Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.487
Filtrar
1.
Bull Exp Biol Med ; 177(1): 30-34, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38954304

RESUMO

Topotecan administered intraperitoneally at single doses of 0.25, 0.5, and 1 mg/kg induced chromosomal aberrations in bone marrow cells of F1(CBA×C57BL/6) hybrid mice in a dose-dependent manner. A tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitor, an usnic acid derivative OL9-116 was inactive in a dose range of 20-240 mg/kg, but enhanced the cytogenetic effect of topotecan (0.25 mg/kg) at a dose of 40 mg/kg (per os). The TDP1 inhibitor, a coumarin derivative TX-2552 (at doses of 20, 40, 80, and 160 mg/kg per os), increased the level of aberrant metaphases induced by topotecan (0.25 mg/kg) by 2.1-2.6 times, but was inactive at a dose of 10 mg/kg. The results indicate that TDP1 inhibitors enhance the clastogenic activity of topotecan in mouse bone marrow cells in vivo and are characterized by different dose profiles of the co-mutagenic effects.


Assuntos
Células da Medula Óssea , Diester Fosfórico Hidrolases , Topotecan , Animais , Topotecan/farmacologia , Camundongos , Diester Fosfórico Hidrolases/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Masculino , Aberrações Cromossômicas/efeitos dos fármacos , Aberrações Cromossômicas/induzido quimicamente , Inibidores de Fosfodiesterase/farmacologia , Inibidores da Topoisomerase I/farmacologia , Camundongos Endogâmicos C57BL , Mutagênicos/toxicidade
2.
Artigo em Inglês | MEDLINE | ID: mdl-38821666

RESUMO

Cytogenetic studies have shown that human chromosomes 1, 9, and 16, with a large heterochromatic region of highly methylated classical satellite DNA, are prone to induction of chromatid breaks and interchanges by mitomycin C (MMC). A couple of studies have indicated that material from chromosome 9, and possibly also from chromosomes 1 and 16, are preferentially micronucleated by MMC. Here, we further examined the chromosome-specific induction of micronuclei (MN; with and without cytochalasin B) and chromosomal aberrations (CAs) by MMC. Cultures of isolated human lymphocytes from two male donors were treated (at 48 h of culture, for 24 h) with MMC (500 ng/ml), and the induced MN were examined by a pancentromeric DNA probe and paint probe for chromosome 9, and by paint probes for chromosomes 1 and 16. MMC increased the total frequency of MN by 6-8-fold but the frequency of chromosome 9 -positive (9+) MN by 29-30-fold and the frequency of chromosome 1 -positive (1+) MN and chromosome 16 -positive (16+) MN by 12-16-fold and 10-17-fold, respectively. After treatment with MMC, 34-47 % of all MN were 9+, 17-20 % 1+, and 3-4 % 16+. The majority (94-96 %) of the 9+ MN contained no centromere and thus harboured acentric fragments. When MMC-induced CAs aberrations were characterized by using the pancentromeric DNA probe and probes for the classical satellite region and long- and short- arm telomeres of chromosome 9, a high proportion of chromosomal breaks (31 %) and interchanges (41 %) concerned chromosome 9. In 83 % of cases, the breakpoint in chromosome 9 was just below the region (9cen-q12) labelled by the classical satellite probe. Our results indicate that MMC specifically induces MN harbouring fragments of chromosome 9, 1, and 16. CAs of chromosome 9 are highly overrepresented in metaphases of MMC-treated lymphocytes. The preferential breakpoint is below the region 9q12.


Assuntos
Aberrações Cromossômicas , Cromossomos Humanos Par 16 , Cromossomos Humanos Par 1 , Cromossomos Humanos Par 9 , Micronúcleos com Defeito Cromossômico , Mitomicina , Humanos , Mitomicina/toxicidade , Mitomicina/farmacologia , Masculino , Aberrações Cromossômicas/induzido quimicamente , Aberrações Cromossômicas/efeitos dos fármacos , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Micronúcleos com Defeito Cromossômico/efeitos dos fármacos , Cromossomos Humanos Par 9/genética , Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 16/genética , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Adulto , Testes para Micronúcleos , Células Cultivadas , Citocalasina B/farmacologia , Hibridização in Situ Fluorescente
3.
Chemosphere ; 361: 142440, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38821133

