Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 35(4): 1007-1015, 2024 Apr 18.
Artigo em Chinês | MEDLINE | ID: mdl-38884235

RESUMO

Soil matrix infiltration is an important pathway for plantations to obtain water, which affects ecological benefits and water conservation function of plantations. The changes of soil matrix infiltration and its influencing factors in different growth stages of Chinese fir plantations remain unclear. We measured soil matrix infiltration process using a tension infiltrometer in Chinese fir plantations (5, 8, 11, and 15 years old) of Beijiang River Forest Farm in Rongshui, Guangxi, and analyzed soil basic physicochemical properties to identify the dominant factors influencing soil matrix infiltration. The results showed that initial infiltration rate, stable infiltration rate, and cumulative infiltration increased with stand ages. The ranges of different stand ages were 141-180 mm·h-1, 109-150 mm·h-1, and 188-251 mm, respectively. The initial infiltration rate, stable infiltration rate, and cumulative infiltration were significantly positively correlated with soil capillary porosity, soil organic matter, soil water stable macroaggregate, sand content, and clay content, while negatively correlated with soil bulk density and silt content. Early thinning had a positive effect on soil matrix infiltration, but thinning measures after 11 years did not enhance soil matrix infiltration further. Philip model was optimal for describing soil matrix infiltration process in this region. In conclusion, soil matrix infiltration capacity of Chinese fir plantations gradually increased from young to middle-aged stands, but matrix infiltration capacity tended to stabilize after 11 years old. Silt content and water stable macroaggregate were the dominant factors influencing matrix infiltration.


Assuntos
Solo , Solo/química , China , Cunninghamia/crescimento & desenvolvimento , Água/análise , Ecossistema , Fatores de Tempo , Abies/crescimento & desenvolvimento
2.
Tree Physiol ; 44(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38874315

RESUMO

Disentangling the factors influencing the climate sensitivity of trees is crucial to understanding the susceptibility of forests to climate change. Reducing tree-to-tree competition and mixing tree species are two strategies often promoted to reduce the drought sensitivity of trees, but it is unclear how effective these measures are in different ecosystems. Here, we studied the growth and physiological responses to climate and severe droughts of silver fir and Douglas-fir growing in pure and mixed conditions at three sites in Switzerland. We used tree-ring width data and carbon (δ13C), oxygen (δ18O) and hydrogen (δ2H) stable isotope ratios from tree-ring cellulose to gain novel information on water relations and the physiology of trees in response to drought and how tree species mixture and competition modulate these responses. We found significant differences in isotope ratios between trees growing in pure and mixed conditions for the two species, although these differences varied between sites, e.g. trees growing in mixed conditions had higher δ13C values and tree-ring width than trees growing in pure conditions for two of the sites. For both species, differences between trees in pure and mixed conditions regarding their sensitivity to temperature, precipitation, climatic water balance and vapor pressure deficit were minor. Furthermore, trees growing in pure and mixed conditions showed similar responses of tree-ring width and isotope ratios to the past severe droughts of 2003, 2015 and 2018. Competition had only a significantly negative effect on δ13C of silver fir, which may suggest a decrease in photosynthesis due to higher competition for light and nutrients. Our study highlights that tree species mixture may have only moderate effects on the radial growth and physiological responses of silver fir and Douglas-fir to climatic conditions and that site condition effects may dominate over mixture effects.


Assuntos
Isótopos de Carbono , Celulose , Mudança Climática , Isótopos de Oxigênio , Pseudotsuga , Árvores , Pseudotsuga/crescimento & desenvolvimento , Pseudotsuga/fisiologia , Pseudotsuga/metabolismo , Celulose/metabolismo , Isótopos de Carbono/análise , Árvores/crescimento & desenvolvimento , Árvores/fisiologia , Árvores/metabolismo , Isótopos de Oxigênio/análise , Secas , Abies/crescimento & desenvolvimento , Abies/fisiologia , Abies/metabolismo , Suíça
3.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1177-1186, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38886415

