Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 63(2): 230-240, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38150593

RESUMO

The first step of histidine biosynthesis in Acinetobacter baumannii, the condensation of ATP and 5-phospho-α-d-ribosyl-1-pyrophosphate to produce N1-(5-phospho-ß-d-ribosyl)-ATP (PRATP) and pyrophosphate, is catalyzed by the hetero-octameric enzyme ATP phosphoribosyltransferase, a promising target for antibiotic design. The catalytic subunit, HisGS, is allosterically activated upon binding of the regulatory subunit, HisZ, to form the hetero-octameric holoenzyme (ATPPRT), leading to a large increase in kcat. Here, we present the crystal structure of ATPPRT, along with kinetic investigations of the rate-limiting steps governing catalysis in the nonactivated (HisGS) and activated (ATPPRT) forms of the enzyme. A pH-rate profile showed that maximum catalysis is achieved above pH 8.0. Surprisingly, at 25 °C, kcat is higher when ADP replaces ATP as substrate for ATPPRT but not for HisGS. The HisGS-catalyzed reaction is limited by the chemical step, as suggested by the enhancement of kcat when Mg2+ was replaced by Mn2+, and by the lack of a pre-steady-state burst of product formation. Conversely, the ATPPRT-catalyzed reaction rate is determined by PRATP diffusion from the active site, as gleaned from a substantial solvent viscosity effect. A burst of product formation could be inferred from pre-steady-state kinetics, but the first turnover was too fast to be directly observed. Lowering the temperature to 5 °C allowed observation of the PRATP formation burst by ATPPRT. At this temperature, the single-turnover rate constant was significantly higher than kcat, providing additional evidence for a step after chemistry limiting catalysis by ATPPRT. This demonstrates allosteric activation by HisZ accelerates the chemical step.


Assuntos
ATP Fosforribosiltransferase , Acinetobacter baumannii , ATP Fosforribosiltransferase/química , Difosfatos , Acinetobacter baumannii/metabolismo , Domínio Catalítico , Cinética , Trifosfato de Adenosina/metabolismo , Catálise
2.
Nat Commun ; 13(1): 7607, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494361

RESUMO

ATP phosphoribosyltransferase catalyses the first step of histidine biosynthesis and is controlled via a complex allosteric mechanism where the regulatory protein HisZ enhances catalysis by the catalytic protein HisGS while mediating allosteric inhibition by histidine. Activation by HisZ was proposed to position HisGS Arg56 to stabilise departure of the pyrophosphate leaving group. Here we report active-site mutants of HisGS with impaired reaction chemistry which can be allosterically restored by HisZ despite the HisZ:HisGS interface lying ~20 Å away from the active site. MD simulations indicate HisZ binding constrains the dynamics of HisGS to favour a preorganised active site where both Arg56 and Arg32 are poised to stabilise leaving-group departure in WT-HisGS. In the Arg56Ala-HisGS mutant, HisZ modulates Arg32 dynamics so that it can partially compensate for the absence of Arg56. These results illustrate how remote protein-protein interactions translate into catalytic resilience by restoring damaged electrostatic preorganisation at the active site.


Assuntos
ATP Fosforribosiltransferase , ATP Fosforribosiltransferase/química , Domínio Catalítico , Histidina/metabolismo , Regulação Alostérica
3.
Biochemistry ; 58(28): 3078-3086, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31251578