RESUMO

Plastic polymers were largely added with chemical substances to be utilized in the items and product manufacturing. The leachability of these substances is a matter of concern given the wide amount of plastic waste, particularly in terrestrial environments, where soil represents a sink for these novel contaminants and a possible pathway of human health risk. In this study, we integrated genetic, molecular, and behavioral approaches to comparatively evaluate toxicological effects of plastic leachates, virgin and oxodegradable polypropylene (PP) and polyethylene (PE), in Drosophila melanogaster, a novel in vivo model organism for environmental monitoring studies and (eco)toxicological research. The results of this study revealed that while conventional toxicological endpoints such as developmental times and longevity remain largely unaffected, exposure to plastic leachates induces chromosomal abnormalities and transposable element (TE) activation in neural tissues. The combined effects of DNA damage and TE mobilization contribute to genome instability and increase the likelihood of LOH events, thus potentiating tumor growth and metastatic behavior ofRasV12 clones. Collectively, these findings indicate that plastic leachates exert genotoxic effects in Drosophila thus highlighting potential risks associated with leachate-related plastic pollution and their implications for ecosystems and human health.


Assuntos
Dano ao DNA , Drosophila melanogaster , Plásticos , Animais , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Plásticos/toxicidade , Polipropilenos/toxicidade , Polietileno/toxicidade , Aberrações Cromossômicas/induzido quimicamente , Monitoramento Ambiental , Mutagênicos/toxicidade , Elementos de DNA Transponíveis , Testes de Mutagenicidade
4.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673753

RESUMO

In the department of Boyacá, Colombia, agriculture stands as one of the primary economic activities. However, the escalating utilization of pesticides within this sector has sparked concern regarding its potential correlation with elevated risks of genotoxicity, chromosomal alterations, and carcinogenesis. Furthermore, pesticides have been associated with a broad spectrum of genetic polymorphisms that impact pivotal genes involved in pesticide metabolism and DNA repair, among other processes. Nonetheless, our understanding of the genotoxic effects of pesticides on the chromosomes (as biomarkers of effect) in exposed farmers and the impact of genetic polymorphisms (as susceptibility biomarkers) on the increased risk of chromosomal damage is still limited. The aim of our study was to evaluate chromosomal alterations, chromosomal instability, and clonal heterogeneity, as well as the presence of polymorphic variants in the GSTP1 and XRCC1 genes, in peripheral blood samples of farmers occupationally exposed to pesticides in Aquitania, Colombia, and in an unexposed control group. Our results showed statistically significant differences in the frequency of numerical chromosomal alterations, chromosomal instability, and clonal heterogeneity levels between the exposed and unexposed groups. In addition, we also found a higher frequency of chromosomal instability and clonal heterogeneity in exposed individuals carrying the heterozygous GSTP1 AG and XRCC1 (exon 10) GA genotypes. The evaluation of chromosomal alterations and chromosomal instability resulting from pesticide exposure, combined with the identification of polymorphic variants in the GSTP1 and XRCC1 genes, and further research involving a larger group of individuals exposed to pesticides could enable the identification of effect and susceptibility biomarkers. Such markers could prove valuable for monitoring individuals occupationally exposed to pesticides.


Assuntos
Instabilidade Cromossômica , Fazendeiros , Glutationa S-Transferase pi , Exposição Ocupacional , Praguicidas , Proteína 1 Complementadora Cruzada de Reparo de Raio-X , Humanos , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética , Glutationa S-Transferase pi/genética , Praguicidas/toxicidade , Praguicidas/efeitos adversos , Exposição Ocupacional/efeitos adversos , Masculino , Instabilidade Cromossômica/efeitos dos fármacos , Adulto , Pessoa de Meia-Idade , Feminino , Biomarcadores , Aberrações Cromossômicas/induzido quimicamente , Colômbia , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença
5.
Toxicol Ind Health ; 40(6): 337-351, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38597775

RESUMO

Gasoline station attendants are exposed to numerous chemicals that might have genotoxic and carcinogenic potential, such as benzene in fuel vapor and particulate matter and polycyclic aromatic hydrocarbons in vehicle exhaust emission. According to IARC, benzene and diesel particulates are Group 1 human carcinogens, and gasoline has been classified as Group 2A "possibly carcinogenic to humans." At gas stations, self-service is not implemented in Turkey; fuel-filling service is provided entirely by employees, and therefore they are exposed to those chemicals in the workplace during all working hours. Genetic monitoring of workers with occupational exposure to possible genotoxic agents allows early detection of cancer. We aimed to investigate the genotoxic damage due to exposures in gasoline station attendants in Turkey. Genotoxicity was evaluated by the Comet, chromosomal aberration, and cytokinesis-block micronucleus assays in peripheral blood lymphocytes. Gasoline station attendants (n = 53) had higher tail length, tail intensity, and tail moment values than controls (n = 61). In gasoline station attendants (n = 46), the frequencies of chromatid gaps, chromosome gaps, and total aberrations were higher compared with controls (n = 59). Increased frequencies of micronuclei and nucleoplasmic bridges were determined in gasoline station attendants (n = 47) compared with controls (n = 40). Factors such as age, duration of working, and smoking did not have any significant impact on genotoxic endpoints. Only exposure increased genotoxic damage in gasoline station attendants independently from demographic and clinical characteristics. Occupational exposure-related genotoxicity risk may increase in gasoline station attendants who are chronically exposed to gasoline and various chemicals in vehicle exhaust emissions.


