Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.722
Filtrar
1.
J Immunol ; 213(2): 109-114, 2024 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-38950331

RESUMO

ATPase cation transporting 13A2 (ATP13A2) is an endolysosomal P-type ATPase known to be a polyamine transporter, explored mostly in neurons. As endolysosomal functions are also crucial in innate immune cells, we aimed to explore the potential role of ATP13A2 in the human immunocellular compartment. We found that human plasmacytoid dendritic cells (pDCs), the professional type I IFN-producing immune cells, especially have a prominent enrichment of ATP13A2 expression in endolysosomal compartments. ATP13A2 knockdown in human pDCs interferes with cytokine induction in response to TLR9/7 activation in response to bona fide ligands. ATP13A2 plays this crucial role in TLR9/7 activation in human pDCs by regulating endolysosomal pH and mitochondrial reactive oxygen generation. This (to our knowledge) hitherto unknown regulatory mechanism in pDCs involving ATP13A2 opens up a new avenue of research, given the crucial role of pDC-derived type I IFNs in protective immunity against infections as well as in the immunopathogenesis of myriad contexts of autoreactive inflammation.


Assuntos
Células Dendríticas , Endossomos , Lisossomos , Receptor Toll-Like 9 , Humanos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Lisossomos/metabolismo , Lisossomos/imunologia , Receptor Toll-Like 9/metabolismo , Receptor Toll-Like 9/imunologia , Endossomos/metabolismo , Endossomos/imunologia , ATPases Translocadoras de Prótons/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/imunologia , Células Cultivadas , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Receptor 7 Toll-Like
2.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39000442

RESUMO

Human defensins are cysteine-rich peptides (Cys-rich peptides) of the innate immune system. Defensins contain an ancestral structural motif (i.e., γ-core motif) associated with the antimicrobial activity of natural Cys-rich peptides. In this study, low concentrations of human α- and ß-defensins showed microbicidal activity that was not associated with cell membrane permeabilization. The cell death pathway was similar to that previously described for human lactoferrin, also an immunoprotein containing a γ-core motif. The common features were (1) cell death not related to plasma membrane (PM) disruption, (2) the inhibition of microbicidal activity via extracellular potassium, (3) the influence of cellular respiration on microbicidal activity, and (4) the influence of intracellular pH on bactericidal activity. In addition, in yeast, we also observed (1) partial K+-efflux mediated via Tok1p K+-channels, (2) the essential role of mitochondrial ATP synthase in cell death, (3) the increment of intracellular ATP, (4) plasma membrane depolarization, and (5) the inhibition of external acidification mediated via PM Pma1p H+-ATPase. Similar features were also observed with BM2, an antifungal peptide that inhibits Pma1p H+-ATPase, showing that the above coincident characteristics were a consequence of PM H+-ATPase inhibition. These findings suggest, for the first time, that human defensins inhibit PM H+-ATPases at physiological concentrations, and that the subsequent cytosolic acidification is responsible for the in vitro microbicidal activity. This mechanism of action is shared with human lactoferrin and probably other antimicrobial peptides containing γ-core motifs.


Assuntos
Membrana Celular , ATPases Translocadoras de Prótons , Humanos , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , ATPases Translocadoras de Prótons/metabolismo , ATPases Translocadoras de Prótons/antagonistas & inibidores , Permeabilidade da Membrana Celular/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Defensinas/farmacologia , Defensinas/metabolismo , Concentração de Íons de Hidrogênio , Saccharomyces cerevisiae/metabolismo , beta-Defensinas/metabolismo , beta-Defensinas/farmacologia , Lactoferrina/farmacologia , Lactoferrina/metabolismo , Potássio/metabolismo , Testes de Sensibilidade Microbiana , Candida albicans/efeitos dos fármacos
3.
Physiol Plant ; 176(3): e14380, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38894644