RESUMO

ATP phosphoribosyltransferase (ATPPRT) catalyzes the first step of histidine biosynthesis, being allosterically inhibited by the final product of the pathway. Allosteric inhibition of long-form ATPPRTs by histidine has been extensively studied, but inhibition of short-form ATPPRTs is poorly understood. Short-form ATPPRTs are hetero-octamers formed by four catalytic subunits (HisGS) and four regulatory subunits (HisZ). HisGS alone is catalytically active and insensitive to histidine. HisZ enhances catalysis by HisGS in the absence of histidine but mediates allosteric inhibition in its presence. Here, steady-state and pre-steady-state kinetics establish that histidine is a noncompetitive inhibitor of short-form ATPPRT and that inhibition does not occur by dissociating HisGS from the hetero-octamer. The crystal structure of ATPPRT in complex with histidine and the substrate 5-phospho-α-d-ribosyl-1-pyrophosphate was determined, showing histidine bound solely to HisZ, with four histidine molecules per hetero-octamer. Histidine binding involves the repositioning of two HisZ loops. The histidine-binding loop moves closer to histidine to establish polar contacts. This leads to a hydrogen bond between its Tyr263 and His104 in the Asp101-Leu117 loop. The Asp101-Leu117 loop leads to the HisZ-HisGS interface, and in the absence of histidine, its motion prompts HisGS conformational changes responsible for catalytic activation. Following histidine binding, interaction with the histidine-binding loop may prevent the Asp101-Leu117 loop from efficiently sampling conformations conducive to catalytic activation. Tyr263Phe-PaHisZ-containing PaATPPRT, however, is less susceptible though not insensitive to histidine inhibition, suggesting the Tyr263-His104 interaction may be relevant to yet not solely responsible for transmission of the allosteric signal.


Assuntos
ATP Fosforribosiltransferase/antagonistas & inibidores , ATP Fosforribosiltransferase/química , Histidina/química , Histidina/farmacologia , ATP Fosforribosiltransferase/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Cristalografia/métodos , Histidina/metabolismo , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína
4.
Biophys J ; 116(10): 1887-1897, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31053263

RESUMO

Allosteric regulation plays an important role in the control of metabolic flux in biosynthetic pathways. In microorganisms, many enzymes in these pathways adopt different strategies of allostery to allow the tuning of their activities in response to metabolic demand. Thus, it is important to uncover the mechanism of allosteric signal transmission to fully comprehend the complex control of enzyme function and its evolution. ATP-phosphoribosyltransferase (ATP-PRT), as the first enzyme in the histidine biosynthetic pathway, is allosterically regulated by histidine and offers a good platform for the study of allostery. Two forms of ATP-PRT, namely long and short forms, were discovered that show different arrangements of their regulatory machinery. Crystal structures of the long-form ATP-PRT have revealed overall conformational changes in the inhibited state, but the observed changes in the active state are quite subtle, making the elucidation of its allosteric mechanism difficult. Here, we combine computational methods (ligand docking, quantum mechanics/molecular mechanics optimization, and molecular dynamic simulations) with experimental studies to probe the signal transmission between remote allosteric and active sites. Our results reveal that distinct conformational ensembles of the catalytic domain with different dynamic properties exist in the ligand-free and histidine-bound enzymes. These ensembles display different capabilities in supporting the catalytic and allosteric function of ATP-PRT. The findings give insight into the underlying mechanism of allostery and allow us to propose that the hinge twisting within the catalytic domain is the key for both enhancement of catalysis and provision of regulation in ATP-PRT enzymes.


Assuntos
ATP Fosforribosiltransferase/química , ATP Fosforribosiltransferase/metabolismo , Biocatálise , Histidina/biossíntese , Regulação Alostérica , Domínio Catalítico , Simulação de Dinâmica Molecular
5.
Biochem J ; 475(16): 2681-2697, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30072492

RESUMO

In the first committed step of histidine biosynthesis, adenosine 5'-triphosphate (ATP) and 5-phosphoribosyl-α1-pyrophosphate (PRPP), in the presence of ATP phosphoribosyltransferase (ATP-PRT, EC 2.4.2.17), yield phosphoribosyl-ATP. ATP-PRTs are subject to feedback inhibition by histidine that allosterically binds between the regulatory domains. Histidine biosynthetic pathways of bacteria, lower eukaryotes, and plants are considered promising targets for the design of antibiotics, antifungal agents, and herbicides because higher organisms are histidine heterotrophs. Plant ATP-PRTs are similar to one of the two types of their bacterial counterparts, the long-type ATP-PRTs. A biochemical and structural study of ATP-PRT from the model legume plant, Medicago truncatula (MedtrATP-PRT1) is reported herein. Two crystal structures, presenting homohexameric MedtrATP-PRT1 in its relaxed (R-) and histidine-bound, tense (T-) states allowed to observe key features of the enzyme and provided the first structural insights into an ATP-PRT from a eukaryotic organism. In particular, they show pronounced conformational reorganizations during R-state to T-state transition that involves substantial movements of domains. This rearrangement requires a trans- to cis- switch of a peptide backbone within the hinge region of MedtrATP-PRT1. A C-terminal α-helix, absent in bacteria, reinforces the hinge that is constituted by two peptide strands. As a result, conformations of the R- and T-states are significantly different from the corresponding states of prokaryotic enzymes with known 3-D structures. Finally, adenosine 5'-monophosphate (AMP) bound at the active site is consistent with a competitive (and synergistic with histidine) nature of AMP inhibition.