Assuntos
Aberrações Cromossômicas , Dano ao DNA , Gasolina , Testes para Micronúcleos , Exposição Ocupacional , Humanos , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Gasolina/toxicidade , Adulto , Masculino , Turquia , Aberrações Cromossômicas/induzido quimicamente , Dano ao DNA/efeitos dos fármacos , Pessoa de Meia-Idade , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/toxicidade , Ensaio Cometa , Biomarcadores , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Linfócitos/efeitos dos fármacos , Feminino , Mutagênicos/toxicidade , Benzeno/toxicidade , Benzeno/análise
6.
Regul Toxicol Pharmacol ; 148: 105586, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382587

RESUMO

The increasing use of titanium dioxide (TiO2) nanoparticles (NPs) has raised concern about the safety of food additive TiO2. TiO2 has been considered no longer safe by EFSA due to concerns over genotoxicity, however, there are conflicting opinions upon the safety of TiO2 as a food additive, and the number of in vivo genotoxicity studies conducted on food additive TiO2 was limited. In order to investigate the potential genotoxicity of food additive TiO2, we evaluated the genotoxicity of a commercial food additive TiO2 (average size of 135.54 ± 41.01 nm, range from 60.83 to 230.16 nm, NPs account for 30% by number) using a battery of standard in vivo tests, including mammalian erythrocyte micronucleus test, mammalian bone marrow chromosomal aberration test and in vivo mammalian alkaline comet test. After 15 days of consecutive intragastric administration at doses of 250, 500, and 1000 mg/kgBW, food additive TiO2 neither increased the frequencies of bone marrow micronuclei or chromosomal aberration in mice, nor induced DNA strand breakage in rat liver cells. These results indicate that under the condition of this study, food additive TiO2 does not have genotoxic potential although it contains a fraction of NPs.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Ratos , Camundongos , Animais , Aditivos Alimentares/toxicidade , Dano ao DNA , Testes para Micronúcleos , Titânio/toxicidade , Aberrações Cromossômicas/induzido quimicamente , Ensaio Cometa , Mamíferos
7.
Toxicol Mech Methods ; 34(5): 584-595, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38347751

RESUMO

High Fructose Corn Syrup (HFCS) and Fructose (FR) are widely used sweeteners in many foods and beverages. This study aimed at investigating the cytotoxic effects of HFCS (5%-30%) and FR (62.5-2000 µg/mL) using MTT assay in Human Hepatocellular Carcinoma (HepG2) cells, and genotoxic effects of using Chromosome Aberrations (CAs), Sister Chromatid Exchanges (SCEs), Micronuclei (MN) and comet assays in human lymphocytes. HFCS significantly reduced the cell viability in HepG2 cells at between 7.5% and 30% for 24 and 48 h. 30% HFCS caused a very significant toxic effect. FR had a cytotoxic effect in HepG2 cells at all treatments. However, as fructose concentration decreased, the cell viability decreased. HFCS (10%-20%) and FR (250-2000 µg/mL) decreased the mitotic index at higher concentrations. IC50 value was found to be a 15% for 48 h. IC50 value of FR was detected as 62.5 µg/mL for 24 h and 48 h. HFCS significantly increased CAs frequency at 15% and 20%. FR significantly increased the frequency of CAs at 250, 1000, and 2000 µg/mL for 48 h. Both sweeteners increased the frequency of SCEs at all concentrations. HFCS (15% and 20%) and FR (250, 1000, and 2000 µg/mL) induced MN frequency at higher concentrations. HFCS caused DNA damage in comet assay at 10% -30%. FR increased tail intensity and moment at 125-2000 µg/mL and tail length at 62.5, 250 and 500 µg/mL. Therefore, HFCS and FR are clearly seen to be cytotoxic and genotoxic, especially at higher concentrations.


HFCS and FR exhibited cytotoxic effect at HepG2 and human lymphocytes at higher concentrations.Both sweeteners increased the frequencies of CAs and SCEs at higher concentrations.HFCS caused DNA damage at 10% -30% concentrations.HFCS (15% and 20%) and FR (250, 1000, and 2000 µg/mL) induced MN frequency.