RESUMO

Phototropism movement is crucial for plants to adapt to various environmental changes. Plant P-type H+-ATPase (HA) plays diverse roles in signal transduction during cell expansion, regulation of cellular osmotic potential and stomatal opening, and circadian movement. Despite numerous studies on the genome-wide analysis of Vitis vinifera, no research has been done on the P-type H+-ATPase family genes, especially concerning pulvinus-driven leaf movement. In this study, 55 VvHAs were identified and classified into nine distinct subgroups (1 to 9). Gene members within the same subgroups exhibit similar features in motif, intron/exon, and protein tertiary structures. Furthermore, four pairs of genes were derived by segmental duplication in grapes. Cis-acting element analysis identified numerous light/circadian-related elements in the promoters of VvHAs. qRT-PCR analysis showed that several genes of subgroup 7 were highly expressed in leaves and pulvinus during leaf movement, especially VvHA14, VvHA15, VvHA16, VvHA19, VvHA51, VvHA52, and VvHA54. Additionally, we also found that the VvHAs genes were asymmetrically expressed on both sides of the extensor and flexor cell of the motor organ, the pulvinus. The expression of VvHAs family genes in extensor cells was significantly higher than that in flexor cells. Overall, this study serves as a foundation for further investigations into the functions of VvHAs and contributes to the complex mechanisms underlying grapevine pulvinus growth and development.


Assuntos
Regulação da Expressão Gênica de Plantas , Fototropismo , Folhas de Planta , Proteínas de Plantas , ATPases Translocadoras de Prótons , Vitis , Vitis/genética , Vitis/fisiologia , Vitis/enzimologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fototropismo/genética , Fototropismo/fisiologia , Pulvínulo/genética , Pulvínulo/metabolismo , Pulvínulo/fisiologia , Membrana Celular/metabolismo , Filogenia , Família Multigênica
4.
Proc Natl Acad Sci U S A ; 121(21): e2314604121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38748581

RESUMO

We developed a significantly improved genetically encoded quantitative adenosine triphosphate (ATP) sensor to provide real-time dynamics of ATP levels in subcellular compartments. iATPSnFR2 is a variant of iATPSnFR1, a previously developed sensor that has circularly permuted superfolder green fluorescent protein (GFP) inserted between the ATP-binding helices of the ε-subunit of a bacterial F0-F1 ATPase. Optimizing the linkers joining the two domains resulted in a ~fivefold to sixfold improvement in the dynamic range compared to the previous-generation sensor, with excellent discrimination against other analytes, and affinity variants varying from 4 µM to 500 µM. A chimeric version of this sensor fused to either the HaloTag protein or a suitable spectrally separated fluorescent protein provides an optional ratiometric readout allowing comparisons of ATP across cellular regions. Subcellular targeting the sensor to nerve terminals reveals previously uncharacterized single-synapse metabolic signatures, while targeting to the mitochondrial matrix allowed direct quantitative probing of oxidative phosphorylation dynamics.


Assuntos
Trifosfato de Adenosina , Proteínas de Fluorescência Verde , Trifosfato de Adenosina/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Humanos , Técnicas Biossensoriais/métodos , Animais , Fosforilação Oxidativa , ATPases Translocadoras de Prótons/metabolismo , ATPases Translocadoras de Prótons/genética
5.
Mol Cell ; 84(10): 1917-1931.e15, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38723633

RESUMO

Many multi-spanning membrane proteins contain poorly hydrophobic transmembrane domains (pTMDs) protected from phospholipid in mature structure. Nascent pTMDs are difficult for translocon to recognize and insert. How pTMDs are discerned and packed into mature, muti-spanning configuration remains unclear. Here, we report that pTMD elicits a post-translational topogenesis pathway for its recognition and integration. Using six-spanning protein adenosine triphosphate-binding cassette transporter G2 (ABCG2) and cultured human cells as models, we show that ABCG2's pTMD2 can pass through translocon into the endoplasmic reticulum (ER) lumen, yielding an intermediate with inserted yet mis-oriented downstream TMDs. After translation, the intermediate recruits P5A-ATPase ATP13A1, which facilitates TMD re-orientation, allowing further folding and the integration of the remaining lumen-exposed pTMD2. Depleting ATP13A1 or disrupting pTMD-characteristic residues arrests intermediates with mis-oriented and exposed TMDs. Our results explain how a "difficult" pTMD is co-translationally skipped for insertion and post-translationally buried into the final correct structure at the late folding stage to avoid excessive lipid exposure.


