Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Yakugaku Zasshi ; 141(11): 1217-1222, 2021.
Artigo em Japonês | MEDLINE | ID: mdl-34719540

RESUMO

P-type ion pumps (P-type ATPases) are involved in various fundamental biological processes. For example, the gastric proton pump (H+,K+-ATPase) and sodium pump (Na+,K+-ATPase) are responsible for secretion of gastric acid and maintenance of cell membrane potential, respectively. In this review, we summarize three topics of our studies. The first topic is gastric H+,K+-ATPase associated with Cl--transporting proteins (Cl-/H+ exchanger ClC-5 and K+-Cl- cotransporter KCC4). In gastric parietal cells, we found that ClC-5 is predominantly expressed in intracellular tubulovesicles and that KCC4 is predominantly expressed in the apical membrane. Gastric acid (HCl) secretion may be accomplished by the two different complexes of H+,K+-ATPase and Cl--transporting protein. The second topic focuses on the Na+,K+-ATPase α1-isoform (α1NaK) associated with the volume-regulated anion channel (VRAC). In the cholesterol-enriched membrane microdomains of human cancer cells, we found that α1NaK has a receptor-like (non-pumping) function and that binding of low concentrations (nM level) of cardiac glycosides to α1NaK activates VRAC and exerts anti-cancer effects without affecting the pumping function of α1NaK. The third topic is the Na+,K+-ATPase α3-isoform (α3NaK) in human cancer cells. We found that α3NaK is abnormally expressed in the intracellular vesicles of attached cancer cells and that the plasma membrane translocation of α3NaK upon cell detachment contributes to the survival of metastatic cancer cells. Our results indicate that multiple functions of P-type ion pumps are generated by different membrane environments and their associated proteins.


Assuntos
Ácido Gástrico/metabolismo , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , ATPase Trocadora de Hidrogênio-Potássio/fisiologia , Microdomínios da Membrana/metabolismo , Transporte Biológico , Glicosídeos Cardíacos/metabolismo , Membrana Celular/metabolismo , Canais de Cloreto/metabolismo , Canais de Cloreto/fisiologia , Humanos , Isoenzimas , Neoplasias/metabolismo , Neoplasias/patologia , Células Parietais Gástricas/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/fisiologia , Simportadores/metabolismo , Simportadores/fisiologia , Cotransportadores de K e Cl-
2.
Nihon Yakurigaku Zasshi ; 153(6): 261-266, 2019.
Artigo em Japonês | MEDLINE | ID: mdl-31178530

RESUMO

Gastric proton pump (H+,K+-ATPase) which is responsible for H+ secretion of gastric acid (HCl) in gastric parietal cells is the major therapeutic target for treatment of acid-related diseases. H+,K+-ATPase consists of two subunits, a catalytic α-subunit (αHK) and a glycosylated ß-subunit (ßHK). N-glycosylation of ßHK is essential for trafficking and stability of αHK in apical membrane of gastric parietal cells. Terminal sialic acid residues on sugar chains have an important role in various cellular functions. Recently, we succeeded in visualizing the sialylation and desialylation dynamics of ßHK using a fluorescence bioimaging nanoprobe consisting of biocompatible polymers conjugated with lectins for detecting sialic acid. In H+,K+-ATPase-expressing cell lines, rat gastric mucosa, and primary culture of rat gastric parietal cells, fluorescence imaging of sialic acid with the nanoprobe showed that sialylation of ßHK is regulated by intragastric pH and that inhibition of gastric acid secretion induces desialylation of ßHK. In biochemical and pharmacological studies, we revealed that enzyme activity of αHK is negatively regulated by desialylation of ßHK. Our studies uncovered a novel negative-feedback mechanism of H+,K+-ATPase in which sialic acids of ßHK positively regulates H+,K+-ATPase activity, and acidic pH decreases the pump activity by cleaving sialic acids of ßHK. In this topic, we introduce the overview of our research using the bioimaging nanoprobe.