Assuntos
Sobrevivência Celular , Ensaio Cometa , Frutose , Xarope de Milho Rico em Frutose , Edulcorantes , Humanos , Edulcorantes/toxicidade , Xarope de Milho Rico em Frutose/toxicidade , Xarope de Milho Rico em Frutose/efeitos adversos , Frutose/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Dano ao DNA/efeitos dos fármacos , Troca de Cromátide Irmã/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Linfócitos/patologia , Aberrações Cromossômicas/induzido quimicamente , Testes para Micronúcleos , Relação Dose-Resposta a Droga , Mutagênicos/toxicidade , Masculino , Medição de Risco
8.
Mutat Res ; 828: 111851, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38382175

RESUMO

Bleomycin, commonly employed in treating Hodgkin's lymphoma and testicular cancer, is associated with significant pulmonary toxicity. While various studies have assessed the toxic impact of chemotherapeutic agents on aquatic and terrestrial environments, limited data exist on bleomycin's effects, especially concerning higher plants. To address this gap, we utilized the Allium cepa assays, renowned for evaluating chemical and biochemical agents' toxic effects, to investigate bleomycin's impact on the terrestrial ecosystem. Our study aimed to assess bleomycin's cyto-genotoxic effects on A. cepa root tip cells at minimal concentrations (10-40 µg mL-1) and varied exposure durations (2, 4, 6, and 24 h). Analysis of nuclear and mitotic abnormalities in bleomycin-treated A. cepa root tip cells, alongside an acridine orange-ethidium bromide double staining assay, illuminated its influence on cell viability. Additionally, agarose gel electrophoresis determined the drug's potential for DNA degradation, unveiling the underlying mechanisms of cyto-genotoxicity. Results also demonstrated a decline in the mitotic index with increased bleomycin concentrations and exposure time, elevated frequencies of various cyto-genotoxic abnormalities, including sticky chromosomes, chromatid breaks, laggards, bridges, polar deviations, nuclear lesions, and hyperchromasia. The study indicated the potential risks of bleomycin even at low concentrations and brief exposures, highlighting its severe adverse effects on genetic material of plant, potentially contributing to cell death. Consequently, this investigation unveils bleomycin's cyto-genotoxic effects on higher plant system, underscoring its threat to terrestrial ecosystems, particularly upon chronic and unmonitored exposure.


Assuntos
Bleomicina , Meristema , Cebolas , Bleomicina/toxicidade , Cebolas/efeitos dos fármacos , Cebolas/genética , Meristema/efeitos dos fármacos , Meristema/genética , Ciclo Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Testes de Mutagenicidade/métodos , Antibióticos Antineoplásicos/toxicidade , Mutagênicos/toxicidade , Aberrações Cromossômicas/induzido quimicamente , Índice Mitótico
9.
Sci Rep ; 13(1): 22110, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092949

RESUMO

Although the antioxidant properties of Melissa officinalis extract (Mox) are widely known, little work has focused on its protective capacity against heavy metal stress. The primary objective of this study was to determine the potential of Mox to mitigate manganese (II) chloride (MnCI2)-induced cyto-genotoxicity using the Allium and comet assays. Physiological, genotoxic, biochemical and anatomical parameters as well as the phenolic composition of Mox were examined in Allium cepa (L.). Application of 1000 µM MnCl2 reduced the rooting percentage, root elongation, weight gain, mitotic index and levels of chlorophyll a and chlorophyll b pigments compared to the control group. However, it increased micronuclei formation, chromosomal abnormality frequencies, tail DNA percentage, proline amount, lipid peroxidation level and meristematic damage severity. The activities of superoxide dismutase and catalase also increased. Chromosomal aberrations induced by MnCl2 were fragment, sticky chromosome, vagrant chromosome, unequal distribution of chromatin and bridge. Application of 250 mg/L Mox and 500 mg/L Mox along with MnCl2 significantly alleviated adverse effects dose dependently. The antioxidant activity bestowed by the phenolic compounds in Mox assisted the organism to combat MnCl2 toxicity. Consequently, Mox exerted remarkable protection against MnCl2 toxicity and it needs to be investigated further as a potential therapeutic option.


Assuntos
Allium , Melissa , Cebolas , Manganês/farmacologia , Raízes de Plantas , Clorofila A , Antioxidantes/farmacologia , Dano ao DNA , Aberrações Cromossômicas/induzido quimicamente , Extratos Vegetais/farmacologia
10.
Plant Physiol Biochem ; 204: 108123, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37935068

RESUMO

Graphene oxide (GO) is widely acknowledged for its exceptional biological and industrial applications. However, its discharge into the environment negatively impacts the ecosystem. This study aimed to investigate the toxicity of GO in Allium cepa root tip cells and the role of extracellular polymeric substances (EPS) in modulating its toxic effects. To evaluate toxicity, various endpoints like cell viability using Evans blue dye, cytotoxicity (mitotic index), genotoxicity (chromosomal aberrations), and oxidative stress assessments (total ROS, superoxide, hydroxyl radical production, and lipid peroxidation) were considered. The results suggest that pristine GO caused a dose-dependent increase in various toxicity parameters, especially the genotoxic effects. Oxidative stress generation by GO is proposed to be the principal mode of action. The EPS-corona formed on GO could potentially counteract the toxic effects, substantially reducing the oxidative stress within the cells.