Assuntos
ATP Fosforribosiltransferase/química , ATP Fosforribosiltransferase/metabolismo , Histidina/biossíntese , Medicago truncatula/enzimologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , ATP Fosforribosiltransferase/genética , Cristalografia por Raios X , Histidina/genética , Medicago truncatula/genética , Proteínas de Plantas/genética , Domínios Proteicos , Estrutura Secundária de Proteína
6.
Biochemistry ; 57(29): 4357-4367, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29940105

RESUMO

Short-form ATP phosphoribosyltransferase (ATPPRT) is a hetero-octameric allosteric enzyme comprising four catalytic subunits (HisGS) and four regulatory subunits (HisZ). ATPPRT catalyzes the Mg2+-dependent condensation of ATP and 5-phospho-α-d-ribosyl-1-pyrophosphate (PRPP) to generate N1-(5-phospho-ß-d-ribosyl)-ATP (PRATP) and pyrophosphate, the first reaction of histidine biosynthesis. While HisGS is catalytically active on its own, its activity is allosterically enhanced by HisZ in the absence of histidine. In the presence of histidine, HisZ mediates allosteric inhibition of ATPPRT. Here, initial velocity patterns, isothermal titration calorimetry, and differential scanning fluorimetry establish a distinct kinetic mechanism for ATPPRT where PRPP is the first substrate to bind. AMP is an inhibitor of HisGS, but steady-state kinetics and 31P NMR spectroscopy demonstrate that ADP is an alternative substrate. Replacement of Mg2+ by Mn2+ enhances catalysis by HisGS but not by the holoenzyme, suggesting different rate-limiting steps for nonactivated and activated enzyme forms. Density functional theory calculations posit an SN2-like transition state stabilized by two equivalents of the metal ion. Natural bond orbital charge analysis points to Mn2+ increasing HisGS reaction rate via more efficient charge stabilization at the transition state. High solvent viscosity increases HisGS's catalytic rate, but decreases the hetero-octamer's, indicating that chemistry and product release are rate-limiting for HisGS and ATPPRT, respectively. This is confirmed by pre-steady-state kinetics, with a burst in product formation observed with the hetero-octamer but not with HisGS. These results are consistent with an activation mechanism whereby HisZ binding leads to a more active conformation of HisGS, accelerating chemistry beyond the product release rate.


Assuntos
ATP Fosforribosiltransferase/metabolismo , Psychrobacter/enzimologia , ATP Fosforribosiltransferase/química , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Regulação Alostérica , Sítios de Ligação , Domínio Catalítico , Cinética , Modelos Moleculares , Infecções por Moraxellaceae/microbiologia , Fosforribosil Pirofosfato/metabolismo , Conformação Proteica , Multimerização Proteica , Psychrobacter/química , Psychrobacter/metabolismo , Especificidade por Substrato
7.
Biochem J ; 475(1): 247-260, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29208762

RESUMO

Adenosine triphosphate (ATP) phosphoribosyltransferase (ATP-PRT) catalyses the first committed step of histidine biosynthesis in plants and microorganisms. Two forms of ATP-PRT have been reported, which differ in their molecular architecture and mechanism of allosteric regulation. The short-form ATP-PRT is a hetero-octamer, with four HisG chains that comprise only the catalytic domains and four separate chains of HisZ required for allosteric regulation by histidine. The long-form ATP-PRT is homo-hexameric, with each chain comprising two catalytic domains and a covalently linked regulatory domain that binds histidine as an allosteric inhibitor. Here, we describe a truncated long-form ATP-PRT from Campylobacter jejuni devoid of its regulatory domain (CjeATP-PRTcore). Results showed that CjeATP-PRTcore is dimeric, exhibits attenuated catalytic activity, and is insensitive to histidine, indicating that the covalently linked regulatory domain plays a role in both catalysis and regulation. Crystal structures were obtained for CjeATP-PRTcore in complex with both substrates, and for the first time, the complete product of the reaction. These structures reveal the key features of the active site and provide insights into how substrates move into position during catalysis.


