentação , Engenharia de Proteínas , Engenharia Metabólica , Desidrogenases de Carboidrato/metabolismo , Desidrogenases de Carboidrato/genética , Desidrogenases de Carboidrato/química , Cinética
3.
Sci Rep ; 13(1): 12593, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537165

RESUMO

Sialic acids (Sias) are a class of sugar molecules with a parent nine-carbon neuraminic acid, generally present at the ends of carbohydrate chains, either attached to cellular surfaces or as secreted glycoconjugates. Given their position and structural diversity, Sias modulate a wide variety of biological processes. However, little is known about the role of Sias in human adipose tissue, or their implications for health and disease, particularly among individuals following different dietary patterns. The goal of this study was to measure N-Acetylneuraminic acid (Neu5Ac), N-Glycolylneuraminic acid (Neu5Gc), and 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (KDN) concentrations in adipose tissue samples from participants in the Adventist Health Study-2 (AHS-2) and to compare the abundance of these Sias in individuals following habitual, long-term vegetarian or non-vegetarian dietary patterns. A method was successfully developed for the extraction and detection of Sias in adipose tissue. Sias levels were quantified in 52 vegans, 56 lacto-vegetarians, and 48 non-vegetarians using LC-MS/MS with Neu5Ac-D-1,2,3-13C3 as an internal standard. Dietary groups were compared using linear regression. Vegans and lacto-ovo-vegetarians had significantly higher concentrations of Neu5Ac relative to non-vegetarians. While KDN levels tended to be higher in vegans and lacto-ovo-vegetarians, these differences were not statistically significant. However, KDN levels were significantly inversely associated with body mass index. In contrast, Neu5Gc was not detected in human adipose samples. It is plausible that different Neu5Ac concentrations in adipose tissues of vegetarians, compared to those of non-vegetarians, reflect a difference in the baseline inflammatory status between the two groups. Epidemiologic studies examining levels of Sias in human adipose tissue and other biospecimens will help to further explore their roles in development and progression of inflammatory conditions and chronic diseases.


Assuntos
Ácidos Siálicos , Açúcares Ácidos , Humanos , Ácidos Siálicos/química , Cromatografia Líquida , Açúcares Ácidos/química , Espectrometria de Massas em Tandem , Tecido Adiposo , Dieta Vegetariana
4.
Org Lett ; 24(16): 2998-3002, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35420827

RESUMO

Metaperiodate cleavage of the glycerol side chain from an N-acetyl neuraminic acid-derived thioglycoside and condensation with the two enantiomers of the Ellman sulfinamide afford two diastereomeric N-sulfinylimines from which bacterial sialic acid donors with the legionaminic and acetaminic acid configurations and their 8-epi-isomers are obtained by samarium iodide-mediated coupling with acetaldehyde and subsequent manipulations. A variation on the theme, with inversion of the configuration at C5, similarly provides two differentially protected pseudaminic acid donors.


Assuntos
Ácido N-Acetilneuramínico , Ácidos Siálicos , Ácidos Siálicos/química , Açúcares Ácidos/química
5.
J Korean Med Sci ; 36(49): e333, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34931497

RESUMO

BACKGROUND: Chronic kidney disease (CKD) is a global health problem, and there is no permanent treatment for reversing kidney failure; thus, early diagnosis and effective treatment are required. Gene therapy has outstanding potential; however, the lack of safe gene delivery vectors, a reasonable transfection rate, and kidney targeting ability limit its application. Nanoparticles can offer innovative ways to diagnose and treat kidney diseases as they facilitate targetability and therapeutic efficacy. METHODS: Herein, we developed a proximal renal tubule-targeting gene delivery system based on alternative copolymer (PS) of sorbitol and polyethyleneimine (PEI), modified with vimentin-specific chitobionic acid (CA), producing PS-conjugated CA (PSC) for targeting toward vimentin-expressing cells in the kidneys. In vitro studies were used to determine cell viability, transfection efficiency, serum influence, and specific uptake in the human proximal renal tubular epithelial cell line (HK-2). Finally, the targeting efficiency of the prepared PSC gene carriers was checked in a murine model of Alport syndrome. RESULTS: Our results suggested that the prepared polyplex showed low cytotoxicity, enhanced transfection efficiency, specific uptake toward HK-2 cells, and excellent targeting efficiency toward the kidneys. CONCLUSION: Collectively, from these results it can be inferred that the PSC can be further evaluated as a potential gene carrier for the kidney-targeted delivery of therapeutic genes for treating diseases.