RESUMO

The radial growth of trees in alpine timberline is particularly sensitive to climate change. We sampled and disposed tree-ring cores of three coniferous tree species including Juniperus saltuaria, Abies forrestii, and Larix potaninii at alpine timberline in Yading Nature Reserve. The standard tree-ring chronology was used to explore the response of radial growth of different timberline species to climate change. The results showed that radial growth of L. potaninii increased after 2000, while that of A. forrestii declined after 2002, and J. saltuaria showed a significant decreasing growth trend in the past 10 years. Such results indicated divergent growth responses to climate factors among the three tree species at alpine timberline. The radial growth of J. saltuaria was sensitive to temperature, and was positively correlated with the minimum temperature from previous October to current August, the mean tempera-ture from previous November to current April and from current July to October, but was negatively associated with the relative humidity from current July to October. The radial growth of A. forrestii showed negative correlation with mean temperature and the maximum temperature from May to June in the current year, while it exhibited positive association with the relative humidity and the Palmer drought severity index from May to June in the current year. L. potaninii radial growth was positively associated with mean temperature and the maximum temperature of November-December in the previous year, the maximum temperature of current March and mean temperature of current August. The temporal stability of climate-growth relationship varied among different timberline species. The positive correlation between radial growth of A. forrestii and J. saltuaria and temperature gradually decreased, while the posi-tive relationship of L. potaninii radial growth and temperature gradually increased. Under the background of climate warming, rapid rise in surface air temperatures may promote the radial growth of L. potaninii, while inhibit that of J. saltuaria and A. forrestii, which may change the position of regional timberline.


Assuntos
Mudança Climática , Larix , China , Larix/crescimento & desenvolvimento , Juniperus/crescimento & desenvolvimento , Abies/crescimento & desenvolvimento , Ecossistema , Árvores/crescimento & desenvolvimento , Conservação dos Recursos Naturais , Temperatura , Caules de Planta/crescimento & desenvolvimento , Altitude
4.
Microbiol Spectr ; 9(1): e0016621, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34232064

RESUMO

In this study, we describe the legacy effects of a soil sulfur amendment experiment performed 6 years prior and the resulting alterations to the rhizosphere communities of fir trees on a Christmas tree plantation. The pH of bulk soil was ∼1.4 pH units lower than that of untreated soils and was associated with reduced Ca, Mg, and organic matter contents. Similarly, root chemistry differed due to the treatment, with roots in sulfur-amended soils showing significantly higher Al, Mn, and Zn contents and reduced levels of B and Ca. 16S rRNA and 18S rRNA gene sequencing was pursued to characterize the bacterial/archaeal and eukaryotic communities in the rhizosphere soils. The treatment induced dramatic and significant changes in the microbial populations, with thousands of 16S rRNA gene sequence variants and hundreds of 18S rRNA gene variants being significantly different in relative abundances between the treatments. Additionally, co-occurrence networks showed that bacterial and eukaryotic interactions, network topology, and hub taxa were significantly different when constructed from the control and treated soil 16S and 18S rRNA gene amplicon libraries. Metagenome sequencing identified several genes related to transport proteins that differentiated the functional potentials of the communities between treatments, pointing to physiological adaptations in the microbial communities for living at altered pH. These data show that a legacy of soil acidification increased the heterogeneity of the soil communities as well as decreasing taxon connections, pointing to a state of ecosystem instability that has potentially persisted for 6 years. IMPORTANCE We used sulfur incorporation to investigate the legacy effects of lowered soil pH on the bacterial and eukaryotic populations in the rhizosphere of Christmas trees. Acidification of the soils drove alterations of fir tree root chemistry and large shifts in the taxonomic and functional compositions of the communities. These data demonstrate that soil pH influences are manifest across all organisms inhabiting the soil, from the host plant to the microorganisms inhabiting the rhizosphere soils. Thus, this study highlights the long-lasting influence of altering soil pH on soil and plant health as well as the status of the microbiome.