Assuntos
ATP Fosforribosiltransferase/química , Monofosfato de Adenosina/química , Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Campylobacter jejuni/enzimologia , ATP Fosforribosiltransferase/genética , ATP Fosforribosiltransferase/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Campylobacter jejuni/química , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Histidina/química , Histidina/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
8.
Nat Commun ; 8(1): 203, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28781362

RESUMO

ATP-phosphoribosyltransferase (ATP-PRT) is a hexameric enzyme in conformational equilibrium between an open and seemingly active state and a closed and presumably inhibited form. The structure-function relationship of allosteric regulation in this system is still not fully understood. Here, we develop a screening strategy for modulators of ATP-PRT and identify 3-(2-thienyl)-L-alanine (TIH) as an allosteric activator of this enzyme. Kinetic analysis reveals co-occupancy of the allosteric sites by TIH and L-histidine. Crystallographic and native ion-mobility mass spectrometry data show that the TIH-bound activated form of the enzyme closely resembles the inhibited L-histidine-bound closed conformation, revealing the uncoupling between ATP-PRT open and closed conformations and its functional state. These findings suggest that dynamic processes are responsible for ATP-PRT allosteric regulation and that similar mechanisms might also be found in other enzymes bearing a ferredoxin-like allosteric domain.Active and inactive state ATP-phosphoribosyltransferases (ATP-PRTs) are believed to have different conformations. Here the authors show that in both states, ATP-PRT has a similar structural arrangement, suggesting that dynamic alterations are involved in ATP-PRT regulation by allosteric modulators.


Assuntos
ATP Fosforribosiltransferase/química , ATP Fosforribosiltransferase/genética , ATP Fosforribosiltransferase/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Sítio Alostérico , Histidina/química , Histidina/metabolismo , Cinética , Modelos Moleculares
9.
Structure ; 25(5): 730-738.e4, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28392260

RESUMO

MtATP-phosphoribosyltransferase (MtATP-PRT) is an enzyme catalyzing the first step of the biosynthesis of L-histidine in Mycobacterium tuberculosis, and proposed to be regulated via an allosteric mechanism. Native mass spectrometry (MS) reveals MtATP-PRT to exist as a hexamer. Conformational changes induced by L-histidine binding and the influence of buffer pH are determined with ion mobility MS, hydrogen deuterium exchange (HDX) MS, and analytical ultracentrifugation. The experimental collision cross-section (DTCCSHe) decreases from 76.6 to 73.5 nm2 upon ligand binding at pH 6.8, which correlates to the decrease in CCS calculated from crystal structures. No such changes in conformation were found at pH 9.0. Further detail on the regions that exhibit conformational change on L-histidine binding is obtained with HDX-MS experiments. On incubation with L-histidine, rapid changes are observed within domain III, and around the active site at longer times, indicating an allosteric effect.


Assuntos
ATP Fosforribosiltransferase/química , Sítio Alostérico , Proteínas de Bactérias/química , ATP Fosforribosiltransferase/metabolismo , Regulação Alostérica , Proteínas de Bactérias/metabolismo , Retroalimentação Fisiológica , Histidina/química , Histidina/metabolismo , Espectrometria de Massas/métodos , Mycobacterium tuberculosis/enzimologia , Ligação Proteica
10.
Biochemistry ; 56(5): 793-803, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28092443