Assuntos
Corantes Fluorescentes , Mucosa Gástrica/fisiologia , ATPase Trocadora de Hidrogênio-Potássio/fisiologia , Ácido N-Acetilneuramínico/química , Imagem Óptica , Bombas de Próton/fisiologia , Animais , Ácido Gástrico , Nanopartículas , Ratos
3.
Curr Opin Gastroenterol ; 31(6): 479-85, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26376477

RESUMO

PURPOSE OF REVIEW: This review summarizes the past year's literature regarding the neuroendocrine and intracellular regulation of gastric acid secretion, discussing both basic and clinical aspects. RECENT FINDINGS: Gastric acid facilitates the digestion of protein as well as the absorption of iron, calcium, vitamin B12, and certain medications. High acidity kills ingested microorganisms and limits bacterial overgrowth, enteric infection, and possibly spontaneous bacterial peritonitis. The main stimulants of acid secretion are gastrin, released from antral gastrin cells; histamine, released from oxyntic enterochromaffin-like cells; and acetylcholine, released from antral and oxyntic intramural neurons. Ghrelin and coffee also stimulate acid secretion whereas somatostatin, cholecystokinin, glucagon-like peptide-1, and atrial natriuretic peptide inhibit acid secretion. Although 95% of parietal cells are contained within the oxyntic mucosa (fundus and body), 50% of human antral glands contain parietal cells. Proton pump inhibitors are considered well tolerated drugs, but concerns have been raised regarding dysbiosis, atrophic gastritis, hypergastrinemia, hypomagnesemia, and enteritis/colitis. SUMMARY: Our understanding of the functional anatomy and physiology of gastric secretion continues to advance. Such knowledge is crucial for improved management of acid-peptic disorders, prevention and management of neoplasia, and the development of novel medications.


Assuntos
Ácido Gástrico/metabolismo , Gastrinas/fisiologia , ATPase Trocadora de Hidrogênio-Potássio/fisiologia , Histamina/fisiologia , Humanos , Sistemas Neurossecretores/anatomia & histologia , Sistemas Neurossecretores/patologia , Sistemas Neurossecretores/fisiologia , Inibidores da Bomba de Prótons/efeitos adversos , Transdução de Sinais/fisiologia
4.
J Biol Chem ; 289(44): 30590-30601, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25231997

RESUMO

Gastric H(+),K(+)-ATPase, an ATP-driven proton pump responsible for gastric acidification, is a molecular target for anti-ulcer drugs. Here we show its cryo-electron microscopy (EM) structure in an E2P analog state, bound to magnesium fluoride (MgF), and its K(+)-competitive antagonist SCH28080, determined at 7 Å resolution by electron crystallography of two-dimensional crystals. Systematic comparison with other E2P-related cryo-EM structures revealed that the molecular conformation in the (SCH)E2·MgF state is remarkably distinguishable. Although the azimuthal position of the A domain of the (SCH)E2·MgF state is similar to that in the E2·AlF (aluminum fluoride) state, in which the transmembrane luminal gate is closed, the arrangement of transmembrane helices in the (SCH)E2·MgF state shows a luminal-open conformation imposed on by bound SCH28080 at its luminal cavity, based on observations of the structure in the SCH28080-bound E2·BeF (beryllium fluoride) state. The molecular conformation of the (SCH)E2·MgF state thus represents a mixed overall structure in which its cytoplasmic and luminal half appear to be independently modulated by a phosphate analog and an antagonist bound to the respective parts of the enzyme. Comparison of the molecular conformations revealed that the linker region connecting the A domain and the transmembrane helix 2 (A-M2 linker) mediates the regulation of luminal gating. The mechanistic rationale underlying luminal gating observed in H(+),K(+)-ATPase is consistent with that observed in sarcoplasmic reticulum Ca(2+)-ATPase and other P-type ATPases and is most likely conserved for the P-type ATPase family in general.