Assuntos
Allium , Cebolas , Matriz Extracelular de Substâncias Poliméricas , Solo , Ecossistema , Raízes de Plantas , Estresse Oxidativo , Índice Mitótico , Aberrações Cromossômicas/induzido quimicamente , Dano ao DNA
11.
Toxicol Lett ; 388: 40-47, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37802232

RESUMO

Anthraquinone is a recently identified contaminant present in teas globally, and its potential teratogenic and genotoxic impacts have yet to be fully comprehended. Hence, this study's objective was to determine anthraquinone's genotoxicity using various studies such as the Ames test, Mammalian erythrocyte micronucleus test, and in-vitro mammalian chromosome aberration study. Additionally, the study assessed its effects on maternal gestational toxicity and the fetus's teratogenicity through prenatal developmental toxicity research in rats. Results indicated that anthraquinone did not manifest mutagenic effects on Salmonella typhimurium histidine-deficient, did not cause chromosomal aberrations in Chinese hamster ovary cell subclone CHO-K1, and did not exhibit a genotoxic effect on mouse bone marrow erythrocytes. However, in the prenatal developmental toxicity study, administering anthraquinone orally to pregnant rats from day 5 to day 19 of gestation resulted in decreased body weight and food consumption of pregnant rats, along with a higher number of visceral malformations in the fetuses in the highest dose group (217.6 mg/kg BW). Additionally, two pregnant rats died in this group. The study has established the no observed adverse effect level (NOAEL) as 21.76 mg/kg BW, while the lowest observed adverse effect level (LOAEL) was 217.6 mg/kg BW.


Assuntos
Aberrações Cromossômicas , Mutagênicos , Camundongos , Cricetinae , Gravidez , Feminino , Ratos , Animais , Células CHO , Cricetulus , Testes para Micronúcleos , Mutagênicos/toxicidade , Aberrações Cromossômicas/induzido quimicamente , Antraquinonas/toxicidade
12.
Nanotoxicology ; 17(6-7): 497-510, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37840287

RESUMO

As one representative of nanometal oxides, titanium dioxide nanoparticles (TiO2-NPs) have been widely used, particularly in the food industry. The genotoxicity of TiO2-NPs has attracted great attention over the years. This study was undertaken to investigate the chromosome and DNA damage effects of TiO2-NPs (0, 50, 150, and 500 mg/kg BW) using rodent models. After a comprehensive characterization, we conducted a standard battery of in vivo genotoxicity tests, including the chromosomal aberration test (CA), micronucleus (MN) test, and the comet test. The results of all these tests were negative. There were no structural or numerical chromosomal abnormalities in mice bone marrow cells, no increase in the frequency of micronucleated polychromatic erythrocytes in mice bone marrow cells, and no elevation in % tail DNA in rat hepatocytes. This indicated that TiO2-NPs did not cause chromosomal damage or have a direct impact on DNA. These findings suggested that TiO2-NPs did not exhibit genotoxicity and provided valuable data for risk assessment purposes.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Ratos , Camundongos , Animais , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Dano ao DNA , Titânio/toxicidade , Testes para Micronúcleos , Aberrações Cromossômicas/induzido quimicamente , DNA , Ensaio Cometa
13.
Artigo em Inglês | MEDLINE | ID: mdl-37567646

RESUMO

Zinc oxide nanoparticles (ZnO-NPs) are increasingly used in a variety of consumer and other commercial products. Hence, man faces the risk of exposure to ZnO-NPs and the consequent adverse health effects. Mitigation/prevention of such effects using natural products has drawn the attention of scientists. Therefore, the aim of the present study has been to find the toxic effects associated with exposure to ZnO-NPs, and the protective role of the phytochemicals thymoquinone (TQ) and quercetin (QCT) in the rat model. ZnO-NPs were administered to male Wistar rats through oral route; TQ / QCT was concurrently administered through intra-peritoneal route. The response in the animal was analyzed adopting chromosomal aberration test, micronucleus test, and comet assay of bone marrow cells to assess the genotoxicity, and biochemical assays of superoxide dismutase (SOD), catalase (CAT), lipid peroxidation (LPO), total extractable protein of liver, and reduced glutathione (GSH) of liver homogenate to monitor the changes in the antioxidant defense mechanism in response to the oxidative stress. Treatment of 300 mg/kg body weight (bw) of ZnO-NPs produced adverse effects on all aspects analyzed viz., structural chromosomal aberrations, micronuclei formation, DNA damage, SOD, catalase, lipid peroxidation, GSH, and extractable total protein of liver. Co-treatment of TQ / QCT offered protection against the toxicity induced by ZnO-NPs. The most optimum doses of TQ and QCT that offered the best protection were 18 mg/kg bw and 500 mg/kg bw, respectively. The study reveals that TQ / QCT supplementation is beneficial in the context of toxic effects of ZnO-NPs.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Humanos , Ratos , Masculino , Animais , Óxido de Zinco/toxicidade , Ratos Wistar , Catalase/metabolismo , Quercetina/farmacologia , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo , Nanopartículas/toxicidade , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Dano ao DNA , Superóxido Dismutase/metabolismo , Aberrações Cromossômicas/induzido quimicamente
14.
PLoS One ; 18(7): e0288590, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37471405