Assuntos
Abies/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Eucariotos/isolamento & purificação , Microbiologia do Solo , Solo/química , Solo/parasitologia , Enxofre/metabolismo , Abies/microbiologia , Bactérias/classificação , Bactérias/genética , Biodiversidade , Eucariotos/classificação , Eucariotos/genética , Concentração de Íons de Hidrogênio , Metagenoma , Rizosfera , Árvores/crescimento & desenvolvimento , Árvores/microbiologia
5.
PLoS One ; 16(7): e0254791, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34293040

RESUMO

The spatial patterns of plant species reflect the competitive pressures on individuals. To generate Competition indices (CI), we measured the diameter at breast height (DBH), crown volumes (CV) and the distances between trees. In this study, Abies kawakamii were divided based on the dominant component of the understory (moss or bamboo) to (1) investigate the relationship between the CI and stand structural attributes (SSAs); (2) compare the inter- and intraspecies; CIs as well as living and dead individual CIs; and (3) examine the relationship between the DBH and CI. The current findings indicate that the understory composition affected the CI and SSAs. The interspecies CI was larger than the intraspecies CI when bamboo-dominated the understory. In contrast, the intraspecies CI was larger than the interspecies CI when the understory was dominated by moss. The CI of dead individuals was higher than that of live individuals due to the biological characteristics and regeneration needs of Abies. Additionally, sensitivity to the environment and available resources may exert more pressure on young individuals than mature individuals.


Assuntos
Abies/crescimento & desenvolvimento , Conservação dos Recursos Naturais , Florestas , Taiwan
6.
Plant Physiol ; 186(3): 1580-1590, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-33905499

RESUMO

After drought-induced embolism and repair, tree xylem may be weakened against future drought events (cavitation fatigue). As there are few data on cavitation fatigue in conifers available, we quantified vulnerability curves (VCs) after embolism/repair cycles on eight European conifer species. We induced 50% and 100% loss of conductivity (LC) with a cavitron, and analyzed VCs. Embolism repair was obtained by vacuum infiltration. All species demonstrated complete embolism repair and a lack of any cavitation fatigue after 50% LC . After 100% LC, European larch (Larix decidua), stone pine (Pinus cembra), Norway spruce (Picea abies), and silver fir (Abies alba) remained unaffected, while mountain pine (Pinus mugo), yew (Taxus baccata), and common juniper (Juniperus communis) exhibited 0.4-0.9 MPa higher vulnerability to embolism. A small cavitation fatigue observed in Scots pine (Pinus sylvestris) was probably biased by incomplete embolism repair, as indicated by a correlation of vulnerability shifts and conductivity restoration. Our data demonstrate that cavitation fatigue in conifers is species-specific and depends on the intensity of preceding LC. The lack of fatigue effects after moderate LC, and relevant effects in only three species after high LC, indicate that conifers are relatively resistant against cavitation fatigue. This is remarkable considering the complex and delicate conifer pit architecture and may be important considering climate change projections.


Assuntos
Adaptação Fisiológica , Secas , Traqueófitas/anatomia & histologia , Traqueófitas/crescimento & desenvolvimento , Água/fisiologia , Xilema/anatomia & histologia , Xilema/fisiologia , Abies/anatomia & histologia , Abies/crescimento & desenvolvimento , Áustria , Juniperus/anatomia & histologia , Juniperus/crescimento & desenvolvimento , Larix/anatomia & histologia , Larix/crescimento & desenvolvimento , Picea/anatomia & histologia , Picea/crescimento & desenvolvimento , Pinus sylvestris/anatomia & histologia , Pinus sylvestris/crescimento & desenvolvimento , Taxus/anatomia & histologia , Taxus/crescimento & desenvolvimento
7.
PLoS One ; 15(7): e0230221, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32726307