Assuntos
ATPase Trocadora de Hidrogênio-Potássio/química , Ativação do Canal Iônico , Sus scrofa , Animais , Antiulcerosos/química , Domínio Catalítico , Microscopia Crioeletrônica , ATPase Trocadora de Hidrogênio-Potássio/fisiologia , Imidazóis/química , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína , Inibidores da Bomba de Prótons/química
5.
Eur J Immunol ; 44(7): 2048-58, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24740292

RESUMO

The expression of the Ikaros transcription factor family member, Helios, has been shown to be associated with T-cell tolerance in both the thymus and the periphery. To better understand the importance of Helios in tolerance pathways, we have examined the expression of Helios in TCR-transgenic T cells specific for the gastric H(+) /K(+) ATPase, the autoantigen target in autoimmune gastritis. Analysis of H(+) /K(+) ATPase-specific T cells in mice with different patterns of H(+) /K(+) ATPase expression revealed that, in addition to the expression of Helios in CD4(+) Foxp3(+) regulatory T (Treg) cells, Helios is expressed by a large proportion of CD4(+) Foxp3(-) T cells in both the thymus and the paragastric lymph node (PgLN), which drains the stomach. In the thymus, Helios was expressed by H(+) /K(+) ATPase-specific thymocytes that were undergoing negative selection. In the periphery, Helios was expressed in H(+) /K(+) ATPase-specific CD4(+) T cells following H(+) /K(+) ATPase presentation and was more highly expressed when T-cell activation occurred in the absence of inflammation. Analysis of purified H(+) /K(+) ATPase-specific CD4(+) Foxp3(-) Helios(+) T cells demonstrated that they were functionally anergic. These results demonstrate that Helios is expressed by thymic and peripheral T cells that are being driven to tolerance in response to a genuine autoantigen.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Tolerância Imunológica , Linfócitos T Reguladores/imunologia , Timo/imunologia , Fatores de Transcrição/fisiologia , Animais , Doenças Autoimunes/imunologia , Linfócitos T CD4-Positivos/imunologia , Fatores de Transcrição Forkhead/análise , Gastrite/imunologia , ATPase Trocadora de Hidrogênio-Potássio/fisiologia , Camundongos , Camundongos Endogâmicos BALB C
6.
Eur Rev Med Pharmacol Sci ; 17(2): 269-75, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23377820

RESUMO

BACKGROUND: Myocardial ischemia is inadequate perfusion due to reduced blood flow. Sudden onset of reperfusion could result with damage to the myocytes that have not been affected during ischemia called ischemia reperfusion (I/R) injury. Extracellular accumulation of H+ ions resulting in tissue acidosis is one of the underlying mechanisms. Inhibition of myocardial H+/K+-ATPase, namely proton pump, may lead to intracellular acidification via decreasing the extracellular H+ transport. AIM: The aim of this study is to investigate the effects of a proton pump inhibitor pantoprazole in intact rat I/R models. MATERIALS AND METHODS: A total of 30 adult male Wistar albino rats weighing 200-300 g were studied. Rats were allocated into four groups: sham (n=6), ischemia (n=8), control (n=8), and pantoprazole (n=8). Left anterior descending coronary artery was occluded for 30 minutes and then reperfused for two hours. Pantoprazole was administered via jugular vein at the dose of 9 mg/kg starting from 30 minutes before ischemia, to the first 30 minutes of reperfusion. Haemodynamic parameters were recorded and serum CK-MB levels were measured. After reperfusion, heart was removed for the measurement of myocardial infarct size. Myocardial infarct area was measured using triphenyltetrazolium chloride (TTC) staining technique. Myocardial infarction size were expressed as the percentage of the total left ventricular weight. RESULTS: Compared with other groups, plasma concentrations of CK-MB at the end of ischemia and reperfusion and myocardial infarct size were significantly lower in pantoprazole group (p < 0.008). CONCLUSIONS: Pantoprazole preconditioning induces delayed cardioprotection in intact rat I/R model, which may be triggered via H+/K+-ATPase ion channels.