Assuntos
Retículo Endoplasmático , Dobramento de Proteína , Humanos , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/química , ATPases Translocadoras de Prótons/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/química , Células HEK293 , Domínios Proteicos , Interações Hidrofóbicas e Hidrofílicas , Processamento de Proteína Pós-Traducional , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/química
6.
mSphere ; 9(6): e0025324, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38814077

RESUMO

Aspergillus fumigatus is the leading cause of severe mold infections in immunocompromised patients. This common fungus possesses innate attributes that allow it to evade the immune system, including its ability to survive the high copper (Cu) levels in phagosomes. Our previous work has revealed that under high Cu levels, the A. fumigatus transcription factor AceA is activated, inducing the expression of the copper exporter CrpA to expel excess Cu. To identify additional elements in Cu resistance, we evolved A. fumigatus wild-type and mutant ΔaceA or ΔcrpA strains under increasing Cu concentrations. Sequencing of the resultant resistant strains identified both shared and unique evolutionary pathways to resistance. Reintroduction of three of the most common mutations in genes encoding Pma1 (plasma membrane H+-ATPase), Gcs1 (glutamate cysteine-ligase), and Cpa1 (carbamoyl-phosphate synthetase), alone and in combination, into wild-type A. fumigatus confirmed their additive role in conferring Cu resistance. Detailed analysis indicated that the pma1 mutation L424I preserves Pma1 H+-ATPase activity under high Cu concentrations and that the cpa1 mutation A37V confers a survival advantage to conidia in the presence of Cu. Interestingly, simultaneous mutations of all three genes did not alter virulence in infected mice. Our work has identified novel Cu-resistance pathways and provides an evolutionary approach for dissecting the molecular basis of A. fumigatus adaptation to diverse environmental challenges.IMPORTANCEAspergillus fumigatus is the most common mold infecting patients with weakened immunity. Infection is caused by the inhalation of mold spores into the lungs and is often fatal. In healthy individuals, spores are engulfed by lung immune cells and destroyed by a combination of enzymes, oxidants, and high levels of copper. However, the mold can protect itself by pumping out excess copper with specific transporters. Here, we evolved A. fumigatus under high copper levels and identified new genetic mutations that help it resist the toxic effects of copper. We studied how these mutations affect the mold's ability to resist copper and how they impact its ability to cause disease. This is the first such study in a pathogenic mold, and it gives us a better understanding of how it manages to bypass our body's defenses during an infection.


Assuntos
Aspergillus fumigatus , Cobre , Proteínas Fúngicas , Aspergillus fumigatus/genética , Aspergillus fumigatus/patogenicidade , Cobre/metabolismo , Animais , Camundongos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Aspergilose/microbiologia , Aspergilose/imunologia , Mutação , Farmacorresistência Fúngica/genética , Virulência , Evolução Molecular , Glutamato-Cisteína Ligase/genética , Feminino , ATPases Translocadoras de Prótons/genética
7.
Plant Physiol Biochem ; 211: 108723, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38749376

RESUMO

Legume-rhizobia symbiosis requires high phosphorus (P) in the form of ATP to convert atmospheric nitrogen (N) into ammonia. The fixed ammonia is converted to NH4+ by H+-ATPase via protonation. To the best of our knowledge, most of these research works resort to using only inorganic P (Pi) to the neglect of the organic P (Po) counterpart. As it stands, the potential regulating roles of plasma membrane (PM) H+-ATPases during legume-rhizobia symbiosis in response to phytic acid supply and how it alters and modulates the regulation of PM H+-ATPases remain obscure. To contribute to the above hypothesis, we investigate the mechanisms that coordinately facilitate the growth, uptake, and transcript expression of PM H+-ATPase gene isoforms in response to different P sources when hydroponically grown Vicia faba plants were exposed to three P treatments, viz., low- and high-Pi (2.0 and 200 µM KH2PO4; LPi and HPi), and phytic acid (200 µM; Po) and inoculated with Rhizobium leguminosarum bv. viciae 384 for 30 days. The results consistently reveal that the supply of Po improved not only the growth and biomass, but also enhanced photosynthetic parameters, P uptake and phosphatase activities in symbiotically grown Vicia faba relative to Pi. The supply of Po induced higher transcriptional expression of all PM H+-ATPase gene isoforms, with possible interactions between phosphatases and H+-ATPase genes in Vicia faba plants when exclusively reliant on N derived from nodule symbiosis. Overall, preliminary results suggest that Po could be used as an alternative nutrition in symbiotic crops to improve plant growth.