RESUMO

The assessment of mutagen induced biological damage forms an important study in determining the mutagenic potency and genotypic sensitivity, a vital aspect in mutation breeding programs. A prior assessment of lethal dose (LD50), mutagen induced biological damage (alterations in bio-physiological traits and frequency of cytological aberrations) is a prerequisite for determining an optimum mutagen dose in a successful mutation breeding experiment. Therefore, in a multi-year project of mutation breeding, two widely cultivated varieties of cowpea viz., Gomati VU-89 and Pusa-578, were treated with gamma (γ) rays and sodium azide (SA) doses. The results reflected a proportionate increase in bio-physiological damages with the increase in mutagenic doses and caused a substantial reduction in mean seed germination and seedling height. Different cytological aberrations such as cytomixis, univalents, chromosome stickiness, precocious separation, unequal separation, bridges, laggards, disturbed polarity, dyads, triads, and polyads were observed in both varieties. All the mutagen doses induced a broader spectrum of cytological aberrations with varying frequencies.


Assuntos
Vigna , Azida Sódica/toxicidade , Vigna/genética , Raios gama/efeitos adversos , Melhoramento Vegetal , Mutagênicos , Aberrações Cromossômicas/induzido quimicamente
15.
Environ Mol Mutagen ; 64(6): 326-334, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37421236

RESUMO

Air pollution is an important environmental factor influencing human health. In this study, we compared chromosome damage in city policemen from three cities in the Czech Republic: industrial Ostrava characterized by high levels of benzo[a]pyrene, Prague with heavy traffic emitting nitrogen oxides, and relatively clean Ceske Budejovice located in an area with predominantly agricultural activity. Chromosomal aberrations in lymphocytes were evaluated by fluorescence in situ hybridization with painting probes for chromosomes 1, 2, 3, and 4 in spring and autumn. An increase in the frequency of unstable chromosome aberrations, that is, dicentric chromosomes and acentric fragments, was observed in spring samples from Ostrava (p = .014 and p = .044, respectively) and Prague (p = .002 and p = .006, respectively) in comparison with Ceske Budejovice. The difference was significant only for samples taken after the winter period, when the concentration of pollutants in the air increases due to poor dispersion conditions. An increased frequency of dicentric chromosomes was observed in spring compared to autumn in both Ostrava and Prague (p = .017 and p = .023, respectively), but not in Ceske Budejovice. More breakpoints were observed on chromosome 1 than on the other chromosomes examined (p < .001). The number of breakpoints in the heterochromatin region 1p11-q12 was lower than in other parts of chromosome 1 (p < .001), suggesting a protective function of heterochromatin against damage. Our study showed, that air pollution increased the frequency of unstable chromosome aberrations, especially dicentric chromosomes. However, we did not show an effect on stable chromosome rearrangements.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Poluentes Atmosféricos/toxicidade , Hibridização in Situ Fluorescente , Heterocromatina , Poluição do Ar/efeitos adversos , Aberrações Cromossômicas/induzido quimicamente
16.
Toxicol Ind Health ; 39(10): 603-612, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37518894

RESUMO

Chloroform is a widely used industrial chemical that can also pollute the environment. The aims of this study were to examine the potential cytotoxicity and genotoxicity of chloroform on plant cells, using the Vicia faba bioassay. Chloroform was evaluated at concentrations of 0.1, 0.5, 1, 2, and 5 mg·L-1. The following parameters were analyzed: the mitotic index (MI), micronucleus (MN) frequency, chromosomal aberration (CA) frequency, and malondialdehyde (MDA) content. The results showed that exposure to increasing concentrations of chloroform caused a decrease in MI and an increase in the frequency of MN in Vicia faba root tip cells, relative to their controls. Moreover, various types of CA, including C-mitosis, fragments, bridges, laggard chromosomes, and multipolar mitosis, were observed in the treated cells. The frequency of MN was positively correlated with the frequency of CA in exposure to 0.1-1 mg·L-1 chloroform. Furthermore, chloroform exposure induced membrane lipid peroxidation damage in the Vicia faba radicle, and a linear correlation was observed between the MDA content and the frequency of MN or CA. These findings indicated that chloroform exposure can result in oxidative stress, cytotoxicity, and genotoxicity in plant cells.