Assuntos
2-Piridinilmetilsulfinilbenzimidazóis/uso terapêutico , Isquemia Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Inibidores da Bomba de Prótons , Animais , Pressão Sanguínea/efeitos dos fármacos , Creatina Quinase Forma MB/sangue , ATPase Trocadora de Hidrogênio-Potássio/fisiologia , Frequência Cardíaca/efeitos dos fármacos , Masculino , Isquemia Miocárdica/fisiopatologia , Pantoprazol , Ratos , Ratos Wistar
7.
Am J Physiol Renal Physiol ; 304(7): F831-9, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23364803

RESUMO

Exchange proteins directly activated by cAMP [Epac(s)] were discovered more than a decade ago as new sensors for the second messenger cAMP. The Epac family members, including Epac1 and Epac2, are guanine nucleotide exchange factors for the Ras-like small GTPases Rap1 and Rap2, and they function independently of protein kinase A. Given the importance of cAMP in kidney homeostasis, several molecular and cellular studies using specific Epac agonists have analyzed the role and regulation of Epac proteins in renal physiology and pathophysiology. The specificity of the functions of Epac proteins may depend upon their expression and localization in the kidney as well as their abundance in the microcellular environment. This review discusses recent literature data concerning the involvement of Epac in renal tubular transport physiology and renal glomerular cells where various signaling pathways are known to be operative. In addition, the potential role of Epac in kidney disorders, such as diabetic kidney disease and ischemic kidney injury, is discussed.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/fisiologia , Glomérulos Renais/fisiologia , Túbulos Renais/fisiologia , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/fisiopatologia , Aquaporina 2/fisiologia , Cisplatino/efeitos adversos , Nefropatias Diabéticas/fisiopatologia , Fator 2 de Liberação do Nucleotídeo Guanina/fisiologia , ATPase Trocadora de Hidrogênio-Potássio/fisiologia , Humanos , Rim/fisiologia , Nefropatias/fisiopatologia , Túbulos Renais/fisiopatologia , Proteínas de Membrana Transportadoras/fisiologia , Traumatismo por Reperfusão/fisiopatologia , Transportadores de Ureia
8.
Cell Rep ; 1(5): 516-27, 2012 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-22832275

RESUMO

Most vertebrate embryos break symmetry by a cilia-driven leftward flow during neurulation. In the frog Xenopus asymmetric expression of the ion pump ATP4a was reported at the 4-cell stage. The "ion-flux" model postulates that symmetry is broken flow-independently through an ATP4-generated asymmetric voltage gradient that drives serotonin through gap junctions to one side of the embryo. Here, we show that ATP4a is symmetrically expressed. Gene knockdown or pharmacological inhibition compromised organ situs, asymmetric marker gene expression, and leftward flow. The gastrocoel roof plate (GRP), where flow in frog occurs, revealed fewer, shortened, and misaligned cilia. Foxj1, a master control gene of motile cilia, was downregulated in the superficial mesoderm, from which the GRP develops. Specifically, ATP4 was required for Wnt/ß-catenin-regulated Foxj1 induction and Wnt/PCP-dependent cilia polarization. Our work argues for evolutionary conservation of symmetry breakage in the vertebrates.


Assuntos
Desenvolvimento Embrionário/fisiologia , Fatores de Transcrição Forkhead/fisiologia , Bombas de Íon/fisiologia , Bombas de Próton/fisiologia , Proteínas Wnt/fisiologia , Proteínas de Xenopus/fisiologia , Xenopus/embriologia , Animais , Padronização Corporal/genética , Padronização Corporal/fisiologia , Cílios/fisiologia , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário/genética , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , ATPase Trocadora de Hidrogênio-Potássio/genética , ATPase Trocadora de Hidrogênio-Potássio/fisiologia , Bombas de Íon/genética , Neurulação/genética , Neurulação/fisiologia , Bombas de Próton/genética , Transdução de Sinais/fisiologia , Proteínas Wnt/genética , Xenopus/genética , Proteínas de Xenopus/genética
10.
Cancer Res ; 71(12): 4247-59, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21512143

RESUMO

IFN-γ mediates responses to bacterial infection and autoimmune disease, but it is also an important tumor suppressor. It is upregulated in the gastric mucosa by chronic Helicobacter infection; however, whether it plays a positive or negative role in inflammation-associated gastric carcinogenesis is unexplored. To study this question, we generated an H(+)/K(+)-ATPase-IFN-γ transgenic mouse that overexpresses murine IFN-γ in the stomach mucosa. In contrast to the expected proinflammatory role during infection, we found that IFN-γ overexpression failed to induce gastritis and instead inhibited gastric carcinogenesis induced by interleukin-1beta (IL-1ß) and/or Helicobacter infection. Helper T cell (Th) 1 and Th17 immune responses were inhibited by IFN-γ through Fas induction and apoptosis in CD4 T cells. IFN-γ also induced autophagy in gastric epithelial cells through increased expression of Beclin-1. Finally, in the gastric epithelium, IFN-γ also inhibited IL-1ß- and Helicobacter-induced epithelial apoptosis, proliferation, and Dckl1(+) cell expansion. Taken together, our results suggest that IFN-γ coordinately inhibits bacterial infection and carcinogenesis in the gastric mucosa by suppressing putative gastric progenitor cell expansion and reducing epithelial cell apoptosis via induction of an autophagic program.