Assuntos
Nanopartículas/química , Plasmídeos/genética , Vimentina/genética , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dissacarídeos/química , Corantes Fluorescentes/química , Humanos , Rim/metabolismo , Rim/patologia , Camundongos , Nanopartículas/toxicidade , Plasmídeos/química , Plasmídeos/metabolismo , Polietilenoimina/química , Polímeros/química , Açúcares Ácidos/química , Transfecção/métodos , Vimentina/metabolismo
6.
Org Lett ; 23(15): 6090-6093, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34296882

RESUMO

An efficient and simple approach for stereoselective synthesis of ß-Kdo C-glycosides was described, which relies on easily available peracetylated anomeric acetate or anomeric 2-pyridyl sulfide to couple with carbonyl compounds via SmI2-mediated Reformatsky reactions. The utility of this methodology is exemplified by the streamlined synthesis of a practical ß-Kdo C-glycoside with an anomeric aminopropyl linker to conjugate with other biomolecules for further biological studies.


Assuntos
Glicosídeos/síntese química , Iodetos/química , Samário/química , Açúcares Ácidos/síntese química , Glicosídeos/química , Estrutura Molecular , Estereoisomerismo , Açúcares Ácidos/química
7.
Sci Rep ; 11(1): 4756, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637817

RESUMO

Pseudaminic acids present on the surface of pathogenic bacteria, including gut pathogens Campylobacter jejuni and Helicobacter pylori, are postulated to play influential roles in the etiology of associated infectious diseases through modulating flagella assembly and recognition of bacteria by the human immune system. Yet they are underexplored compared to other areas of glycoscience, in particular enzymes responsible for the glycosyltransfer of these sugars in bacteria are still to be unambiguously characterised. This can be largely attributed to a lack of access to nucleotide-activated pseudaminic acid glycosyl donors, such as CMP-Pse5Ac7Ac. Herein we reconstitute the biosynthesis of Pse5Ac7Ac in vitro using enzymes from C. jejuni (PseBCHGI) in the process optimising coupled turnover with PseBC using deuterium wash in experiments, and establishing a method for co-factor regeneration in PseH tunover. Furthermore we establish conditions for purification of a soluble CMP-Pse5Ac7Ac synthetase enzyme PseF from Aeromonas caviae and utilise it in combination with the C. jejuni enzymes to achieve practical preparative synthesis of CMP-Pse5Ac7Ac in vitro, facilitating future biological studies.


Assuntos
Campylobacter jejuni/enzimologia , Monofosfato de Citidina/química , Açúcares Ácidos/química , Aeromonas caviae/enzimologia , Vias Biossintéticas
8.
FEBS J ; 288(16): 4905-4917, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33630388

RESUMO

Recently, CxaP, a sugar acid substrate binding protein (SBP) from Advenella mimigardefordensis strain DPN7T , was identified as part of a novel sugar uptake strategy. In the present study, the protein was successfully crystallized. Although several SBP structures of tripartite ATP-independent periplasmic transporters have already been solved, this is the first structure of an SBP accepting multiple sugar acid ligands. Protein crystals were obtained with bound d-xylonic acid, d-fuconic acid d-galactonic and d-gluconic acid, respectively. The protein shows the typical structure of an SBP of a tripartite ATP-independent periplasmic transporter consisting of two domains linked by a hinge and spanned by a long α-helix. By analysis of the structure, the substrate binding site of the protein was identified. The carboxylic group of the sugar acids interacts with Arg175, whereas the coordination of the hydroxylic groups at positions C2 and C3 is most probably realized by Arg154 and Asn151. Furthermore, it was observed that 2-keto-3-deoxy-d-gluconic acid is bound in protein crystals that were crystallized without the addition of any ligand, indicating that this molecule is prebound to the protein and is displaced by the other ligands if they are available. DATABASE: Structural data of CxaP complexes are available in the worldwide Protein Data Bank (https://www.rcsb.org) under the accession codes 7BBR (2-keto-3-deoxy-d-gluconic acid), 7BCR (d-galactonic acid), 7BCN (d-xylonic acid), 7BCO (d-fuconic acid) and 7BCP (d-gluconic acid).