Assuntos
Vicia faba , Clorofórmio/toxicidade , Testes para Micronúcleos , Raízes de Plantas/genética , Meristema , Aberrações Cromossômicas/induzido quimicamente
17.
Toxicol Mech Methods ; 33(9): 796-805, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37488932

RESUMO

Furan is an organic chemical that can cause adverse effects on human health and is formed as a result of the thermal decomposition of many food components during cooking, storage, and processing techniques. Studies have shown that exposure to furan causes nephrotoxicity, hepatotoxicity, immunotoxicity, and reproductive toxicity. According to our current knowledge of the literature, the genotoxic mode of action of furan is highly controversial. The genotoxic effects of furan on the male reproductive system, however, have not been studied. In this study, the TM3 Leydig cell line was treated with 750, 1500, and 3000 µM concentrations of furan for 24 h. Following the completion of the exposure period, the cytotoxicity of furan in TM3 Leydig cells was assessed using a cell viability assay and a spectrophotometric measurement of lactate dehydrogenase (LDH) enzyme levels. The double fluorescence staining method was used to demonstrate furan-induced apoptosis, and DNA damage was shown using the micronucleus, comet, and chromosomal aberration assays. The result indicated that furan administration of Leydig cells resulted in an increase in structural chromosomal aberration, comet, and micronucleus formation, reduced cell viability, increased LDH activity, and a higher incidence of apoptotic cells. These findings revealed that furan induces DNA damage in TM3 Leydig cells, causing genotoxicity and DNA damage-induced cytotoxicity.


Assuntos
Dano ao DNA , Células Intersticiais do Testículo , Masculino , Humanos , Apoptose , Aberrações Cromossômicas/induzido quimicamente , Furanos/toxicidade , Ensaio Cometa , Sobrevivência Celular
18.
Int J Hematol ; 118(4): 432-442, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37493867

RESUMO

Lenalidomide was approved in Japan for the treatment of patients with myelodysplastic syndromes associated with a 5q deletion (del 5q-MDS) in August 2010. A post-marketing surveillance (PMS) study enrolled 173 patients with del 5q-MDS who started lenalidomide treatment between August 2010 and September 2011 (mean ± standard deviation [SD] age 72.4 ± 9.0 years) and observed for up to 6 cycles or 6 months. Adverse drug reactions (ADRs) and serious ADRs were reported in 78.0% and 50.9% of patients. The most commonly observed ADRs were thrombocytopenia or platelet count decreased (46.2%), neutropenia or neutrophil count decreased (42.2%), and rash (23.1%). Of 114 patients who were red blood cell transfusion-dependent at baseline, 39 (34.2%) achieved transfusion independence during lenalidomide treatment. Of 173 patients, 19 (11.0%) had confirmed acute myeloid leukemia (AML) progression during the study. Moreover, long-term follow-up (3 years) was available for 68 of the 173 patients, of whom 12 (17.6%) progressed to AML during the additional period. This PMS study investigated the safety and effectiveness of lenalidomide in patients with del 5q-MDS. No new safety concerns were noted in routine clinical use in Japan and no evidence was found for an increased risk of AML progression following lenalidomide treatment.


Assuntos
Lenalidomida , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Neutropenia , Idoso , Idoso de 80 Anos ou mais , Humanos , Pessoa de Meia-Idade , Aberrações Cromossômicas/induzido quimicamente , Deleção Cromossômica , Cromossomos Humanos Par 5 , População do Leste Asiático , Lenalidomida/efeitos adversos , Lenalidomida/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/complicações , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Neutropenia/induzido quimicamente , Neutropenia/complicações , Vigilância de Produtos Comercializados , Talidomida/efeitos adversos , Resultado do Tratamento
19.
Microsc Res Tech ; 86(8): 1023-1036, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37357999