Assuntos
Fósforo , Vicia faba , Vicia faba/crescimento & desenvolvimento , Vicia faba/fisiologia , Simbiose , Biomassa , Fósforo/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Carbono/metabolismo , Membrana Celular/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Expressão Gênica , Transcrição Gênica
8.
Biophys Chem ; 309: 107232, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593533

RESUMO

ATP-hydrolysis-associated conformational change of the ß-subunit during the rotation of F1-ATPase (F1) has been discussed using cryo-electron microscopy (cryo-EM). Since it is worthwhile to further investigate the conformation of ATP at the catalytic subunit through an alternative approach, the structure of ATP bound to the F1ß-subunit monomer (ß) was analyzed by solid-state NMR. The adenosine conformation of ATP-ß was similar to that of ATP analog in F1 crystal structures. 31P chemical shift analysis showed that the Pα and Pß conformations of ATP-ß are gauche-trans and trans-trans, respectively. The triphosphate chain is more extended in ATP-ß than in ATP analog in F1 crystals. This appears to be in the state just before ATP hydrolysis. Furthermore, the ATP-ß conformation is known to be more closed than the closed form in F1 crystal structures. In view of the cryo-EM results, ATP-ß would be a model of the most closed ß-subunit with ATP ready for hydrolysis in the hydrolysis stroke of the F1 rotation.


Assuntos
Trifosfato de Adenosina , ATPases Translocadoras de Prótons , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo , Hidrólise , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Domínio Catalítico , Conformação Proteica
9.
Antimicrob Agents Chemother ; 68(5): e0160923, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38567956

RESUMO

The increasing prevalence of dermatophyte resistance to terbinafine, a key drug in the treatment of dermatophytosis, represents a significant obstacle to treatment. Trichophyton rubrum is the most commonly isolated fungus in dermatophytosis. In T. rubrum, we identified TERG_07844, a gene encoding a previously uncharacterized putative protein kinase, as an ortholog of budding yeast Saccharomyces cerevisiae polyamine transport kinase 2 (Ptk2), and found that T. rubrum Ptk2 (TrPtk2) is involved in terbinafine tolerance. In both T. rubrum and S. cerevisiae, Ptk2 knockout strains were more sensitive to terbinafine compared with the wild types, suggesting that promotion of terbinafine tolerance is a conserved function of fungal Ptk2. Pma1 is activated through phosphorylation by Ptk2 in S. cerevisiae. Overexpression of T. rubrum Pma1 (TrPma1) in T. rubrum Ptk2 knockout strain (ΔTrPtk2) suppressed terbinafine sensitivity, suggesting that the induction of terbinafine tolerance by TrPtk2 is mediated by TrPma1. Furthermore, omeprazole, an inhibitor of plasma membrane proton pump Pma1, increased the terbinafine sensitivity of clinically isolated terbinafine-resistant strains. These findings suggest that, in dermatophytes, the TrPtk2-TrPma1 pathway plays a key role in promoting intrinsic terbinafine tolerance and may serve as a potential target for combinational antifungal therapy against terbinafine-resistant dermatophytes.


Assuntos
Antifúngicos , Arthrodermataceae , Farmacorresistência Fúngica , Testes de Sensibilidade Microbiana , Saccharomyces cerevisiae , Terbinafina , Terbinafina/farmacologia , Antifúngicos/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Farmacorresistência Fúngica/genética , Arthrodermataceae/efeitos dos fármacos , Arthrodermataceae/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fosforilação
10.
Cardiovasc Res ; 120(7): 756-768, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38626311

