Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.866
Filtrar
1.
Int J Nanomedicine ; 19: 5273-5295, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38859952

RESUMO

Purpose: Reducing the first-pass hepatic effect via intestinal lymphatic transport is an effective way to increase the oral absorption of drugs. 2-Monoacylglycerol (2-MAG) as a primary digestive product of dietary lipids triglyceride, can be assembled in chylomicrons and then transported from the intestine into the lymphatic system. Herein, we propose a biomimetic strategy and report a 2-MAG mimetic nanocarrier to target the intestinal lymphatic system via the lipid absorption pathway and improve oral bioavailability. Methods: The 2-MAG mimetic liposomes were designed by covalently bonding serinol (SER) on the surface of liposomes named SER-LPs to simulate the structure of 2-MAG. Dihydroartemisinin (DHA) was chosen as the model drug because of its disadvantages such as poor solubility and high first-pass effect. The endocytosis and exocytosis mechanisms were investigated in Caco-2 cells and Caco-2 cell monolayers. The capacity of intestinal lymphatic transport was evaluated by ex vivo biodistribution and in vivo pharmacokinetic experiments. Results: DHA loaded SER-LPs (SER-LPs-DHA) had a particle size of 70 nm and a desirable entrapment efficiency of 93%. SER-LPs showed sustained release for DHA in the simulated gastrointestinal environment. In vitro cell studies demonstrated that the cellular uptake of SER-LPs primarily relied on the caveolae- rather than clathrin-mediated endocytosis pathway and preferred to integrate into the chylomicron assembly process through the endoplasmic reticulum/Golgi apparatus route. After oral administration, SER-LPs efficiently promoted drug accumulation in mesenteric lymphatic nodes. The oral bioavailability of DHA from SER-LPs was 10.40-fold and 1.17-fold larger than that of free DHA and unmodified liposomes at the same dose, respectively. Conclusion: SER-LPs improved oral bioavailability through efficient intestinal lymphatic transport. These findings of the current study provide a good alternative strategy for oral delivery of drugs with high first-pass hepatic metabolism.


Assuntos
Artemisininas , Disponibilidade Biológica , Lipossomos , Animais , Lipossomos/química , Lipossomos/farmacocinética , Células CACO-2 , Humanos , Administração Oral , Artemisininas/farmacocinética , Artemisininas/química , Artemisininas/administração & dosagem , Absorção Intestinal/efeitos dos fármacos , Masculino , Distribuição Tecidual , Tamanho da Partícula , Camundongos , Sistema Linfático/metabolismo , Sistema Linfático/efeitos dos fármacos , Ratos Sprague-Dawley , Ratos , Materiais Biomiméticos/farmacocinética , Materiais Biomiméticos/química , Mucosa Intestinal/metabolismo
2.
Molecules ; 29(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38893466

RESUMO

Epigallocatechin gallate (EGCG), the principal catechin in green tea, exhibits diverse therapeutic properties. However, its clinical efficacy is hindered by poor stability and low bioavailability. This study investigated solid particle-in-oil-in-water (S/O/W) emulsions stabilized by whey protein isolate (WPI) and sodium caseinate (NaCas) as carriers to enhance the bioavailability and intestinal absorption of EGCG. Molecular docking revealed binding interactions between EGCG and these macromolecules. The WPI- and NaCas-stabilized emulsions exhibited high encapsulation efficiencies (>80%) and significantly enhanced the bioaccessibility of EGCG by 64% compared to free EGCG after simulated gastrointestinal digestion. Notably, the NaCas emulsion facilitated higher intestinal permeability of EGCG across Caco-2 monolayers, attributed to the strong intermolecular interactions between caseins and EGCG. Furthermore, the emulsions protected Caco-2 cells against oxidative stress by suppressing intracellular reactive oxygen species generation. These findings demonstrate the potential of WPI- and NaCas-stabilized emulsions as effective delivery systems to improve the bioavailability, stability, and bioactivity of polyphenols like EGCG, enabling their applications in functional foods and nutraceuticals.