Assuntos
Alcaligenaceae/química , Proteínas de Bactérias/química , Proteínas de Membrana Transportadoras/química , Açúcares Ácidos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Açúcares Ácidos/metabolismo
9.
mBio ; 12(1)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468699

RESUMO

Surface expression of the common vertebrate sialic acid (Sia) N-acetylneuraminic acid (Neu5Ac) by commensal and pathogenic microbes appears structurally to represent "molecular mimicry" of host sialoglycans, facilitating multiple mechanisms of host immune evasion. In contrast, ketodeoxynonulosonic acid (Kdn) is a more ancestral Sia also present in prokaryotic glycoconjugates that are structurally quite distinct from vertebrate sialoglycans. We detected human antibodies against Kdn-terminated glycans, and sialoglycan microarray studies found these anti-Kdn antibodies to be directed against Kdn-sialoglycans structurally similar to those on human cell surface Neu5Ac-sialoglycans. Anti-Kdn-glycan antibodies appear during infancy in a pattern similar to those generated following incorporation of the nonhuman Sia N-glycolylneuraminic acid (Neu5Gc) onto the surface of nontypeable Haemophilus influenzae (NTHi), a human commensal and opportunistic pathogen. NTHi grown in the presence of free Kdn took up and incorporated the Sia into its lipooligosaccharide (LOS). Surface display of the Kdn within NTHi LOS blunted several virulence attributes of the pathogen, including Neu5Ac-mediated resistance to complement and whole blood killing, complement C3 deposition, IgM binding, and engagement of Siglec-9. Upper airway administration of Kdn reduced NTHi infection in human-like Cmah null (Neu5Gc-deficient) mice that express a Neu5Ac-rich sialome. We propose a mechanism for the induction of anti-Kdn antibodies in humans, suggesting that Kdn could be a natural and/or therapeutic "Trojan horse" that impairs colonization and virulence phenotypes of free Neu5Ac-assimilating human pathogens.IMPORTANCE All cells in vertebrates are coated with a dense array of glycans often capped with sugars called sialic acids. Sialic acids have many functions, including serving as a signal for recognition of "self" cells by the immune system, thereby guiding an appropriate immune response against foreign "nonself" and/or damaged cells. Several pathogenic bacteria have evolved mechanisms to cloak themselves with sialic acids and evade immune responses. Here we explore a type of sialic acid called "Kdn" (ketodeoxynonulosonic acid) that has not received much attention in the past and compare and contrast how it interacts with the immune system. Our results show potential for the use of Kdn as a natural intervention against pathogenic bacteria that take up and coat themselves with external sialic acid from the environment.


Assuntos
Antígenos CD/imunologia , Infecções por Haemophilus/imunologia , Haemophilus influenzae/imunologia , Interações Hospedeiro-Patógeno/imunologia , Ácido N-Acetilneuramínico/química , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/imunologia , Ácidos Siálicos/imunologia , Animais , Anticorpos/química , Anticorpos/metabolismo , Antígenos CD/metabolismo , Transporte Biológico , Complemento C3/imunologia , Complemento C3/metabolismo , Feminino , Glicoconjugados/química , Glicoconjugados/imunologia , Infecções por Haemophilus/genética , Infecções por Haemophilus/microbiologia , Haemophilus influenzae/química , Interações Hospedeiro-Patógeno/genética , Humanos , Imunoglobulina M/imunologia , Imunoglobulina M/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mimetismo Molecular/genética , Mimetismo Molecular/imunologia , Ácido N-Acetilneuramínico/imunologia , Ligação Proteica , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Ácidos Siálicos/química , Açúcares Ácidos/química , Açúcares Ácidos/imunologia
10.
Trends Microbiol ; 29(2): 142-157, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32950378