RESUMO

AIMS: Potential loss-of-function variants of ATP13A3, the gene encoding a P5B-type transport ATPase of undefined function, were recently identified in patients with pulmonary arterial hypertension (PAH). ATP13A3 is implicated in polyamine transport but its function has not been fully elucidated. In this study, we sought to determine the biological function of ATP13A3 in vascular endothelial cells (ECs) and how PAH-associated variants may contribute to disease pathogenesis. METHODS AND RESULTS: We studied the impact of ATP13A3 deficiency and overexpression in EC models [human pulmonary ECs, blood outgrowth ECs (BOECs), and human microvascular EC 1], including a PAH patient-derived BOEC line harbouring an ATP13A3 variant (LK726X). We also generated mice harbouring an Atp13a3 variant analogous to a human disease-associated variant to establish whether these mice develop PAH. ATP13A3 localized to the recycling endosomes of human ECs. Knockdown of ATP13A3 in ECs generally reduced the basal polyamine content and altered the expression of enzymes involved in polyamine metabolism. Conversely, overexpression of wild-type ATP13A3 increased polyamine uptake. Functionally, loss of ATP13A3 was associated with reduced EC proliferation, increased apoptosis in serum starvation, and increased monolayer permeability to thrombin. The assessment of five PAH-associated missense ATP13A3 variants (L675V, M850I, V855M, R858H, and L956P) confirmed loss-of-function phenotypes represented by impaired polyamine transport and dysregulated EC function. Furthermore, mice carrying a heterozygous germline Atp13a3 frameshift variant representing a human variant spontaneously developed a PAH phenotype, with increased pulmonary pressures, right ventricular remodelling, and muscularization of pulmonary vessels. CONCLUSION: We identify ATP13A3 as a polyamine transporter controlling polyamine homeostasis in ECs, a deficiency of which leads to EC dysfunction and predisposes to PAH. This suggests a need for targeted therapies to alleviate the imbalances in polyamine homeostasis and EC dysfunction in PAH.


Assuntos
Células Endoteliais , Poliaminas , Animais , Humanos , Poliaminas/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais/enzimologia , Proliferação de Células , Artéria Pulmonar/metabolismo , Artéria Pulmonar/fisiopatologia , ATPases Translocadoras de Prótons/metabolismo , ATPases Translocadoras de Prótons/genética , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/fisiopatologia , Hipertensão Arterial Pulmonar/enzimologia , Hipertensão Arterial Pulmonar/patologia , Apoptose , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/patologia , Endossomos/metabolismo , Transporte Biológico , Modelos Animais de Doenças , Células Cultivadas , Fenótipo , Camundongos Endogâmicos C57BL , Camundongos
12.
Mol Biol Rep ; 51(1): 498, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598037

RESUMO

BACKGROUND: Cutis laxa is a connective tissue disease caused by abnormal synthesis or secretion of skin elastic fibers, leading to skin flabby and saggy in various body parts. It can be divided into congenital cutis laxa and acquired cutis laxa, and inherited cutis laxa syndromes is more common in clinic. METHODS: In this study, we reported a case of a Han-Chinese male newborn with ATP6V0A2 gene variant leading to cutis laxa. The proband was identified by whole-exome sequencing to determine the novel variant, and their parents were verified by Sanger sequencing. Bioinformatics analysis and minigene assay were used to verify the effect of this variant on splicing function. RESULTS: The main manifestations of the proband are skin laxity, abnormal facial features, and enlargement of the anterior fontanelle. Whole-exome sequencing showed that the newborn carried a non-canonical splicing-site variant c.117 + 5G > T, p. (?) in ATP6V0A2 gene. Sanger sequencing showed that both parents of the proband carried the heterozygous variant. The results of bioinformatics analysis and minigene assay displayed that the variant site affected the splicing function of pre-mRNA of the ATP6V0A2 gene. CONCLUSIONS: In this study, it was identified that ATP6V0A2 gene c. 117 + 5G > T may be the cause of the disease. The non-canonical splicing variants of ATP6V0A2 gene were rarely reported in the past, and this variant expanded the variants spectrum of the gene. The functional study of minigene assay plays a certain role in improving the level of evidence for the pathogenicity of splicing variants, which lays a foundation for prenatal counseling and follow-up gene therapy.