Assuntos
Disponibilidade Biológica , Caseínas , Catequina , Emulsões , Proteínas do Soro do Leite , Catequina/análogos & derivados , Catequina/química , Humanos , Proteínas do Soro do Leite/química , Caseínas/química , Células CACO-2 , Emulsões/química , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Portadores de Fármacos/química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/farmacocinética , Absorção Intestinal/efeitos dos fármacos
3.
J Ethnopharmacol ; 332: 118342, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38750984

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Boiled silkworm cocoons have been used to treat 'Xiaoke disease' (diabetes mellitus) recorded in Chinese medicine for over 800 years. In recent years, it has been found that the active substance silk sericin (SS) has therapeutic benefits in treating type 2 diabetes mellitus (T2DM). SS promotes pancreatic islet signalling, the proliferation of pancreatic islet cells, and insulin secretion. It is inferred that SS enters the bloodstream after oral administration and plays a role in the body's circulation. As a natural protein, SS needs to resist digestion by proteases in the gastrointestinal tract and cross the gastrointestinal barrier after oral administration. It is currently unclear how SS crosses the gastrointestinal barrier and whether it exerts therapeutic effects on T2DM by entering the circulation. AIM OF THE STUDY: To study how SS crosses the gastrointestinal barrier and whether it enters the body circulation to exert a therapeutic effect on T2DM. MATERIALS AND METHODS: SS was extracted from silkworm cocoons using an alkaline method with sodium carbonate. The antidigestive capacity of SS was detected using SDS-PAGE gel electrophoresis experiments. The mode of uptake and translocation of orally consumed SS in vivo was analysed using the AP-side to BL-side and BL-side-AP-side translocations, apparent Permeability coefficient (Papp), and Exocytosis rates (ER). The study compared the differences between the adSS group and the adSS + EDTA group by using Ethylenediaminetetraacetic acid (EDTA) to separate the tight junctions between Caco-2 cells. The aim was to analyze whether the transport mode of oral filaggrin proteins in vivo could be absorbed by bypass transport. By administering SS through oral and intraperitoneal injection to type 2 diabetic mice, we measured its concentration in the blood, as well as blood glucose and insulin levels, to determine its effectiveness in treating diabetes and its ability to enter the body's circulation for treatment. RESULTS: The molecular weight of SS decreased from 10k∼25 kDa to 10k∼15 kDa after in vitro simulated gastrointestinal fluid digestion, indicating its good antidigestive properties. The apparent Papp was greater than 1 × 10-6 cm·s-1, and the ER was between 0.5 and 1.5, indicating that adSS was well-absorbed and mainly passively transported. The Caco-2 cell model showed that the addition of EDTA promoted the transport of adSS, resulting in significantly larger Papp and ER values, indicating that adSS was absorbed by bypass transport. After oral administration of SS, the concentration of SS in the blood was lower than after intraperitoneal injection, which is 60% of intraperitoneal administration. Mice with a T2DM model who were administered SS for 5 weeks showed significant improvement in insulin resistance and glucose tolerance. Additionally, the pancreatic tissue appeared more regular. In the treatment of T2DM, injections of SS have been shown to be more effective than oral administration. Both oral and intraperitoneal injections have been partially involved in the circulation. CONCLUSIONS: SS is enzymatically cleaved by proteolytic enzymes in the gastrointestinal tract. The smaller molecules are partially absorbed into the body's circulation through passive and paracrine transport, exerting a therapeutic effect on T2DM.


Assuntos
Bombyx , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Sericinas , Animais , Sericinas/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Administração Oral , Humanos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Células CACO-2 , Masculino , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Absorção Intestinal/efeitos dos fármacos , Camundongos , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Transporte Biológico/efeitos dos fármacos
4.
Cell Rep Med ; 5(5): 101543, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38697101

RESUMO

Cognitive impairment in the elderly is associated with alterations in bile acid (BA) metabolism. In this study, we observe elevated levels of serum conjugated primary bile acids (CPBAs) and ammonia in elderly individuals, mild cognitive impairment, Alzheimer's disease, and aging rodents, with a more pronounced change in females. These changes are correlated with increased expression of the ileal apical sodium-bile acid transporter (ASBT), hippocampal synapse loss, and elevated brain CPBA and ammonia levels in rodents. In vitro experiments confirm that a CPBA, taurocholic acid, and ammonia induced synaptic loss. Manipulating intestinal BA transport using ASBT activators or inhibitors demonstrates the impact on brain CPBA and ammonia levels as well as cognitive decline in rodents. Additionally, administration of an intestinal BA sequestrant, cholestyramine, alleviates cognitive impairment, normalizing CPBAs and ammonia in aging mice. These findings highlight the potential of targeting intestinal BA absorption as a therapeutic strategy for age-related cognitive impairment.