RESUMO

Nonulosonic acids (NulOs) are a diverse family of 9-carbon α-keto acid sugars that are involved in a wide range of functions across all branches of life. The family of NulOs includes the sialic acids as well as the prokaryote-specific NulOs. Select bacteria biosynthesize the sialic acid N-acetylneuraminic acid (Neu5Ac), and the ability to produce this sugar and its subsequent incorporation into cell-surface structures is implicated in a variety of bacteria-host interactions. Furthermore, scavenging of sialic acid from the environment for energy has been characterized across a diverse group of bacteria, mainly human commensals and pathogens. In addition to sialic acid, bacteria have the ability to biosynthesize prokaryote-specific NulOs, of which there are several known isomers characterized. These prokaryotic NulOs are similar in structure to Neu5Ac but little is known regarding their role in bacterial physiology. Here, we discuss the diversity in structure, the biosynthesis pathways, and the functions of bacteria-specific NulOs. These carbohydrates are phylogenetically widespread among bacteria, with numerous structurally unique modifications recognized. Despite the diversity in structure, the NulOs are involved in similar functions such as motility, biofilm formation, host colonization, and immune evasion.


Assuntos
Bactérias/metabolismo , Açúcares Ácidos/química , Açúcares Ácidos/metabolismo , Bactérias/classificação , Bactérias/genética , Vias Biossintéticas , Humanos , Ácido N-Acetilneuramínico/biossíntese , Ácido N-Acetilneuramínico/química , Filogenia
11.
Glycobiology ; 31(3): 288-306, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32886756

RESUMO

Some bacterial flagellins are O-glycosylated on surface-exposed serine/threonine residues with nonulosonic acids such as pseudaminic acid, legionaminic acid and their derivatives by flagellin nonulosonic acid glycosyltransferases, also called motility-associated factors (Maf). We report here two new glycosidic linkages previously unknown in any organism, serine/threonine-O-linked N-acetylneuraminic acid (Ser/Thr-O-Neu5Ac) and serine/threonine-O-linked 3-deoxy-D-manno-octulosonic acid or keto-deoxyoctulosonate (Ser/Thr-O-KDO), both catalyzed by Geobacillus kaustophilus Maf and Clostridium botulinum Maf. We identified these novel glycosidic linkages in recombinant G. kaustophilus and C. botulinum flagellins that were coexpressed with their cognate recombinant Maf protein in Escherichia coli strains producing the appropriate nucleotide sugar glycosyl donor. Our finding that both G. kaustophilus Maf (putative flagellin sialyltransferase) and C. botulinum Maf (putative flagellin legionaminic acid transferase) catalyzed Neu5Ac and KDO transfer on to flagellin indicates that Maf glycosyltransferases display donor substrate promiscuity. Maf glycosyltransferases have the potential to radically expand the scope of neoglycopeptide synthesis and posttranslational protein engineering.


Assuntos
Flagelina/metabolismo , Glicosiltransferases/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Serina/metabolismo , Açúcares Ácidos/metabolismo , Treonina/metabolismo , Glicosilação , Ácido N-Acetilneuramínico/química , Serina/química , Açúcares Ácidos/química , Treonina/química
12.
J Am Chem Soc ; 142(46): 19446-19450, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33166120

RESUMO

Pseudaminic acid (Pse), a unique carbohydrate in surface-associated glycans of pathogenic bacteria, has pivotal roles in virulence. Owing to its significant antigenicity and absence in mammals, Pse is considered an attractive target for vaccination or antibody-based therapies against bacterial infections. However, a specific and universal probe for Pse, which could also be used in immunotherapy, has not been reported. In a prior study, we used a tail spike protein from a bacteriophage (ΦAB6TSP) that digests Pse-containing exopolysaccharide (EPS) from Acinetobacter baumannii strain 54149 (Ab-54149) to form a glycoconjugate for preparing anti-Ab-54149 EPS serum. We report here that a catalytically inactive ΦAB6TSP (I-ΦAB6TSP) retains binding ability toward Pse. In addition, an I-ΦAB6TSP-DyLight-650 conjugate (Dy-I-ΦAB6TSP) was more sensitive in detecting Ab-54149 than an antibody purified from anti- Ab-54149 EPS serum. Dy-I-ΦAB6TSP also cross-reacted with other pathogenic bacteria containing Pse on their surface polysaccharides (e.g., Helicobacter pylori and Enterobacter cloacae), revealing it to be a promising probe for detecting Pse across bacterial species. We also developed a detection method that employs I-ΦAB6TSP immobilized on microtiter plate. These results suggested that the anti-Ab-54149 EPS serum would exhibit cross-reactivity to Pse on other organisms. When this was tested, this serum facilitated complement-mediated killing of H. pylori and E. cloacae, indicating its potential as a cross-species antibacterial agent. This work opens new avenues for diagnosis and treatment of multidrug resistant (MDR) bacterial infections.