RESUMO

Adenosine 5'-triphosphate phosphoribosyltransferase (ATPPRT) catalyzes the first step in histidine biosynthesis, the condensation of ATP and 5-phospho-α-d-ribosyl-1-pyrophosphate to generate N1-(5-phospho-ß-d-ribosyl)-ATP and inorganic pyrophosphate. The enzyme is allosterically inhibited by histidine. Two forms of ATPPRT, encoded by the hisG gene, exist in nature, depending on the species. The long form, HisGL, is a single polypeptide chain with catalytic and regulatory domains. The short form, HisGS, lacks a regulatory domain and cannot bind histidine. HisGS instead is found in complex with a regulatory protein, HisZ, constituting the ATPPRT holoenzyme. HisZ triggers HisGS catalytic activity while rendering it sensitive to allosteric inhibition by histidine. Until recently, HisGS was thought to be catalytically inactive without HisZ. Here, recombinant HisGS and HisZ from the psychrophilic bacterium Psychrobacter arcticus were independently overexpressed and purified. The crystal structure of P. arcticus ATPPRT was determined at 2.34 Å resolution, revealing an equimolar HisGS-HisZ hetero-octamer. Steady-state kinetics indicate that both the ATPPRT holoenzyme and HisGS are catalytically active. Surprisingly, HisZ confers only a modest 2-4-fold increase in kcat. Reaction profiles for both enzymes cannot be distinguished by 31P nuclear magnetic resonance, indicating that the same reaction is catalyzed. The temperature dependence of kcat shows deviation from Arrhenius behavior at 308 K with the holoenzyme. Interestingly, such deviation is detected only at 313 K with HisGS. Thermal denaturation by CD spectroscopy resulted in Tm's of 312 and 316 K for HisZ and HisGS, respectively, suggesting that HisZ renders the ATPPRT complex more thermolabile. This is the first characterization of a psychrophilic ATPPRT.


Assuntos
ATP Fosforribosiltransferase/química , Aminoacil-tRNA Sintetases/química , Proteínas de Bactérias/química , Histidina/química , Proteínas de Transporte de Monossacarídeos/química , Psychrobacter/enzimologia , ATP Fosforribosiltransferase/genética , ATP Fosforribosiltransferase/metabolismo , Aclimatação , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Temperatura Baixa , Cristalografia por Raios X , Difosfatos/química , Difosfatos/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Histidina/biossíntese , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Fosforribosil Pirofosfato/química , Fosforribosil Pirofosfato/metabolismo , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína , Psychrobacter/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica
11.
FEBS Lett ; 590(16): 2603-10, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27393206

RESUMO

ATP-phosphoribosyltransferase (ATP-PRT) catalyses the first step of histidine biosynthesis. Two different forms of ATP-PRT have been described; the homo-hexameric long form, and the hetero-octameric short form. Lactococcus lactis possesses the short form ATP-PRT comprising four subunits of HisGS , the catalytic subunit, and four subunits of HisZ, a histidyl-tRNA synthetase paralogue. Previous studies have suggested that HisGS requires HisZ for catalysis. Here, we reveal that the dimeric HisGS does display ATP-PRT activity in the absence of HisZ. This result reflects the evolutionary relationship between the long and short form ATP-PRT, which acquired allosteric inhibition and enhanced catalysis via two divergent strategies.


Assuntos
ATP Fosforribosiltransferase/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Isoformas de Proteínas/metabolismo , ATP Fosforribosiltransferase/química , ATP Fosforribosiltransferase/genética , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Catálise , Domínio Catalítico/genética , Histidina/química , Histidina/metabolismo , Lactococcus lactis/enzimologia , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética
12.
Protein Sci ; 25(8): 1492-506, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27191057

RESUMO

Adenosine triphosphate phosphoribosyltransferase (ATP-PRT) catalyzes the first committed step of the histidine biosynthesis in plants and microorganisms. Here, we present the functional and structural characterization of the ATP-PRT from the pathogenic ε-proteobacteria Campylobacter jejuni (CjeATP-PRT). This enzyme is a member of the long form (HisGL ) ATP-PRT and is allosterically inhibited by histidine, which binds to a remote regulatory domain, and competitively inhibited by AMP. In the crystalline form, CjeATP-PRT was found to adopt two distinctly different hexameric conformations, with an open homohexameric structure observed in the presence of substrate ATP, and a more compact closed form present when inhibitor histidine is bound. CjeATP-PRT was observed to adopt only a hexameric quaternary structure in solution, contradicting previous hypotheses favoring an allosteric mechanism driven by an oligomer equilibrium. Instead, this study supports the conclusion that the ATP-PRT long form hexamer is the active species; the tightening of this structure in response to remote histidine binding results in an inhibited enzyme.