Assuntos
Envelhecimento , Amônia , Ácidos e Sais Biliares , Disfunção Cognitiva , Absorção Intestinal , Animais , Ácidos e Sais Biliares/metabolismo , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Absorção Intestinal/efeitos dos fármacos , Masculino , Feminino , Humanos , Camundongos , Envelhecimento/metabolismo , Amônia/metabolismo , Idoso , Camundongos Endogâmicos C57BL , Resina de Colestiramina/farmacologia , Simportadores/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Ratos , Idoso de 80 Anos ou mais
5.
Food Res Int ; 186: 114321, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729691

RESUMO

Biogenic nanoparticles are promising carriers to deliver essential minerals. Here, calcium-enriched polyphosphate nanoparticles (CaPNPs) with a Ca/P molar ratio > 0.5 were produced by Synechococcus sp. PCC 7002 in the growth medium containing 1.08 g/L CaCl2, and had nearly spherical morphologies with a wide size distribution of 5-75 nm and strongly anionic surface properties with an average ζ-potential of -39 mV, according to dynamic light-scattering analysis, transmission and scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The ex-vivo ligated mouse ileal loop assays found that calcium in CaPNPs was readily available to intestinal absorption via both ion channel-mediated and endocytic pathways, specifically invoking macropinocytic internalization, lysosomal degradation, and transcytosis. Rat oral pharmacokinetics revealed that CaPNPs had a calcium bioavailability approximately 100 % relative to that of CaCl2 and more than 1.6 times of that of CaCO3. CaPNPs corrected the retinoic acid-induced increase in serum calcium, phosphorus, and bone-specific alkaline phosphatase, and decrease in serum osteocalcin, bone mineral content/density, and femoral geometric parameters with an efficacy equivalent to CaCl2 and markedly greater than CaCO3. In contrast to CaCl2, CaPNPs possessed desirable resistance against phytate's antagonistic action on calcium absorption in these ex vivo and in vivo studies. Overall, CaPNPs are attractive as a candidate agent for calcium supplementation, especially to populations on high-phytate diets.


Assuntos
Disponibilidade Biológica , Cálcio , Microalgas , Nanopartículas , Ácido Fítico , Polifosfatos , Animais , Polifosfatos/química , Camundongos , Ácido Fítico/química , Cálcio/metabolismo , Masculino , Ratos , Absorção Intestinal/efeitos dos fármacos , Ratos Sprague-Dawley
6.
J Affect Disord ; 358: 416-421, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38735581

RESUMO

BACKGROUND: The therapeutic response to lithium in patients with bipolar disorder is highly variable and has a polygenic basis. Genome-wide association studies investigating lithium response have identified several relevant loci, though the precise mechanisms driving these associations are poorly understood. We aimed to prioritise the most likely effector gene and determine the mechanisms underlying an intergenic lithium response locus on chromosome 21 identified by the International Consortium on Lithium Genetics (ConLi+Gen). METHODS: We conducted in-silico functional analyses by integrating and synthesising information from several publicly available functional genetic datasets and databases including the Genotype-Tissue Expression (GTEx) project and HaploReg. RESULTS: The findings from this study highlighted TMPRSS15 as the most likely effector gene at the ConLi+Gen lithium response locus. TMPRSS15 encodes enterokinase, a gastrointestinal enzyme responsible for converting trypsinogen into trypsin and thus aiding digestion. Convergent findings from gene-based lookups in human and mouse databases as well as co-expression network analyses of small intestinal RNA-seq data (GTEx) implicated TMPRSS15 in the regulation of intestinal nutrient absorption, including ions like sodium and potassium, which may extend to lithium. LIMITATIONS: Although the findings from this study indicated that TMPRSS15 was the most likely effector gene at the ConLi+Gen lithium response locus, the evidence was circumstantial. Thus, the conclusions from this study need to be validated in appropriately designed wet-lab studies. CONCLUSIONS: The findings from this study are consistent with a model whereby TMPRSS15 impacts the efficacy of lithium treatment in patients with bipolar disorder by modulating intestinal lithium absorption.


Assuntos
Transtorno Bipolar , Simulação por Computador , Absorção Intestinal , Serina Endopeptidases , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Humanos , Absorção Intestinal/efeitos dos fármacos , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Camundongos , Animais , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Lítio/uso terapêutico , Lítio/farmacologia , Antimaníacos/farmacologia , Antimaníacos/uso terapêutico , Estudo de Associação Genômica Ampla , Compostos de Lítio/farmacologia , Compostos de Lítio/uso terapêutico , Compostos de Lítio/farmacocinética
7.
J Gastroenterol Hepatol ; 39(6): 1145-1154, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642000