Assuntos
Apoptose , Autofagia , Infecções por Helicobacter/complicações , Interferon gama/fisiologia , Neoplasias Gástricas/prevenção & controle , Linfócitos T/fisiologia , Animais , Proteínas Reguladoras de Apoptose/fisiologia , Proteína Beclina-1 , Linhagem Celular Tumoral , Proliferação de Células , Quinases Semelhantes a Duplacortina , Mucosa Gástrica/patologia , Gastrite/etiologia , ATPase Trocadora de Hidrogênio-Potássio/fisiologia , Humanos , Interleucina-1beta/fisiologia , Metaplasia , Camundongos , Proteínas Serina-Treonina Quinases/análise , Neoplasias Gástricas/etiologia , Neoplasias Gástricas/patologia , Células Th17/imunologia
11.
J Nephrol ; 23 Suppl 16: S19-27, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21170879

RESUMO

The functional versatility of the distal nephron is mainly due to the large cytological heterogeneity of the segment. Part of Na+ uptake by distal tubules is dependent on Na+/H+ exchanger 2 (NHE2), implicating a role of distal convoluted cells also in acid-base homeostasis. In addition, intercalated (IC) cells expressed in distal convoluted tubules, connecting tubules and collecting ducts are involved in the final regulation of acid-base excretion. IC cells regulate acid-base handling by 2 main transport proteins, a V-type H+-ATPase and a Cl/HCO3- exchanger, localized at different membrane domains. Type A IC cells are characterized by a luminal H+-ATPase in series with a basolateral Cl/HCO3- exchanger, the anion exchanger AE1. Type B IC cells mediate HCO3- secretion through the apical Cl-/HCO3- exchanger pendrin in series with a H+-ATPase at the basolateral membrane. Alternatively, H+/K+-ATPases have also been found in several distal tubule cells, particularly in type A and B IC cells. All of these mechanisms are finely regulated, and mutations of 1 or more proteins ultimately lead to expressive disorders of acid-base balance.


Assuntos
Equilíbrio Ácido-Base/fisiologia , Túbulos Renais Distais/metabolismo , Néfrons/metabolismo , Animais , Antiportadores de Cloreto-Bicarbonato/fisiologia , ATPase Trocadora de Hidrogênio-Potássio/fisiologia , Humanos , Transporte de Íons , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/fisiologia , ATPases Vacuolares Próton-Translocadoras/fisiologia
12.
Curr Gastroenterol Rep ; 12(6): 458-64, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20821079

RESUMO

Acid-related disorders represent a major healthcare concern. In recent years, our understanding of the physiologic processes underlying gastric acid secretion has improved notably. The identity of several apical ion transport proteins, which are necessary for acid secretion to take place, has been resolved. The recent developments have uncovered potential therapeutic targets for the treatment of acid-related disorders. This brief review provides an update on the mechanisms of gastric acid secretion, with a particular focus on apical ion transport.


Assuntos
Ácido Gástrico/metabolismo , ATPase Trocadora de Hidrogênio-Potássio/fisiologia , Animais , Cloretos/metabolismo , Histamina/fisiologia , Humanos , Canal de Potássio KCNQ1/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Células Parietais Gástricas/fisiologia , Inibidores da Bomba de Prótons/farmacologia , Receptores de Detecção de Cálcio/fisiologia
13.
Curr Opin Nephrol Hypertens ; 19(5): 478-82, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20616716