RESUMO

Old-growth forests play a major role in conserving biodiversity, protecting water resources, and sequestrating carbon, as well as serving as indispensable resources for indigenous societies. Novel silvicultural practices must be developed to emulate the natural dynamics and structural attributes of old-growth forests and preserve the ecosystem services provided by these boreal ecosystems. The success of these forest management strategies depends on developing an accurate understanding of natural regeneration dynamics. Our goal was therefore to identify the main patterns and drivers involved in the regeneration dynamics of old-growth forests with a focus on boreal stands dominated by black spruce (Picea mariana (L.) Mill.) and balsam fir (Abies balsamea (L.) Mill.) in eastern Canada. We sampled 71 stands in a 2 200 km2 study area located within Quebec's boreal region. For each stand, we noted tree regeneration (seedlings and saplings), structural attributes (diameter distribution, deadwood volume, etc.), and abiotic (slope and soil) factors. The presence of seed-trees located nearby and slopes having moderate to high angles most influenced balsam fir regeneration. In contrast, the indirect indices of recent secondary disturbances (e.g., insect outbreaks or windthrows) and topographic constraints (slope and drainage) most influenced black spruce regeneration. We propose that black spruce regeneration dynamics can be separated into distinct phases: (i) layering within the understory, (ii) seedling growth when gaps open in the canopy, (iii) gradual canopy closure, and (iv) production of new layers once the canopy is closed. These dynamics are not observed in paludified stands or stands where balsam fir is more competitive than black spruce. Overall, this research helps explain the complexity of old-growth forest dynamics, where many ecological factors interact at multiple temporal and spatial scales. This study also improves our understanding of ecological processes within primary old-growth forests and identifies the key factors to consider when ensuring the sustainable management of old-growth boreal stands.


Assuntos
Taiga , Traqueófitas/fisiologia , Abies/crescimento & desenvolvimento , Abies/fisiologia , Canadá , Análise por Conglomerados , Picea/crescimento & desenvolvimento , Picea/fisiologia , Plântula , Solo/química , Traqueófitas/crescimento & desenvolvimento
8.
Heredity (Edinb) ; 124(1): 77-92, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31182819

RESUMO

Heterogeneous environments, such as mountainous landscapes, create spatially varying selection pressure that potentially affects several traits simultaneously across different life stages, yet little is known about the general patterns and drivers of adaptation in such complex settings. We studied silver fir (Abies alba Mill.) populations across Switzerland and characterized its mountainous landscape using downscaled historical climate data. We sampled 387 trees from 19 populations and genotyped them at 374 single-nucleotide polymorphisms (SNPs) to estimate their demographic distances. Seedling morphology, growth and phenology traits were recorded in a common garden, and a proxy for water use efficiency was estimated for adult trees. We tested whether populations have more strongly diverged at quantitative traits than expected based on genetic drift alone in a multi-trait framework, and identified potential environmental drivers of selection. We found two main responses to selection: (i) populations from warmer and more thermally stable locations have evolved towards a taller stature, and (ii) the growth timing of populations evolved towards two extreme strategies, 'start early and grow slowly' or 'start late and grow fast', driven by precipitation seasonality. Populations following the 'start early and grow slowly' strategy had higher water use efficiency and came from inner Alpine valleys characterized by pronounced summer droughts. Our results suggest that contrasting adaptive life-history strategies exist in silver fir across different life stages (seedling to adult), and that some of the characterized populations may provide suitable seed sources for tree growth under future climatic conditions.


Assuntos
Abies/genética , Adaptação Fisiológica/genética , Clima , Genética Populacional , Abies/crescimento & desenvolvimento , Secas , Deriva Genética , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Seleção Genética , Suíça , Árvores/genética
9.
Tree Physiol ; 39(5): 747-754, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715531

RESUMO

Present-day global warming is occurring faster at higher elevations. Although there is much information regarding the divergent responses of tree growth to climate change, the altitudinal patterns of species-specific xylogenesis remains poorly understood. We investigated the xylogenesis of balsam fir (Abies balsamea Mill.) and black spruce (Picea mariana Mill. B.S.P.) at two elevations in Quebec (Canada). The number of enlarging and mature cells of the developing tree ring were counted on microcores collected weekly between 2011 and 2014. At the lower site, the growth pattern and duration of xylogenesis were similar between species. No difference in responses to temperature and solar radiation between species was observed. At the higher site, however, cell production was higher and lasted longer in balsam fir than black spruce. Furthermore, the xylem growth of balsam fir had a stronger response to temperature and solar radiation than black spruce. These findings demonstrate the contrasting strategies of wood formation of the two species, with black spruce being more conservative than balsam fir. Our study provides evidence that sympatric species can have species-specific growth dynamics and site-specific responses to the local environment. Predictions of tree growth under a changing environment require the incorporation of species-specific growth strategies.