Assuntos
Antibacterianos/química , Infecções Bacterianas/terapia , Bacteriófagos/química , Açúcares Ácidos/química , Proteínas da Cauda Viral/química , Acinetobacter baumannii/química , Antibacterianos/farmacologia , Anticorpos/química , Farmacorresistência Bacteriana Múltipla , Enterobacter cloacae/virologia , Glicoconjugados/química , Glicosídeo Hidrolases , Helicobacter pylori/virologia , Polissacarídeos/química , Soro/química , Açúcares Ácidos/metabolismo , Açúcares Ácidos/uso terapêutico , Proteínas da Cauda Viral/metabolismo
13.
Glycoconj J ; 37(6): 745-753, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32980954

RESUMO

2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (KDN) is a minor component of sialic acids detected in vertebrates, such as human cancer cells, rat liver, and fish tissues. Although the enzyme activity of KDN-cleaving sialidase (KDN-sialidase) has been detected in rainbow trout, the gene responsible for its expression has not been identified in vertebrates. We evaluated sialidases in human and various fish for their KDN-cleaving activity using an artificial substrate, methylumbelliferyl-KDN (MU-KDN). Four of the human sialidases tested (NEU1, NEU2, NEU3, and NEU4) did not hydrolyze MU-KDN. Although most fish Neu1s showed negligible KDN-sialidase activity, two Neu1b sialidases from Oreochromis niloticus and Astyanax mexicanus, a paralog of Neu1, exhibited a potent KDN-sialidase activity. Further, O. niloticus and Oryzias latipes Neu3a exhibited a drastically high KDN-sialidase activity, while Danio rerio Neu3.1 showed moderate activities and other Neu3 proteins exhibited little activity. All the Neu4 sialidases tested in fish cleaved KDN and Neu5Ac from MU-KDN and MU-Neu5Ac, respectively, with equivalent potential. To our knowledge, this is the first report to identify KDN-sialidase genes in vertebrates and we believe that KDN-sialidase activity could be conserved among fish Neu4s.


Assuntos
Neuraminidase/genética , Ácidos Siálicos/metabolismo , Açúcares Ácidos/metabolismo , Animais , Characidae/genética , Ciclídeos/genética , Clonagem Molecular , Humanos , Hidrólise , Neuraminidase/química , Especificidade por Substrato/genética , Açúcares Ácidos/química , Peixe-Zebra/genética
14.
Org Biomol Chem ; 18(31): 6155-6161, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32716466

RESUMO

The aminated mimetics of 2-keto-3-deoxy-sugar acids such as the anti-influenza clinical drugs oseltamivir (Tamiflu) and zanamivir (Relenza) are important bioactive molecules. Development of synthetic methodologies for accessing such compound collections is highly desirable. Herein, we describe a simple, catalyst-free glycal diazidation protocol enabled by visible light-driven conditions. This new method requires neither acid promoters nor transition-metal catalysts and takes place at ambient temperature within 1-2 hours. Notably, the desired transformations could be promoted by thermal conditions as well, albeit with lower efficacy compared to the light-induced conditions. Different sugar acid-derived glycal templates have been converted into a range of 2,3-diazido carbohydrate analogs by harnessing this mild and scalable approach, leading to the discovery of new antiviral agents.