RESUMO

PURPOSE OF REVIEW: We integrate recent evidence that demonstrates the importance of the gastric (HKalpha1) and nongastric (HKalpha2)-containing hydrogen potassium adenosine triphosphatases (H,K-ATPases) on physiological function and their role in potassium (K), sodium (Na), and acid-base balance. RECENT FINDINGS: Previous studies focused on the primary role of H,K-ATPases as a mechanism of K conservation during states of K deprivation. Both isoforms function in H secretion and K absorption in vivo during K deprivation, but recent findings show that these pumps also function in acid secretion in animals fed normal K-replete diets. The complicated pharmacological inhibition of both pumps is reviewed. Interestingly, HKalpha2-null mice have a reduced expression and activity of the renal epithelial Na channel alpha subunit in the colon. When the human nongastric isoform was studied in a heterologous expression system with its cognate beta subunit (NaKbeta1), the pump exhibited substantial Na affinity at the 'K'-binding site. Evidence cited herein raises the possibility that either directly or indirectly the renal HKalpha2-containing H,K-ATPase may affect Na balance. SUMMARY: Both H,K-ATPase isoforms are active in normal animals and not just under conditions of K depletion. The possibility that either one or both isoforms contribute to Na absorption, particularly in humans, raises important clinical implications for these pumps in the kidney.


Assuntos
ATPase Trocadora de Hidrogênio-Potássio/fisiologia , Rim/enzimologia , Acidose/enzimologia , Animais , ATPase Trocadora de Hidrogênio-Potássio/análise , Humanos , Transporte de Íons , Deficiência de Potássio/enzimologia , Sódio/metabolismo
14.
Yakugaku Zasshi ; 130(2): 205-10, 2010 Feb.
Artigo em Japonês | MEDLINE | ID: mdl-20118644

RESUMO

Acid secretion by the stomach results in a pH of about 1. This highly acidic environment is essential for digestion and also acts as a first barrier against bacterial and viral infections. Conversely, too much acid secretion causes gastric ulcer. The mechanism by which this massive proton gradient is generated is of considerable biomedical interest. In this review, we introduce the first molecular model for this remarkable biological phenomenon. The structure of H(+),K(+)-ATPase at 6.5 A resolution was determined by electron crystallography of two-dimensional crystals. The structure shows the catalytic alpha-subunit and the non-catalytic beta-subunit in a pseudo-E(2)P conformation. Different from Na(+),K(+)-ATPase, the N-terminal tail of the beta-subunit is in direct contact with the phosphorylation domain of the alpha-subunit. This interaction may hold the phosphorylation domain in place, thus stabilizing the enzyme conformation and preventing the reverse reaction of the transport cycle. Indeed, truncation of the beta-subunit N-terminus allowed the reverse reaction to occur. These results suggest that the N-terminal tail of the beta-subunit functions as a "ratchet", preventing inefficient transport and reverse-flow of protons. We can thus provide a mechanistic explanation for how the H(+),K(+)-ATPase can generate a million-fold proton gradient across the gastric parietal cell membrane, the highest cation gradient known in any mammalian tissue.


Assuntos
ATPase Trocadora de Hidrogênio-Potássio/química , ATPase Trocadora de Hidrogênio-Potássio/fisiologia , Animais , Catálise , Cristalização , Cristalografia , Elétrons , Mucosa Gástrica/enzimologia , Mucosa Gástrica/metabolismo , Humanos , Fosforilação , Conformação Proteica , Estrutura Terciária de Proteína , Prótons
15.
Am J Physiol Renal Physiol ; 298(1): F12-21, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19640897

RESUMO

The H(+)-K(+)-ATPases are ion pumps that use the energy of ATP hydrolysis to transport protons (H(+)) in exchange for potassium ions (K(+)). These enzymes consist of a catalytic alpha-subunit and a regulatory beta-subunit. There are two catalytic subunits present in the kidney, the gastric or HKalpha(1) isoform and the colonic or HKalpha(2) isoform. In this review we discuss new information on the physiological function, regulation, and structure of the renal H(+)-K(+)-ATPases. Evaluation of enzymatic functions along the nephron and collecting duct and studies in HKalpha(1) and HKalpha(2) knockout mice suggest that the H(+)-K(+)-ATPases may function to transport ions other than protons and potassium. These reports and recent studies in mice lacking both HKalpha(1) and HKalpha(2) suggest important roles for the renal H(+)-K(+)-ATPases in acid/base balance as well as potassium and sodium homeostasis. Molecular modeling studies based on the crystal structure of a related enzyme have made it possible to evaluate the structures of HKalpha(1) and HKalpha(2) and provide a means to study the specific cation transport properties of H(+)-K(+)-ATPases. Studies to characterize the cation specificity of these enzymes under different physiological conditions are necessary to fully understand the role of the H(+)-K(+) ATPases in renal physiology.