Assuntos
Abies/crescimento & desenvolvimento , Clima , Picea/crescimento & desenvolvimento , Xilema/crescimento & desenvolvimento , Altitude , Quebeque , Temperatura
10.
Am J Bot ; 105(12): 2075-2080, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30521099

RESUMO

PREMISE OF THE STUDY: Extreme weather events can injure plants, causing decreased survival. However, we may underestimate the ecological importance of extreme events if they have strong sublethal effects that manifest after several months. We tested the hypothesis that late-winter extreme-cold events decrease the ability of woody plants to grow and tolerate stem removal in summer. METHODS: Seedlings from four temperate tree species (Abies balsamea, Pinus resinosa, P. strobus, Quercus rubra) were acclimated to winter conditions in growth chambers, and experienced 1 week of warm temperatures before being exposed to one of three 24-h extreme-cold events (minimum temperature: 8°C control, -8°C, or -16°C). Seedlings were then transferred to a greenhouse where we monitored survival and growth. Three months after the extreme-cold event, we mimicked an herbivore attack by removing either 25% or 75% of new stem growth from seedlings of two species (P. resinosa, Q. rubra). KEY RESULTS: While extreme cold had no immediate effect on seedling survival, the coldest temperature treatment reduced stem growth 51% relative to controls. Stem removal decreased P. resinosa survival in the -16°C treatment, but stem removal treatment had no effect on P. resinosa survival in the intermediate -8°C treatment or 8°C control. Stem removal did not alter Q. rubra survival. CONCLUSIONS: Ephemeral late-winter cold temperatures can have unappreciated effects on growing-season seedling dynamics, including growth and herbivory. For predicting how extreme-cold events might alter large-scale patterns of tree distribution, seedlings should be monitored throughout the growing season following extreme late-winter frosts.


Assuntos
Temperatura Baixa , Herbivoria , Plântula/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Abies/crescimento & desenvolvimento , Pinus/crescimento & desenvolvimento , Quercus/crescimento & desenvolvimento , Especificidade da Espécie
11.
Ying Yong Sheng Tai Xue Bao ; 29(7): 2355-2361, 2018 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-30039675

RESUMO

Based on dendrochronological methods, we established residual chronologies (RES) of Abies georgei at low, middle and high altitudes with ring width data on the eastern slope of Yulong Snow Mountain. We examined the relationship between the radial growth and climate factors (temperature and precipitation) by response function analysis and redundancy analysis (RDA) to identify the key climatic factors driving the radial growth of A. georgei. The results showed that the responses of radial growth of A. georgei to climates were consistent at three altitudes, which was jointly controlled by temperature and precipitation. This consistency was related to the steep terrain of Yulong Snow Mountain, the high-altitude distribution, and shallow root characteristics of A. georgei. At all three altitudes, tree growth showed significantly positive correlation with mean temperature of the current July, mean temperature of the previous November, and precipitation of the current January, but negative correlation with precipitation of the current June. The comprehensive application of response function analysis and redundancy analysis could accurately reveal the relationship between tree growth and climatic factors along environmental gradients. Our results provided a scientific basis for climatic reconstruction and forest management in the area.


Assuntos
Abies/crescimento & desenvolvimento , Altitude , Clima , China , Neve , Temperatura , Árvores
12.
Sci Rep ; 8(1): 10233, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29980711

RESUMO

Korean fir (Abies koreana), a rare species endemic to South Korea, is sensitive to climate change. Here, we used next-generation massively parallel sequencing technology and de novo transcriptome assembly to gain a comprehensive overview of the Korean fir transcriptome under heat stress. Sequencing control and heat-treated samples of Korean fir, we obtained more than 194,872,650 clean reads from each sample. After de novo assembly and quantitative assessment, 42,056 unigenes were generated with an average length of 908 bp. In total, 6,401 differentially expressed genes were detected, of which 2,958 were up-regulated and 3,443 down-regulated, between the heat-treated and control samples. A gene ontology analysis of these unigenes revealed heat-stress-related terms, such as "response to stimulus". Further, in depth analysis revealed 204 transcription factors and 189 Hsps as differentially expressed. Finally, 12 regulated candidate genes associated with heat stress were examined using quantitative real-time PCR (qRT-PCR). In this study, we present the first comprehensive characterisation of Korean fir subjected to heat stress using transcriptome analysis. It provides an important resource for future studies of Korean fir with the objective of identifying heat stress tolerant lines.