Assuntos
Antivirais/farmacologia , Azidas/farmacologia , Carboidratos/farmacologia , Temperatura Alta , Luz , Rhinovirus/efeitos dos fármacos , Açúcares Ácidos/farmacologia , Zika virus/efeitos dos fármacos , Antivirais/síntese química , Antivirais/química , Azidas/síntese química , Azidas/química , Configuração de Carboidratos , Carboidratos/síntese química , Carboidratos/química , Testes de Sensibilidade Microbiana , Açúcares Ácidos/química
15.
Sci Rep ; 10(1): 11995, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32686701

RESUMO

Nonulosonic acid (NulO) biosynthesis in bacteria is directed by nab gene clusters that can lead to neuraminic, legionaminic or pseudaminic acids. Analysis of the gene content from a set mainly composed of Aliivibrio salmonicida and Moritella viscosa strains reveals the existence of several unique nab clusters, for which the NulO products were predicted. This prediction method can be used to guide tandem mass spectrometry studies in order to verify the products of previously undescribed nab clusters and identify new members of the NulOs family.


Assuntos
Vias Biossintéticas/genética , Moritella/genética , Família Multigênica , Análise de Sequência de DNA , Açúcares Ácidos/metabolismo , Vibrionaceae/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Evolução Molecular , Filogenia , Açúcares Ácidos/química
16.
Org Lett ; 22(15): 5783-5788, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32663012

RESUMO

3-Deoxy-d-manno-oct-2-ulosonic acid (Kdo) biosynthetic pathway is a promising target in antibacterial drug discovery. Herein, we report the total synthesis of 6-amino-2,6-dideoxy-α-Kdo in 15 steps from d-mannose as a potential inhibitor of Kdo-processing enzymes. Key steps of the synthetic sequence involve a Horner-Wadsworth-Emmons reaction for the two-carbon chain homologation followed by either a 6-exo-trig Pd-catalyzed reductive cyclization or a tandem Staudinger/aza-Wittig reaction with concomitant α-iminoester reduction, enabling the α-stereoselective formation of the Kdo-like six-membered azacyclic ring.


Assuntos
Manose/química , Açúcares Ácidos/síntese química , Glicosídeos/síntese química , Glicosilação , Lipopolissacarídeos/química , Estrutura Molecular , Açúcares Ácidos/química
17.
J Biol Chem ; 295(32): 10969-10987, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32546484

RESUMO

Rhizobia are soil bacteria that form important symbiotic associations with legumes, and rhizobial surface polysaccharides, such as K-antigen polysaccharide (KPS) and lipopolysaccharide (LPS), might be important for symbiosis. Previously, we obtained a mutant of Sinorhizobium fredii HH103, rkpA, that does not produce KPS, a homopolysaccharide of a pseudaminic acid derivative, but whose LPS electrophoretic profile was indistinguishable from that of the WT strain. We also previously demonstrated that the HH103 rkpLMNOPQ operon is responsible for 5-acetamido-3,5,7,9-tetradeoxy-7-(3-hydroxybutyramido)-l-glycero-l-manno-nonulosonic acid [Pse5NAc7(3OHBu)] production and is involved in HH103 KPS and LPS biosynthesis and that an HH103 rkpM mutant cannot produce KPS and displays an altered LPS structure. Here, we analyzed the LPS structure of HH103 rkpA, focusing on the carbohydrate portion, and found that it contains a highly heterogeneous lipid A and a peculiar core oligosaccharide composed of an unusually high number of hexuronic acids containing ß-configured Pse5NAc7(3OHBu). This pseudaminic acid derivative, in its α-configuration, was the only structural component of the S. fredii HH103 KPS and, to the best of our knowledge, has never been reported from any other rhizobial LPS. We also show that Pse5NAc7(3OHBu) is the complete or partial epitope for a mAb, NB6-228.22, that can recognize the HH103 LPS, but not those of most of the S. fredii strains tested here. We also show that the LPS from HH103 rkpM is identical to that of HH103 rkpA but devoid of any Pse5NAc7(3OHBu) residues. Notably, this rkpM mutant was severely impaired in symbiosis with its host, Macroptilium atropurpureum.