Assuntos
ATP Fosforribosiltransferase/química , Monofosfato de Adenosina/química , Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Campylobacter jejuni/química , Histidina/química , ATP Fosforribosiltransferase/genética , ATP Fosforribosiltransferase/metabolismo , Regulação Alostérica , Sítio Alostérico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ligação Competitiva , Campylobacter jejuni/enzimologia , Campylobacter jejuni/genética , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Cinética , Modelos Moleculares , Mutação , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica
13.
J Biotechnol ; 206: 26-37, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-25892668

RESUMO

L-Histidine biosynthesis in Corynebacterium glutamicum is mainly regulated by L-histidine feedback inhibition of the ATP-phosphoribosyltransferase HisG that catalyzes the first step of the pathway. The elimination of this feedback inhibition is the first and most important step in the development of an L-histidine production strain. For this purpose, a combined approach of random mutagenesis and rational enzyme redesign was performed. Mutants spontaneously resistant to the toxic L-histidine analog ß-(2-thiazolyl)-DL-alanine (2-TA) revealed novel and unpredicted mutations in the C-terminal regulatory domain of HisG resulting in increased feedback resistance. Moreover, deletion of the entire C-terminal regulatory domain in combination with the gain of function mutation S143F in the catalytic domain resulted in a HisG variant that is still highly active even at L-histidine concentrations close to the solubility limit. Notably, the S143F mutation on its own provokes feedback deregulation, revealing for the first time an amino acid residue in the catalytic domain of HisG that is involved in the feedback regulatory mechanism. In addition, we investigated the effect of hisG mutations for L-histidine production on different levels. This comprised the analysis of different expression systems, including plasmid- and chromosome-based overexpression, as well as the importance of codon choice for HisG mutations. The combination of domain deletions, single amino acid exchanges, codon choice, and chromosome-based overexpression resulted in production strains accumulating around 0.5 g l(-1) L-histidine, demonstrating the added value of the different approaches.


Assuntos
ATP Fosforribosiltransferase/metabolismo , Corynebacterium glutamicum/genética , Retroalimentação Fisiológica/fisiologia , Histidina/metabolismo , Engenharia Metabólica/métodos , ATP Fosforribosiltransferase/química , ATP Fosforribosiltransferase/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/enzimologia , Escherichia coli/genética , Redes e Vias Metabólicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Mutação Silenciosa/genética , Mutação Silenciosa/fisiologia
14.
Curr Top Med Chem ; 13(22): 2866-84, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24111909

RESUMO

Worldwide, tuberculosis is the leading cause of morbidity and mortality due to a single bacterial pathogen, Mycobacterium tuberculosis (Mtb). The increasing prevalence of this disease, the emergence of multi-, extensively, and totally drug-resistant strains, complicated by co-infection with the human immunodeficiency virus, and the length of tuberculosis chemotherapy have led to an urgent and continued need for the development of new and more effective antitubercular drugs. Within this context, the L-histidine biosynthetic pathway, which converts 5-phosphoribosyl 1-pyrophosphate to L-histidine in ten enzymatic steps, has been reported as a promising target of antimicrobial agents. This pathway is found in bacteria, archaebacteria, lower eukaryotes, and plants but is absent in mammals, making these enzymes highly attractive targets for the drug design of new antimycobacterial compounds with selective toxicity. Moreover, the biosynthesis of L-histidine has been described as essential for Mtb growth in vitro. Accordingly, a comprehensive overview of Mycobacterium tuberculosis histidine pathway enzymes as attractive targets for the development of new antimycobacterial agents is provided, mainly summarizing the previously reported inhibition data for Mtb or orthologous proteins.


Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Enzimas/metabolismo , Histidina/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , ATP Fosforribosiltransferase/química , ATP Fosforribosiltransferase/genética , ATP Fosforribosiltransferase/metabolismo , Aldose-Cetose Isomerases/genética , Aldose-Cetose Isomerases/metabolismo , Aminoidrolases/genética , Aminoidrolases/metabolismo , Desenho de Fármacos , Enzimas/genética , Terapia de Alvo Molecular , Mycobacterium tuberculosis/genética
15.
Biochemistry ; 45(50): 14933-43, 2006 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-17154531

RESUMO

Two families of ATP phosphoribosyl transferases (ATP-PRT) join ATP and 5-phosphoribosyl-1 pyrophosphate (PRPP) in the first reaction of histidine biosynthesis. These consist of a homohexameric form found in all three kingdoms and a hetero-octameric form largely restricted to bacteria. Hetero-octameric ATP-PRTs consist of four HisGS catalytic subunits related to periplasmic binding proteins and four HisZ regulatory subunits that resemble histidyl-tRNA synthetases. To clarify the relationship between the two families of ATP-PRTs and among phosphoribosyltransferases in general, we determined the steady state kinetics for the hetero-octameric form and characterized the active site by mutagenesis. The KmPRPP (18.4 +/- 3.5 microM) and kcat (2.7 +/- 0.3 s-1) values for the PRPP substrate are similar to those of hexameric ATP-PRTs, but the Km for ATP (2.7 +/- 0.3 mM) is 4-fold higher, suggestive of tighter regulation by energy charge. Histidine and AMP were determined to be noncompetitive (Ki = 81.1 microM) and competitive (Ki = 1.44 mM) inhibitors, respectively, with values that approximate their intracellular concentrations. Mutagenesis experiments aimed at investigating the side chains recognizing PRPP showed that 5'-phosphate contacts (T159A and T162A) had the largest (25- and 155-fold, respectively) decreases in kcat/Km, while smaller decreases were seen with mutants making cross subunit contacts (K50A and K8A) to the pyrophosphate moiety or contacts to the 2'-OH group. Despite their markedly different quaternary structures, hexameric and hetero-octameric ATRP-PRTs exhibit similar functional parameters and employ mechanistic strategies reminiscent of the broader PRT superfamily.


Assuntos
ATP Fosforribosiltransferase/química , Proteínas de Bactérias/química , Lactococcus lactis/enzimologia , Complexos Multiproteicos/química , ATP Fosforribosiltransferase/genética , ATP Fosforribosiltransferase/metabolismo , Monofosfato de Adenosina/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Domínio Catalítico/genética , Histidina/biossíntese , Histidina/química , Lactococcus lactis/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutagênese Sítio-Dirigida , Fosforribosil Pirofosfato/química , Fosforribosil Pirofosfato/metabolismo , Ligação Proteica/genética , Estrutura Quaternária de Proteína/genética , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Especificidade por Substrato/genética
16.
Mol Microbiol ; 55(3): 675-86, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15660995

RESUMO

The molecular structure of the ATP phosphoribosyl transferase from the hyperthermophile Thermotoga maritima is composed of a 220 kDa hetero-octameric complex comprising four catalytic subunits (HisGS) and four regulatory subunits (HisZ). Steady-state kinetics indicate that only the complete octameric complex is active and non-competitively inhibited by the pathway product histidine. The rationale for these findings is provided by the crystal structure revealing a total of eight histidine binding sites that are located within each of the four HisGS-HisZ subunit interfaces formed by the ATP phosphoribosyl transferase complex. While the structure of the catalytic HisGS subunit is related to the catalytic domain of another family of (HisGL)2 ATP phosphoribosyl transferases that is functional in the absence of additional regulatory subunits, the structure of the regulatory HisZ subunit is distantly related to class II aminoacyl-tRNA synthetases. However, neither the mode of the oligomeric subunit arrangement nor the type of histidine binding pockets is found in these structural relatives. Common ancestry of the regulatory HisZ subunit and class II aminoacyl-tRNA synthetase may reflect the balanced need of regulated amounts of a cognate amino acid (histidine) in the translation apparatus, ultimately linking amino acid biosynthesis and protein biosynthesis in terms of function, structure and evolution.