Assuntos
Cútis Laxa , Feminino , Humanos , Recém-Nascido , Masculino , Gravidez , Povo Asiático/genética , China , Cútis Laxa/genética , ATPases Translocadoras de Prótons , Splicing de RNA/genética , Pele
13.
Environ Sci Technol ; 58(13): 5974-5986, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38512049

RESUMO

Fish gills are highly sensitive organs for microplastic (MP) and nanoplastic (NP) invasions, but the cellular heterogeneity of fish gills to MPs and NPs remains largely unknown. We employed single-cell RNA sequencing to investigate the responses of individual cell populations in tilapia Oreochromis niloticus gills to MP and NP exposure at an environmentally relevant concentration. Based on the detected differentially expressed gene (DEG) numbers, the most affected immune cells by MP exposure were macrophages, while the stimulus of NPs primarily targeted T cells. In response to MPs and NPs, H+-ATPase-rich cells exhibited distinct changes as compared with Na+/K+-ATPase-rich cells and pavement cells. Fibroblasts were identified as a potential sensitive cell-type biomarker for MP interaction with O. niloticus gills, as evidenced by the largely reduced cell counts and the mostly detected DEGs among the 12 identified cell populations. The most MP-sensitive fibroblast subpopulation in O. niloticus gills was lipofibroblasts. Cell-cell communications between fibroblasts and H+-ATPase-rich cells, neurons, macrophages, neuroepithelial cells, and Na+/K+-ATPase-rich cells in O. niloticus gills were significantly inhibited by MP exposure. Collectively, our study demonstrated the cellular heterogeneity of O. niloticus gills to MPs and NPs and provided sensitive markers for their toxicological mechanisms at single-cell resolution.


Assuntos
Microplásticos , Plásticos , Animais , Microplásticos/toxicidade , Brânquias , ATPases Translocadoras de Prótons , Análise de Sequência de RNA
14.
J Plant Physiol ; 296: 154225, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522214

RESUMO

Local damaging stimuli cause a rapid increase in the content of the defense phytohormone jasmonic acid (JA) and its biologically active derivative jasmonoyl-L-isoleucine (JA-Ile) in undamaged distal tissues. The increase in JA and JA-Ile levels was coincident with a rapid decrease in the levels of the precursor 12-oxo-phytodienoic acid (OPDA). The propagation of a stimulus-induced long-distance electrical signal, variation potential (VP), which is accompanied by intracellular changes in pH and Ca2+ levels, preceded systemic changes in jasmonate content. The decrease in pH during VP, mediated by transient inactivation of the plasma membrane H+-ATPase, induced the conversion of OPDA to JA, probably by regulating the availability of the OPDA substrate to JA biosynthetic enzymes. The regulation of systemic synthesis of JA and JA-Ile by the Ca2+ wave accompanying VP most likely occurs by the same mechanism of pH-induced conversion of OPDA to JA due to Ca2+-mediated decrease in pH as a result of H+-ATPase inactivation. Thus, the transient increase in intracellular Ca2+ levels and the transient decrease in intracellular pH are most likely the key mechanisms of VP-mediated regulation of jasmonate production in systemic tissues upon local stimulation.


Assuntos
Arabidopsis , Compostos de Diazônio , Isoleucina/análogos & derivados , Piridinas , Arabidopsis/metabolismo , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Isoleucina/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Concentração de Íons de Hidrogênio
15.
Curr Biol ; 34(7): 1479-1491.e6, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38490203

RESUMO

NRT1.1, a nitrate transceptor, plays an important role in nitrate binding, sensing, and nitrate-dependent lateral root (LR) morphology. However, little is known about NRT1.1-mediated nitrate signaling transduction through plasma membrane (PM)-localized proteins. Through in-depth phosphoproteome profiling using membranes of Arabidopsis roots, we identified receptor kinase QSK1 and plasma membrane H+-ATPase AHA2 as potential downstream components of NRT1.1 signaling in a mild low-nitrate (LN)-dependent manner. QSK1, as a functional kinase and molecular link, physically interacts with NRT1.1 and AHA2 at LN and specifically phosphorylates AHA2 at S899. Importantly, we found that LN, not high nitrate (HN), induces formation of the NRT1.1-QSK1-AHA2 complex in order to repress the proton efflux into the apoplast by increased phosphorylation of AHA2 at S899. Loss of either NRT1.1 or QSK1 thus results in a higher T947/S899 phosphorylation ratio on AHA2, leading to enhanced pump activity and longer LRs under LN. Our results uncover a regulatory mechanism in which NRT1.1, under LN conditions, promotes coreceptor QSK1 phosphorylation and enhances the NRT1.1-QSK1 complex formation to transduce LN sensing to the PM H+-ATPase AHA2, controlling the phosphorylation ratio of activating and inhibitory phosphorylation sites on AHA2. This then results in altered proton pump activity, apoplast acidification, and regulation of NRT1.1-mediated LR growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Nitratos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo
16.
J Biol Chem ; 300(4): 107167, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490436