Assuntos
Abies/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico , Proteínas de Plantas/genética , Transcriptoma , Abies/crescimento & desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , República da Coreia
13.
J Plant Res ; 131(5): 817-825, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29936574

RESUMO

The suppression of apical growth and radial trunk growth in trees under shade is a key factor in the competition mechanism among individuals in natural and artificial forests. However, the timing of apical and radial growth suppression after shading and the physiological processes involved have not been evaluated precisely. Twenty-one Abies sachalinensis seedlings of 5-years-old were shaded artificially under a relative light intensity of 5% for 70 days from August 1, and the histological changes of the terminal bud and terminally lateral bud of terminal leader and the cambial zone of the trunk base were analyzed periodically. In shade-grown trees, cell death of the leaf primordia in a terminal bud of terminal leader was observed in one of the three samples after 56 and 70 days of shading, whereas the leaf primordia in a terminal bud of terminal leader in all open-grown trees survived until the end of the experiment. In addition, the leaf primordia of the terminally lateral buds of terminal leader retained their cell nuclei until the end of the experiment. No histological changes were observed in the cambial cells after shading, but the shade-grown trees had less cambial activity than the open-grown trees through the experiment. Strong shading appeared to inhibit the formation and survival of cells in the terminal bud of terminal leader rather than the terminally lateral buds of terminal leader and the cambium. The suppression of the terminal bud growth and elongation of the surviving lateral buds would result in an umbrella-shaped crown under shade.


Assuntos
Abies/crescimento & desenvolvimento , Abies/anatomia & histologia , Abies/efeitos da radiação , Câmbio/anatomia & histologia , Câmbio/crescimento & desenvolvimento , Câmbio/efeitos da radiação , Luz , Meristema/anatomia & histologia , Meristema/crescimento & desenvolvimento , Meristema/efeitos da radiação , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação , Plântula/anatomia & histologia , Plântula/crescimento & desenvolvimento , Plântula/efeitos da radiação , Árvores
14.
Environ Entomol ; 47(3): 715-724, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29878160

RESUMO

The balsam twig aphid Mindarus abietinus Koch (Hemiptera: Aphididae), the spruce spider mite Oligonychus ununguis (Jacobi) (Acari: Tetranychidae), and the pine needle scale Chionaspis pinifoliae (Fitch) (Hemiptera: Diaspididae) are three important pests for the Christmas tree industry of Québec, Canada. Temperature-dependent development rates for postdiapause overwintering eggs of these species have never been studied for populations of southern Québec, where the vast majority of Christmas trees are grown. The accumulation of physiological time in growing degree days (GDD) is a standard tool to predict egg eclosion dates for pests, when first generation immatures are most vulnerable to insecticidal control. Development rates for postdiapause eggs were tested at four or five constant temperatures in the 11-23°C range under controlled conditions, based on time before hatching for eggs collected in a balsam fir plantation in late winter. The standard linear model and three published nonlinear models were fitted to the data and compared for their ability to estimate key biological temperature parameters and to predict development rates of postdiapause eggs. Validation of model predictions of egg eclosion time on balsam fir in the field was reasonably accurate using the classical linear model where field-accumulated GDD were calculated with a particular interpretation of the average method based on daily maximum and minimum temperatures. The linear model could predict mean egg eclosion within around 5 d of eclosion dates observed in the field.