Assuntos
ATPase Trocadora de Hidrogênio-Potássio/química , ATPase Trocadora de Hidrogênio-Potássio/fisiologia , Rim/enzimologia , Equilíbrio Ácido-Base/fisiologia , Animais , Transporte Biológico/fisiologia , ATPase Trocadora de Hidrogênio-Potássio/genética , Rim/fisiologia , Camundongos , Camundongos Knockout , Modelos Animais , Sódio/metabolismo
16.
Cancer Cell ; 14(5): 408-19, 2008 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-18977329

RESUMO

Polymorphisms of interleukin-1beta (IL-1beta) are associated with an increased risk of solid malignancies. Here, we show that stomach-specific expression of human IL-1beta in transgenic mice leads to spontaneous gastric inflammation and cancer that correlate with early recruitment of myeloid-derived suppressor cells (MDSCs) to the stomach. IL-1beta activates MDSCs in vitro and in vivo through an IL-1RI/NF-kappaB pathway. IL-1beta transgenic mice deficient in T and B lymphocytes develop gastric dysplasia accompanied by a marked increase in MDSCs in the stomach. Antagonism of IL-1 receptor signaling inhibits the development of gastric preneoplasia and suppresses MDSC mobilization. These results demonstrate that pathologic elevation of a single proinflammatory cytokine may be sufficient to induce neoplasia and provide a direct link between IL-1beta, MDSCs, and carcinogenesis.


Assuntos
Gastrite/etiologia , Inflamação/etiologia , Interleucina-1beta/metabolismo , Camundongos Transgênicos/imunologia , Células Mieloides/imunologia , Neoplasias Gástricas/etiologia , Animais , Medula Óssea/imunologia , Medula Óssea/metabolismo , Medula Óssea/patologia , Células Cultivadas , Proteínas de Ligação a DNA/fisiologia , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Imunofluorescência , Gastrite/metabolismo , Gastrite/patologia , ATPase Trocadora de Hidrogênio-Potássio/fisiologia , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/virologia , Helicobacter felis/patogenicidade , Inflamação/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/genética , Interleucina-1beta/imunologia , Linfócitos/imunologia , Linfócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos/metabolismo , Camundongos Transgênicos/virologia , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , NF-kappa B/metabolismo , Lesões Pré-Cancerosas/imunologia , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Interleucina-1/antagonistas & inibidores , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Transfecção
17.
Int J Immunopathol Pharmacol ; 21(3): 515-26, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18831919

RESUMO

Helicobacter pylori infection is the major cause of gastroduodenal pathologies including gastric cancer. The long persistence of bacteria and the type of immune and inflammatory response determine the clinical issue. In this study, the global gene expression profile after 6 and 12 months of H. pylori infection was investigated in the mouse stomach, using the Affymetrix GeneChip Mouse Expression Array A430. Genes related to the inflammatory and immune responses were focused. Levels of selected transcripts were confirmed by reverse transcription polymerase chain reaction. Twenty- five and nineteen percent of the differentially expressed genes observed at 6 and 12 months post-infection respectively, were related to immune response. They are characterized by an interferon (IFN)gamma-dependent expression associated to a T helper 1 (Th1) polarised response. In-depth analysis revealed that an up-regulation of IL-23p19, took place in the stomach of H. pylori infected-mice. Strong IL-23p19 levels were also confirmed in gastric biopsies from H. pylori-infected patients with chronic gastritis, as compared to healthy subjects. Our microarray analysis revealed also, a high decrease of H+K+-ATPase transcripts in the presence of the H. pylori infection. Association of gastric Th1 immune response with hypochlorhydria through the down-regulation of H+K+-ATPase contributes to the genesis of lesions upon the H. pylori infection. Our data highlight that the up-regulation of IL-23 and of many IFNgamma signature transcripts occur early on during the host response to H. pylori, and suggest that this type of immune response may promote the severity of the induced gastric lesions.