RESUMO

The increasing prevalence of herbicide-resistant weeds has led to a search for new herbicides that target plant growth processes differing from those targeted by current herbicides. In recent years, some studies have explored the use of natural compounds from microorganisms as potential new herbicides. We previously demonstrated that tenuazonic acid (TeA) from the phytopathogenic fungus Stemphylium loti inhibits the plant plasma membrane (PM) H+-ATPase, representing a new target for herbicides. In this study, we further investigated the mechanism by which TeA inhibits PM H+-ATPase and the effect of the toxin on plant growth using Arabidopsis thaliana. We also studied the biochemical effects of TeA on the PM H+-ATPases from spinach (Spinacia oleracea) and A. thaliana (AHA2) by examining PM H+-ATPase activity under different conditions and in different mutants. Treatment with 200 µM TeA-induced cell necrosis in larger plants and treatment with 10 µM TeA almost completely inhibited cell elongation and root growth in seedlings. We show that the isoleucine backbone of TeA is essential for inhibiting the ATPase activity of the PM H+-ATPase. Additionally, this inhibition depends on the C-terminal domain of AHA2, and TeA binding to PM H+-ATPase requires the Regulatory Region I of the C-terminal domain in AHA2. TeA likely has a higher binding affinity toward PM H+-ATPase than the phytotoxin fusicoccin. Finally, our findings show that TeA retains the H+-ATPase in an inhibited state, suggesting that it could act as a lead compound for creating new herbicides targeting the PM H+-ATPase.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Membrana Celular , Herbicidas , ATPases Translocadoras de Prótons , Spinacia oleracea , Ácido Tenuazônico , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Arabidopsis/enzimologia , ATPases Translocadoras de Prótons/metabolismo , ATPases Translocadoras de Prótons/antagonistas & inibidores , Ácido Tenuazônico/metabolismo , Ácido Tenuazônico/farmacologia , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Herbicidas/farmacologia , Herbicidas/química , Spinacia oleracea/efeitos dos fármacos , Spinacia oleracea/crescimento & desenvolvimento , Spinacia oleracea/metabolismo
17.
Commun Biol ; 7(1): 366, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531947

RESUMO

The flagellar type III secretion system (fT3SS) switches substrate specificity from rod-hook-type to filament-type upon hook completion, terminating hook assembly and initiating filament assembly. The C-terminal cytoplasmic domain of FlhA (FlhAC) forms a homo-nonameric ring and is directly involved in substrate recognition, allowing the fT3SS to coordinate flagellar protein export with assembly. The highly conserved GYXLI motif (residues 368-372) of FlhAC induces dynamic domain motions of FlhAC required for efficient and robust flagellar protein export by the fT3SS, but it remains unknown whether this motif is also important for ordered protein export by the fT3SS. Here we analyzed two GYXLI mutants, flhA(GAAAA) and flhA(GGGGG), and provide evidence suggesting that the GYXLI motif in FlhAC requires the flagellar ATPase complex not only to efficiently remodel the FlhAC ring structure for the substrate specificity switching but also to correct substrate recognition errors that occur during flagellar assembly.


Assuntos
Proteínas de Bactérias , Proteínas de Membrana , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Transporte Proteico , Salmonella , ATPases Translocadoras de Prótons/metabolismo
18.
Proc Natl Acad Sci U S A ; 121(11): e2314199121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38451940

RESUMO

Proton-powered c-ring rotation in mitochondrial ATP synthase is crucial to convert the transmembrane protonmotive force into torque to drive the synthesis of adenosine triphosphate (ATP). Capitalizing on recent cryo-EM structures, we aim at a structural and energetic understanding of how functional directional rotation is achieved. We performed multi-microsecond atomistic simulations to determine the free energy profiles along the c-ring rotation angle before and after the arrival of a new proton. Our results reveal that rotation proceeds by dynamic sliding of the ring over the a-subunit surface, during which interactions with conserved polar residues stabilize distinct intermediates. Ordered water chains line up for a Grotthuss-type proton transfer in one of these intermediates. After proton transfer, a high barrier prevents backward rotation and an overall drop in free energy favors forward rotation, ensuring the directionality of c-ring rotation required for the thermodynamically disfavored ATP synthesis. The essential arginine of the a-subunit stabilizes the rotated configuration through a salt bridge with the c-ring. Overall, we describe a complete mechanism for the rotation step of the ATP synthase rotor, thereby illuminating a process critical to all life at atomic resolution.