Assuntos
Abies , Cadeia Alimentar , Hemípteros/crescimento & desenvolvimento , Tetranychidae/crescimento & desenvolvimento , Abies/crescimento & desenvolvimento , Animais , Afídeos/crescimento & desenvolvimento , Modelos Biológicos , Óvulo/crescimento & desenvolvimento , Quebeque , Temperatura , Árvores/crescimento & desenvolvimento
15.
Am J Bot ; 105(5): 950-956, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29874391

RESUMO

PREMISE OF THE STUDY: Most dendroecological studies focus on dominant trees, but little is known about the growing season of trees belonging to different size classes and their sensitivity to biotic factors. The objective of this study was to compare the dynamics of xylem formation between dominant and suppressed trees of Abies fabri of similar age growing in the Gongga Mountains, southeastern Tibetan Plateau, and to identify the association between xylem growth and climate. METHODS: The timing and duration of xylogenesis in histological sections were investigated weekly during the 2013-2015 growing seasons. KEY RESULTS: Our investigation found that timing and duration of xylogenesis varied with canopy position and its associated tree size. Xylogenesis started 6-14 days earlier, and ended 5-11 days later in dominant trees than in suppressed trees, resulting in a significantly longer growing season. Dominant trees also exhibited higher temperature sensitivity of tracheid production rate than suppressed trees. CONCLUSIONS: The observed differences in xylogenesis among trees suggested that competition affects tree growth by reducing the growing period in suppressed trees. Representative climate-growth relationships should involve trees of all size classes when evaluating the effects of the environment on forest dynamics.


Assuntos
Abies/crescimento & desenvolvimento , Clima , Árvores/crescimento & desenvolvimento , China , Estações do Ano , Xilema/crescimento & desenvolvimento
16.
Ying Yong Sheng Tai Xue Bao ; 29(3): 687-695, 2018 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-29722208

RESUMO

Warming and herbaceous functional group removal experiment was conducted in subalpine meadow to examine the effects of herbaceous species on Abies faxoniana seedlings by analyzing its physiological responses. The survival rate and non-structural carbohydrate content were significantly increased, but the growth and root/shoot of A. faxoniana were decreased. Seedling survival was significantly positively correlated with non-structural carbohydrate content, especially with soluble sugar. Under the treatment without warming, herbaceous species inhibited the survival of A. faxoniana, increased height growth and aboveground biomass. Grasses and forbs decreased the root length and belowground biomass of A. faxoniana. In the warming treatment, forbs increased the survival of A. faxoniana, sedges decreased root length and belowground biomass of A. faxoniana, and grasses and forbs decreased height growth and aboveground biomass of A. faxoniana. Simulated warming increased the survival of A. faxoniana seedlings, but also made it face stronger competition from herbaceous and thus inhibited its growth.


Assuntos
Abies/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Biomassa , Poaceae
17.
Mol Ecol ; 27(6): 1428-1438, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29443422

RESUMO

Genetic association studies in forest trees would greatly benefit from information on the response of trees to environmental stressors over time, which can be provided by dendroecological analysis. Here, we jointly analysed dendroecological and genetic data of surviving silver fir trees to explore the genetic basis of their response to the iconic stress episode of the 1970s and 1980s that led to large-scale forest dieback in Central Europe and has been attributed to air pollution. Specifically, we derived dendrophenotypic measures from 190 trees in the Bavarian Forest that characterize the resistance, resilience and recovery during this growth depression, and in the drought year in 1976. By focusing on relative growth changes of trees and by standardizing the dendrophenotypes within stands, we accounted for variation introduced by micro- and macroscale environmental differences. We associated the dendrophenotypes with single nucleotide polymorphisms (SNPs) in candidate genes using general linear models (GLMs) and the machine learning algorithm random forest with subsequent feature selection. Most trees at our study sites experienced a severe growth decline from 1974 until the mid-1980s with minimum values during the drought year. Fifteen genes were associated with the dendrophenotypes, including genes linked to photosynthesis and drought stress. With our study, we show that dendrophenotypes can be a powerful resource for genetic association studies that permit to account for micro- and macroenvironmental variation when data are derived from natural populations. We call for a wider collaboration of dendroecologists and forest geneticists to integrate individual tree-level dendrophenotypes in genetic association studies.


