Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 1377: 57-70, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26695022

RESUMO

Plasma membrane Ca(2+) ATPases (PMCA pumps) are key regulators of cytosolic Ca(2+) in eukaryotes. They extrude Ca(2+) from the cytosol, using the energy of ATP hydrolysis and operate as Ca(2+)-H(+) exchangers. They are activated by the Ca(2+)-binding protein calmodulin, by acidic phospholipids and by other mechanisms, among them kinase-mediated phosphorylation. Isolation of the PMCA in pure and active form is essential for the analysis of its structure and function. In this chapter, the purification of the pump, as first achieved from erythrocyte plasma membranes by calmodulin-affinity chromatography, is described in detail. The reversible, high-affinity, Ca(2+)-dependent interaction of the pump with calmodulin is the basis of the procedure. Either phospholipids or glycerol have to be present in the isolation buffers to keep the pump active during the isolation procedure. After the isolation of the PMCA pump from human erythrocytes the pump was purified from other cell types, e.g., heart sarcolemma, plant microsomal fractions, and cells that express it ectopically. The reconstitution of the purified pump into phospholipid vesicles using the cholate dialysis method will also be described. It allows studies of transport mechanism and of regulation of pump activity. The purified pump can be stored in the reconstituted form for several days at 4 °C with little loss of activity, but it rapidly loses activity when stored in the detergent-solubilized form.


Assuntos
Cálcio/metabolismo , Cromatografia de Afinidade/métodos , Membrana Eritrocítica/enzimologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/isolamento & purificação , Calmodulina/química , Humanos , Fosforilação , ATPases Transportadoras de Cálcio da Membrana Plasmática/química
2.
Protein Expr Purif ; 120: 51-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26707401

RESUMO

Human plasma membrane calcium ATPases (PMCAs) are highly regulated transporters responsible for the extrusion of calcium out of the cell. Since calcium homeostasis is implicated in several diseases and neurodegenerative disorders, understanding PMCAs activity is crucial. One of the major hindrances is the availability of these proteins for functional and structural analysis. Here, using the yeast Saccharomyces cerevisiae system, we show a new and enhanced method for the expression of the full-length human PMCA isoform 4b (hPMCA4b) and a truncated form lacking its auto-inhibitory domain. We have also improved a method for the purification of the native isoform by calmodulin-agarose affinity chromatography, and developed a new method to purify the truncated isoform by glutathione-Sepharose affinity chromatography. One of the most relevant features of this work is that, when compared to PMCAs purification from pig brain, our method provides a pure single isoform instead of a mixture of isoforms, essential for fine-tuning the activity of PMCA4b. Another relevant feature is that the method described in this work has a superior yield of protein than previously established methods to purify PMCA proteins expressed in yeasts.


Assuntos
Cromatografia de Afinidade/métodos , Clonagem Molecular , Expressão Gênica , ATPases Transportadoras de Cálcio da Membrana Plasmática/isolamento & purificação , Saccharomyces cerevisiae/genética , Animais , Humanos , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Suínos
3.
Biochem J ; 443(1): 125-31, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22214540

RESUMO

The autoinhibition/activation of the PMCA (plasma membrane Ca2+-ATPase) involves conformational changes in the membrane region of the protein that affect the amount of lipids directly associated with the transmembrane domain. The lipid-protein-dependence of PMCA isoforms 2 and 4 expressed and obtained in purified form from Saccharomyces cerevisiae was investigated using the phosphatidylcholine analogue [125I]TID-PC/16 {l-O-hexadecanoyl-2-O-[9-[[[2-[125I]iodo-4-(trifluoromemyl-3H-diazirin-3-yl)benzyl]oxy]carbonyl]nonanoyl]-sn-glycero-3-phosphocholine}, which was incorporated into mixtures of dimyristoylphosphatidylcholine and the non-ionic detergent C12E10 [deca(ethylene glycol) dodecyl ether]. We found no differences between the recombinant PMCA4 and PMCA purified from erythrocytes (ePMCA). However, titration of the half-maximal activation by Ca2+/calmodulin of PMCA2 showed 30-fold higher affinity than PMCA4. PMCA2 exhibited a lower level of labelling in the autoinhibited conformation relative to PMCA4, indicating that the lower autoinhibition was correlated with a lower exposure to lipids in the autoinhibited state. Analysis of the lipid-protein stoichiometry showed that the lipid annulus of PMCA varies: (i) in accordance to the conformational state of the enzyme; and (ii) depending on the different isoforms of PMCA. PMCA2 during Ca2+ transport changes its conformation to a lesser extent than PMCA4, an isoform more sensitive to modulation by calmodulin and acidic phospholipids. This is the first demonstration of a dynamic behaviour of annular lipids and PMCA.


Assuntos
Ativação Enzimática , Fosfolipídeos/química , ATPases Transportadoras de Cálcio da Membrana Plasmática/química , Animais , Calmodulina/química , Cromatografia de Afinidade , Eritrócitos/enzimologia , Humanos , Isoenzimas/biossíntese , Isoenzimas/química , Isoenzimas/isolamento & purificação , ATPases Transportadoras de Cálcio da Membrana Plasmática/biossíntese , ATPases Transportadoras de Cálcio da Membrana Plasmática/isolamento & purificação , Ligação Proteica , Conformação Proteica , Ratos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Saccharomyces cerevisiae , Coloração e Rotulagem , Titulometria
4.
J Biol Chem ; 286(21): 18397-404, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21454645

RESUMO

The exposure of the plasma membrane calcium pump (PMCA) to the surrounding phospholipids was assessed by measuring the incorporation of the photoactivatable phosphatidylcholine analog [(125)I]TID-PC/16 to the protein. In the presence of Ca(2+) both calmodulin (CaM) and phosphatidic acid (PA) greatly decreased the incorporation of [(125)I]TID-PC/16 to PMCA. Proteolysis of PMCA with V8 protease results in three main fragments: N, which includes transmembrane segments M1 and M2; M, which includes M3 and M4; and C, which includes M5 to M10. CaM decreased the level of incorporation of [(125)I]TID-PC/16 to fragments M and C, whereas phosphatidic acid decreased the incorporation of [(125)I]TID-PC/16 to fragments N and M. This suggests that the conformational changes induced by binding of CaM or PA extend to the adjacent transmembrane domains. Interestingly, this result also denotes differences between the active conformations produced by CaM and PA. To verify this point, we measured resonance energy transfer between PMCA labeled with eosin isothiocyanate at the ATP-binding site and the phospholipid RhoPE included in PMCA micelles. CaM decreased the efficiency of the energy transfer between these two probes, whereas PA did not. This result indicates that activation by CaM increases the distance between the ATP-binding site and the membrane, but PA does not affect this distance. Our results disclose main differences between PMCA conformations induced by CaM or PA and show that those differences involve transmembrane regions.


Assuntos
Calmodulina/metabolismo , Membrana Eritrocítica/enzimologia , Ácidos Fosfatídicos/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Calmodulina/química , Ativação Enzimática , Humanos , Interações Hidrofóbicas e Hidrofílicas , Micelas , Ácidos Fosfatídicos/química , ATPases Transportadoras de Cálcio da Membrana Plasmática/química , ATPases Transportadoras de Cálcio da Membrana Plasmática/isolamento & purificação , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...