RESUMO

Industrial activities and unconscious consumption of natural resources cause environmental pollution with the rapid increase in the world population. As a result of the widespread use of iron oxide nanoparticles (Fe2 O3 NP) with nano-industrial activities, it is predicted that this NP will accumulate in the air, water, and soil. In the present study, the purpose was to find out the genotoxic effects on root meristem cells of the Triticum aestivum L. plant, which is an indicator organism exposed to 20-40 nm Fe2 O3 NPs at different concentrations (100, 200, and 400 ppm). The amount of Fe2 O3 NP accumulated in T. aestivum used in the study was determined with x-ray diffraction (XRD) spectroscopy, scanning electron microscopy (SEM), SEM element map, and EDS characteristic spectrum. All concentrations of Fe2 O3 NP caused significant decreases in the mitotic index. Fe2 O3 NPs significantly increased the frequency of mitotic abnormalities in T. aestivum root tip cells at all treatment times and all concentrations when compared to the control. Fe2 O3 NPs were formed by various mitotic abnormalities such as loss of genetic material, deconstructed prophase, adhesion, chromosome groupings in metaphase, deconstructed metaphase, C-Metaphase, chromosomal loss, chromosomal fracture, polyploidy, deconstructed anaphase, lagging chromosome, fragment, polar deviation, bridging, propagation, asynchronous division, star anaphase, multipolarity, and deconstructed telophase. All these results show that Fe2 O3 NPs are genotoxic and clastogenic and may also cause DNA damage. Briefly, these data show that Fe2 O3 NPs taken by organisms may pose a danger to the organism and the upper consumer. These findings also show that the production and use of Fe2 O3 NPs, which affect organisms, must be controlled, and ultimately, be safely disposed of to reduce their bioaccumulation. RESEARCH HIGHLIGHTS: In the present study, the purpose was to find out the genotoxic effects on root meristem cells of the Triticum aestivum L. (bread wheat) plant, which is an indicator organism exposed to 20-40 nm Fe2 O3 NPs at different concentrations (100, 200, and 400 ppm). The amount of Fe2 O3 NP accumulated in T. aestivum used in the study was determined with x-ray diffraction (XRD) spectroscopy, scanning electron microscopy (SEM), SEM element map, and EDS characteristic spectrum. The mitotic index was calculated to reveal the genotoxic effect. "Loss of genetic material, deconstructed prophase, adhesion, chromosome groupings in metaphase, deconstructed metaphase, C-Metaphase, chromosomal loss, chromosomal fracture, polyploidy, deconstructed anaphase, lagging chromosome, fragment, polar deviation, bridging, propagation, asynchronous division, star Chromosomal abnormalities such as anaphase, multipolarity, and deconstructed telophase" were visualized. Fe2 O3 NPs are genotoxic and clastogenic and may also cause DNA damage.


Assuntos
Nanopartículas , Triticum , Triticum/genética , Nanopartículas/toxicidade , Dano ao DNA , Aberrações Cromossômicas/induzido quimicamente , Poliploidia
20.
Sci Rep ; 13(1): 8493, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231203

RESUMO

In this study, the toxicity of vanadium (VCI3) in Allium cepa L. was studied. Germination-related parameters, mitotic index (MI), catalase (CAT) activity, chromosomal abnormalities (CAs), malondialdehyde (MDA) level, micronucleus (MN) frequency and superoxide dismutase (SOD) activity were investigated. The effects of VCI3 exposure on the DNA of meristem cells were investigated with the help of comet assay, and the relationships between physiological, cytogenetic and biochemical parameters were revealed by correlation and PCA analyses. A. cepa bulbs were germinated with different concentrations of VCI3 for 72 h. As a result, the maximum germination (100%), root elongation (10.4 cm) and weight gain (6.85 g) were determined in the control. VCI3 treatment caused significant decreases in all tested germination-related parameters compared to the control. The highest percentage of MI (8.62%) was also observed in the control. No CAs were found in the control, except for a few sticky chromosomes and unequal distribution of chromatin (p > 0.05). VCI3 treatment caused significant decreases in MI and increases in the frequencies of CAs and MN, depending on the dose. Similarly, the comet assay showed that DNA damage scores increased with increasing VCI3 doses. The lowest root MDA (6.50 µM/g) level and SOD (36.7 U/mg) and CAT (0.82 OD240nmmin/g) activities were also measured in the control. VCI3 treatment caused significant increases in root MDA levels and antioxidant enzyme activities. Besides, VCI3 treatment induced anatomical damages such as flattened cell nucleus, epidermis cell damage, binuclear cell, thickening in the cortex cell wall, giant cell nucleus, damages in cortex cell and unclear vascular tissue. All examined parameters showed significant negative or positive correlations with each other. PCA analysis confirmed the relations of investigated parameters and VCI3 exposure.


Assuntos
Allium , Biomarcadores Ambientais , Vanádio/toxicidade , Fragmentação do DNA , Antioxidantes/farmacologia , Raízes de Plantas , Meristema , Cebolas , Aberrações Cromossômicas/induzido quimicamente , Dano ao DNA , Superóxido Dismutase/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...