Assuntos
Abies/genética , Adaptação Fisiológica/genética , Polimorfismo de Nucleotídeo Único/genética , Estresse Fisiológico/genética , Abies/crescimento & desenvolvimento , Clima , Secas , Ecologia , Estudos de Associação Genética , Genótipo
18.
Tree Physiol ; 38(6): 865-876, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29452424

RESUMO

Fine-root (≤2 mm) demographics change as forests age, but the direction and extent of change are unknown. Knowledge of the change and understanding of causes will improve predictions of climate change impacts. We used minirhizotrons at three young and three mature balsam fir (Abies balsamea (L.) Mill.) sites to measure median lifespan (MLS) for each site and for annual cohorts. We computed turnover rate from the inverse of MLS (Tinv) and calculated a second turnover rate (T) from annual mortality, annual production and previous year-end standing crop. Median lifespan at mature sites (436 days) was half that at young sites (872 days). Median lifespan of annual cohorts varied widely at all sites. Age-class distributions of fine roots seen by minirhizotrons changed with increasing years of observation, with older age classes accumulating more slowly at mature sites. Our findings highlight the need to determine whether the proportional contributions of absorbing and transporting fine roots to annual production and their median lifespans change during stand development. Due to its variation among annual cohorts, we believe robust estimates of MLS at our sites require 5-7 years of observation, and reliable estimates of Tinv are reached earlier than T.


Assuntos
Abies/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Longevidade , Novo Brunswick , Quebeque
19.
J Plant Res ; 131(2): 261-269, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29063345

RESUMO

This study evaluated variation in the height at which absent rings and internodes were detected along stem of Abies sachalinensis trees grown under shade for 39 years. Eight sample trees planted in 1974 under a secondary forest in Japan were felled in 2013 and analyzed. A. sachalinensis is a monopodial species in which it is possible to measure annual apical growth using the distinct internodes. We applied microscopic analysis on 154 stem disks from the stem base to the top to evaluate the cessation of apical and radial growth caused by intensive shading. Cessation of apical stem growth for one or more years was found in 6 out of 8 sample trees. We termed this phenomenon as "absent internode". In addition, the absent growth rings were detected more frequently in the lower part of sample stems, and the number of absent rings at the stem base did not correspond with the number of absent internodes in the six trees. From cellular level observation, the five suppressed trees had no living cambial cells at the stem base but had living cells at the stem top. The cessation of the apical and radial growth did not occur synchronously but did occur independently under a shade environment in A. sachalinensis.


Assuntos
Abies/crescimento & desenvolvimento , Câmbio/crescimento & desenvolvimento , Caules de Planta/crescimento & desenvolvimento , Luz Solar , Florestas , Japão , Estações do Ano , Árvores/crescimento & desenvolvimento
20.
Sci Total Environ ; 615: 1460-1469, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29055588

RESUMO

Under predicted climate change, native silver fir (Abies alba) and European beech (Fagus sylvatica) are the most likely replacement species for the Norway spruce (Picea abies) monocultures planted across large parts of continental Europe. Our current understanding of the adaptation potential of fir-beech mixed forests to climate change is limited because long-term responses of the two species to environmental changes have not yet been comprehensively quantified. We compiled and analysed tree-ring width (TRW) series from 2855 dominant, co-dominant, sub-dominant and suppressed fir and beech trees sampled in 17 managed and unmanaged mixed beech-fir forest sites across Continental Europe, including Bosnia and Herzegovina, Germany, Italy, Romania and Slovakia. Dendroecological techniques that combine various detrending methods were used to investigate variation in radial growth of co-occurring fir and beech trees. Coincidental with peak SO2 emissions, the growth of silver fir declined between 1950 and 1980 at most sites, whereas beech growth increased during this period. Correspondent to a significant warming trend from 1990-2010, average beech growth declined, but silver fir growth increased. Long-term growth patterns and growth-climate sensitivity of fir and beech trees did not significantly differ between managed and unmanaged forests. Multi-decadal changes in the growth rate of all vertical tree classes were similar. In contrast to previous indications of limited drought susceptibility of beech mixed stands, this study suggests that the mixture of tree species in forest stands does not necessarily prevent growth depressions induced by long-term environmental change. Our results further imply that forest management does not necessarily alter their sensitivity to environmental changes.


Assuntos
Abies/crescimento & desenvolvimento , Mudança Climática , Fagus/crescimento & desenvolvimento , Bósnia e Herzegóvina , Monitoramento Ambiental , Alemanha , Itália , Noruega , Romênia , Eslováquia , Árvores/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...