Assuntos
Perfilação da Expressão Gênica , Infecções por Helicobacter/imunologia , Helicobacter pylori , Interferon gama/fisiologia , Interleucina-23/genética , Animais , Mucosa Gástrica/metabolismo , Regulação da Expressão Gênica , ATPase Trocadora de Hidrogênio-Potássio/fisiologia , Infecções por Helicobacter/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Regulação para Cima
18.
Arch Biochem Biophys ; 476(1): 75-86, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18328799

RESUMO

Planar lipid bilayers, e.g., black lipid membranes (BLM) and solid supported membranes (SSM), have been employed to investigate charge movements during the reaction cycle of P-type ATPases. The BLM/SSM method allows a direct measurement of the electrical currents generated by the cation transporter following chemical activation by a substrate concentration jump. The electrical current transients provides information about the reaction mechanism of the enzyme. In particular, the BLM/SSM technique allows identification of electrogenic steps which in turn may be used to localize ion translocation during the reaction cycle of the pump. In addition, using the high time resolution of the technique, especially when rapid activation via caged ATP is employed, rate constants of electrogenic and electroneutral steps can be determined. In the present review, we will discuss the main results obtained by the BLM and SSM methods and how they have contributed to unravel the transport mechanism of P-type ATPases.


Assuntos
ATPases Transportadoras de Cálcio/fisiologia , ATPase Trocadora de Hidrogênio-Potássio/fisiologia , Bicamadas Lipídicas/química , ATPase Trocadora de Sódio-Potássio/fisiologia , Adenosina Trifosfatases/química , Adenosina Trifosfatases/fisiologia , Animais , ATPases Transportadoras de Cálcio/química , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/fisiologia , Eletricidade , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/fisiologia , ATPase Trocadora de Hidrogênio-Potássio/química , Humanos , Transporte de Íons , Retículo Sarcoplasmático/enzimologia , ATPase Trocadora de Sódio-Potássio/química
19.
Curr Opin Gastroenterol ; 23(6): 595-601, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17906434

RESUMO

PURPOSE OF REVIEW: This review summarizes the past year's literature regarding the regulation of gastric exocrine and endocrine secretion. RECENT FINDINGS: Gastric acid secretion is tightly regulated by overlapping neural, hormonal, paracrine, and intracellular pathways in order to achieve the correct amount of acid secretion required by the specific situation. Too little acid can interfere with the absorption of iron, calcium, vitamin B12, and certain drugs as well as predispose to enteric infection, bacterial overgrowth, and gastric malignancy. Too much acid can induce esophageal, gastric, and duodenal injury. Gastrin, histamine, acetylcholine, and ghrelin stimulate whereas somatostatin, cholecystokinin, atrial natriuretic peptide, and nitric oxide inhibit acid secretion. Most patients infected with Helicobacter pylori manifest a pangastritis and produce less than normal amounts of acid; those with antral predominant gastritis, however, are hypergastrinemic and produce increased amounts of acid. Improved understanding of the channels and receptors that are required for and regulate H+K+-ATPase activity should lead to the development of novel antisecretory agents. SUMMARY: A better understanding of the pathways regulating gastric secretions should lead to new strategies to prevent and treat a variety of gastric disorders such as gastroesophageal reflux disease, autoimmune gastritis, gastric cancer, and functional dyspepsia.


Assuntos
Ácido Gástrico/metabolismo , Estômago/fisiologia , Acetilcolina/fisiologia , Gastrinas/metabolismo , Gastrinas/fisiologia , Grelina/fisiologia , ATPase Trocadora de Hidrogênio-Potássio/fisiologia , Helicobacter pylori/metabolismo , Histamina/fisiologia , Humanos , Células Parietais Gástricas/fisiologia , Precursores de Proteínas/metabolismo , Estômago/inervação , Estômago/microbiologia , Estômago/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...