Assuntos
ATPases Mitocondriais Próton-Translocadoras , Prótons , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Conformação Proteica , Trifosfato de Adenosina , Rotação , ATPases Translocadoras de Prótons/metabolismo
19.
Plant Sci ; 343: 112071, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38508495

RESUMO

The S-locus lectin receptor kinases (G-LecRKs) have been suggested as receptors for microbe/damage-associated molecular patterns (MAMPs/DAMPs) and to be involved in the pathogen defense responses, but the functions of most G-LecRKs in biotic stress response have not been characterized. Here, we identified a member of this family, G-LecRK-I.2, that positively regulates flg22- and Pseudomonas syringae pv. tomato (Pst) DC3000-induced stomatal closure. G-LecRK-I.2 was rapidly phosphorylated under flg22 treatment and could interact with the FLS2/BAK1 complex. Two T-DNA insertion lines, glecrk-i.2-1 and glecrk-i.2-2, had lower levels of reactive oxygen species (ROS) and nitric oxide (NO) production in guard cells, as compared with the wild-type Col-0, under Pst DC3000 infection. Also, the immunity marker genes CBP60g and PR1 were induced at lower levels under Pst DC3000 hrcC- infection in glecrk-i.2-1 and glecrk-i.2-2. The GUS reporter system also revealed that G-LecRK-I.2 was expressed only in guard cells. We also found that G-LecRK-I.2 could interact H+-ATPase AHA1 to regulate H+-ATPase activity in the guard cells. Taken together, our results show that G-LecRK-I.2 plays an important role in regulating stomatal closure under flg22 and Pst DC3000 treatments and in ROS and NO signaling specifically in guard cells.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Receptores Mitogênicos/genética , Espécies Reativas de Oxigênio/metabolismo , ATPases Translocadoras de Prótons/genética , Pseudomonas syringae/fisiologia , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
20.
Protein Sci ; 33(4): e4942, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501464

RESUMO

IF1 , an inhibitor protein of mitochondrial ATP synthase, suppresses ATP hydrolytic activity of F1 . One of the unique features of IF1 is the selective inhibition in mitochondrial F1 (MF1 ); it inhibits catalysis of MF1 but does not affect F1 with bacterial origin despite high sequence homology between MF1 and bacterial F1 . Here, we aimed to engineer thermophilic Bacillus F1 (TF1 ) to confer the susceptibility to IF1 for elucidating the molecular mechanism of selective inhibition of IF1 . We first examined the IF1 -susceptibility of hybrid F1 s, composed of each subunit originating from bovine MF1 (bMF1 ) or TF1 . It was clearly shown that only the hybrid with the ß subunit of mitochondrial origin has the IF1 -susceptibility. Based on structural analysis and sequence alignment of bMF1 and TF1 , the five non-conserved residues on the C-terminus of the ß subunit were identified as the candidate responsible for the IF1 -susceptibility. These residues in TF1 were substituted with the bMF1 residues. The resultant mutant TF1 showed evident IF1 -susceptibility. Reversely, we examined the bMF1 mutant with TF1 residues at the corresponding sites, which showed significant suppression of IF1 -susceptibility, confirming the critical role of these residues. We also tested additional three substitutions with bMF1 residues in α and γ subunits that further enhanced the IF1 -susceptibility, suggesting the additive role of these residues. We discuss the molecular mechanism by which IF1 specifically recognizes F1 with mitochondrial origin, based on the present result and the structure of F1 -IF1 complex. These findings would help the development of the inhibitors targeting bacterial F1 .


Assuntos
Bacillus , ATPases Translocadoras de Prótons , Animais , Bovinos , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo , Proteínas/química , Bactérias/metabolismo , Mitocôndrias/metabolismo , Bacillus/genética , Trifosfato de Adenosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...