Assuntos
Glycine max/microbiologia , Lipopolissacarídeos/química , Sinorhizobium fredii/química , Simbiose , Anticorpos Monoclonais/imunologia , Antígenos de Bactérias/imunologia , Antígenos de Superfície/imunologia , Proteínas de Bactérias/genética , Configuração de Carboidratos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Epitopos/imunologia , Lipopolissacarídeos/imunologia , Espectroscopia de Prótons por Ressonância Magnética , Sinorhizobium fredii/genética , Sinorhizobium fredii/imunologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Açúcares Ácidos/química
18.
Int J Biol Macromol ; 162: 523-532, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32569692

RESUMO

Three-dimensional (3D) printing is a promising technology to fabricate the intricate biomimetic structure. The primary focus of this study was to develop the bioactive 3D-scaffolds to enhance bone regeneration. The 3D-poly (lactic acid) (PLA) scaffolds were extruded based on a computer-aided design (CAD) model and coated with gelatin (Gel) containing different concentrations of mucic acid (MA) and were investigated for their osteogenic potential. Coating the PLA scaffolds with Gel/MA improved their physicochemical properties, and the addition of MA did not alter these properties. The viability of mouse mesenchymal stem cells (mMSCs, C3H10T1/2) seeded onto the PLA/Gel/MA scaffolds remained unaffected both at metabolic and cell membrane integrity levels. Alkaline phosphatase and von Kossa staining indicated the promotion of osteoblast differentiation of mMSCs by MA in the PLA/Gel scaffolds. Inclusion of MA in PLA/Gel scaffolds also increased the expression of the master bone transcription factor, Runx2, and other osteoblastic differentiation marker genes in mMSCs. Thus, our results suggested that the 3D-printed PLA scaffolds coated with Gel/MA favor osteoblast differentiation and have potential applications in bone tissue engineering.


Assuntos
Osso e Ossos/metabolismo , Materiais Revestidos Biocompatíveis/química , Gelatina/química , Células-Tronco Mesenquimais/metabolismo , Poliésteres/química , Açúcares Ácidos/química , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Osso e Ossos/citologia , Células-Tronco Mesenquimais/citologia , Camundongos
19.
J Enzyme Inhib Med Chem ; 35(1): 1414-1421, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32588669

RESUMO

Frequent occurrences of multi-drug resistance of pathogenic Gram-negative bacteria threaten human beings. The CMP-2-keto-3-deoxy-d-manno-octulosonic acid biosynthesis pathway is one of the new targets for antibiotic design. 2-Keto-3-deoxy-d-manno-octulosonate cytidylyltransferase (KdsB) is the key enzyme in this pathway. KdsB proteins from Burkholderia pseudomallei (Bp), B. thailandensis (Bt), Pseudomonas aeruginosa (Pa), and Chlamydia psittaci (Cp) have been assayed to find inhibitors. Interestingly, Rose Bengal (4,5,6,7-tetrachloro-2',4',5',7'-tetraiodofluorescein) was turned out to be an inhibitor of three KdsBs (BpKdsB, BtKdsB, and PaKdsB) with promising IC50 values and increased thermostability. The inhibitory enzyme kinetics of Rose Bengal revealed that it is competitive with 2-keto-3-deoxy-manno-octulosonic acid (KDO) but non-competitive against cytidine 5'-triphosphate (CTP). Induced-fit docking analysis of PaKdsB revealed that Arg160 and Arg185 together with other interactions in the substrate binding site seemed to play an important role in binding with Rose Bengal. We suggest that Rose Bengal can be used as the scaffold to develop potential antibiotics.


Assuntos
Antibacterianos/farmacologia , Nucleotidiltransferases/metabolismo , Rosa Bengala/farmacologia , Açúcares Ácidos/química , Estabilidade Enzimática , Concentração Inibidora 50 , Cinética , Nucleotidiltransferases/química , Corantes de Rosanilina/química
20.
Org Biomol Chem ; 18(5): 799-809, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31913385

RESUMO

The non-mammalian nonulosonic acid sugar pseudaminic acid (Pse) is present on the surface of a number of human pathogens including Campylobacter jejuni and Helicobacter pylori and other bacteria such as multidrug resistant Acinetobacter baumannii. It is likely important for evasion of the host immune sysyem, and also plays a role in bacterial motility through flagellin glycosylation. Herein we review the mechanistic and structural characterisation of the enzymes responsible for the biosynthesis of the Pse parent structure, Pse5Ac7Ac in bacteria.


Assuntos
Bactérias/química , Açúcares Ácidos/química , Açúcares/química , Vias Biossintéticas , Humanos , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...