Assuntos
ATP Fosforribosiltransferase/genética , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Thermotoga maritima/enzimologia , ATP Fosforribosiltransferase/química , ATP Fosforribosiltransferase/metabolismo , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Histidina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Relação Estrutura-Atividade , Thermotoga maritima/genética
17.
J Mol Biol ; 336(1): 131-44, 2004 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-14741209

RESUMO

ATP-phosphoribosyltransferase (ATP-PRT), the first enzyme of the histidine pathway, is a complex allosterically regulated enzyme, which controls the flow of intermediates through this biosynthetic pathway. The crystal structures of Escherichia coli ATP-PRT have been solved in complex with the inhibitor AMP at 2.7A and with product PR-ATP at 2.9A (the ribosyl-triphosphate could not be resolved). On the basis of binding of AMP and PR-ATP and comparison with type I PRTs, the PRPP and parts of the ATP-binding site are identified. These structures clearly identify the AMP as binding in the 5-phosphoribosyl-alpha-1-pyrophosphate (PRPP)-binding site, with the adenosine ring occupying the ATP-binding site. Comparison with the recently solved Mycobacterium tuberculosis ATP-PRT structures indicates that histidine is solely responsible for the large conformational changes observed between the hexameric forms of the enzyme. The role of oligomerisation in inhibition and the structural basis for the synergistic inhibition by histidine and AMP are discussed.


Assuntos
ATP Fosforribosiltransferase/química , Monofosfato de Adenosina/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Estrutura Terciária de Proteína , ATP Fosforribosiltransferase/antagonistas & inibidores , ATP Fosforribosiltransferase/genética , ATP Fosforribosiltransferase/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Histidina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Estrutura Quaternária de Proteína , Alinhamento de Sequência
18.
J Biol Chem ; 278(10): 8333-9, 2003 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-12511575

RESUMO

The N-1-(5'-phosphoribosyl)-ATP transferase catalyzes the first step of the histidine biosynthetic pathway and is regulated by a feedback mechanism by the product histidine. The crystal structures of the N-1-(5'-phosphoribosyl)-ATP transferase from Mycobacterium tuberculosis in complex with inhibitor histidine and AMP has been determined to 1.8 A resolution and without ligands to 2.7 A resolution. The active enzyme exists primarily as a dimer, and the histidine-inhibited form is a hexamer. The structure represents a new fold for a phosphoribosyltransferase, consisting of three continuous domains. The inhibitor AMP binds in the active site cavity formed between the two catalytic domains. A model for the mechanism of allosteric inhibition has been derived from conformational differences between the AMP:His-bound and apo structures.


Assuntos
ATP Fosforribosiltransferase/química , Mycobacterium tuberculosis/enzimologia , ATP Fosforribosiltransferase/genética , ATP Fosforribosiltransferase/metabolismo , Monofosfato de Adenosina/metabolismo , Domínio Catalítico , Clonagem Molecular , Modelos Moleculares , Mycobacterium tuberculosis/genética , Estrutura Quaternária de Proteína
19.
Curr Opin Struct Biol ; 11(6): 733-9, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11751055

RESUMO

Members of the homologous PRT family are catalytic and regulatory proteins involved in nucleotide synthesis and salvage. New crystal structures have revealed key elements of PRT protein function, as well as glimpses of how the fold has evolved to perform both catalytic and regulatory functions.


Assuntos
ATP Fosforribosiltransferase/química , Motivos de Aminoácidos , Catálise , Magnésio/metabolismo , Ligação Proteica , Dobramento de Proteína , Estrutura Quaternária de Proteína , Ribose-Fosfato Pirofosfoquinase/metabolismo , Homologia de Sequência
20.
Acta Crystallogr D Biol Crystallogr ; 56(Pt 11): 1488-91, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11185885

RESUMO

ATP-phosphoribosyltransferase (ATP-PRT) from Escherichia coli has been purified and crystals were obtained by the vapour-diffusion method using sodium tartrate as a precipitant. Dynamic light scattering was used to assess conditions for the monodispersity of the enzyme. The crystals are trigonal, space group R32, with unit-cell parameters a = b = 133.6, c= 114.1 A (at 100 K), and diffract to 2.7 A on a synchrotron X-ray source. The asymmetric unit is likely to contain one molecule, corresponding to a packing density of 2.9 A3 Da(-1). A model for the quaternary structure is proposed based on the crystallographic symmetry.


Assuntos
ATP Fosforribosiltransferase/isolamento & purificação , Escherichia coli/enzimologia , ATP Fosforribosiltransferase/química , Cristalização , Cristalografia por Raios X , Luz , Modelos Moleculares , Conformação Proteica , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...