RESUMO

BACKGROUND AND AIM: Fructooligosaccharide (FOS) supplementation can stimulate beneficial intestinal bacteria growth, but little is known about its influence on training performance. Therefore, this study analyzed FOS and exercise effects on gut microbiota and intestinal morphology of C57Bl/6 mice. METHODS: Forty male mice were divided into four groups: standard diet-sedentary (SDS), standard diet-exercised (SDE), FOS supplemented (7.5% FOS)-sedentary (FDS), and FOS supplemented-exercised (FDE), n = 10 each group. Exercise training consisted of 60 min/day, 3 days/week, for 12 weeks. RESULTS: SDE and FDE groups had an increase in aerobic performance compared to the pretraining period and SDS and FDS groups (P < 0.01), respectively. Groups with FOS increased colonic crypts size (P < 0.05). The FDE group presented rich microbiota (α-diversity) compared to other groups. The FDE group also acquired a greater microbial abundance (ß-diversity) than other groups. The FDE group had a decrease in the Ruminococcaceae (P < 0.002) and an increase in Roseburia (P < 0.003), Enterorhabdus (P < 0.004) and Anaerotruncus (P < 0.006). CONCLUSIONS: These findings suggest that aerobic exercise associated with FOS supplementation modulates gut microbiota and can increase colonic crypt size without improving endurance exercise performance.


Assuntos
Colo , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Oligossacarídeos , Condicionamento Físico Animal , Oligossacarídeos/administração & dosagem , Oligossacarídeos/farmacologia , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Colo/microbiologia , Condicionamento Físico Animal/fisiologia , Resistência Física/fisiologia , Absorção Intestinal/efeitos dos fármacos , Suplementos Nutricionais , Camundongos , Treino Aeróbico
8.
Food Funct ; 15(9): 5000-5011, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38618651

RESUMO

The anti-obesity effect of conjugated linoleic acid (CLA) has been well elucidated, but whether CLA affects fat deposition by regulating intestinal dietary fat absorption remains largely unknown. Thus, this study aimed to investigate the effects of CLA on intestinal fatty acid uptake and chylomicron formation and explore the possible underlying mechanisms. We found that CLA supplementation reduced the intestinal fat absorption in HFD (high fat diet)-fed mice accompanied by the decreased serum TG level, increased fecal lipids and decreased intestinal expression of ApoB48 and MTTP. Correspondingly, c9, t11-CLA, but not t10, c12-CLA induced the reduction of fatty acid uptake and TG content in PA (palmitic acid)-treated MODE-K cells. In the mechanism of fatty acid uptake, c9, t11-CLA inhibited the binding of CD36 with palmitoyltransferase DHHC7, thus leading to the decreases of CD36 palmitoylation level and localization on the cell membrane of the PA-treated MODE-K cells. In the mechanism of chylomicron formation, c9, t11-CLA inhibited the formation of the CD36/FYN/LYN complex and the activation of the ERK pathway in the PA-treated MODE-K cells. In in vivo verification, CLA supplementation reduced the DHHC7-mediated total and cell membrane CD36 palmitoylation and suppressed the formation of the CD36/FYN/LYN complex and the activation of the ERK pathway in the jejunum of HFD-fed mice. Altogether, these data showed that CLA reduced intestinal fatty acid uptake and chylomicron formation in HFD-fed mice associated with the inhibition of DHHC7-mediated CD36 palmitoylation and the downstream ERK pathway.


Assuntos
Quilomícrons , Dieta Hiperlipídica , Sistema de Sinalização das MAP Quinases , Animais , Masculino , Camundongos , Aciltransferases/metabolismo , Aciltransferases/genética , Antígenos CD36/metabolismo , Antígenos CD36/genética , Quilomícrons/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Absorção Intestinal/efeitos dos fármacos , Ácidos Linoleicos Conjugados/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos C57BL
9.
J Nutr Biochem ; 129: 109634, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38561081

RESUMO

In two previous studies, we showed that supplementing a high-fat (HF) diet with 9% w/w U. dioica protects against fat accumulation, insulin resistance, and dysbiosis. This follow-up study in C57BL6/J mice aimed at testing: (i) the efficacy of the vegetable at lower doses: 9%, 4%, and 2%, (ii) the impact on intestinal T and B cell phenotype and secretions, (iii) impact on fat and glucose absorption during excess nutrient provision. At all doses, the vegetable attenuated HF diet induced fat accumulation in the mesenteric, perirenal, retroperitoneal fat pads, and liver but not the epididymal fat pad. The 2% dose protected against insulin resistance, prevented HF diet-induced decreases in intestinal T cells, and IgA+ B cells and activated T regulatory cells (Tregs) when included both in the LF and HF diets. Increased Tregs correlated with reduced inflammation; prevented increases in IL6, IFNγ, and TNFα in intestine but not expression of TNFα in epididymal fat pad. Testing of nutrient absorption was performed in enteroids. Enteroids derived from mice fed the HF diet supplemented with U. dioica had reduced absorption of free fatty acids and glucose compared to enteroids from mice fed the HF diet only. In enteroids, the ethanolic extract of U. dioica attenuated fat absorption and downregulated the expression of the receptor CD36 which facilitates uptake of fatty acids. In conclusion, including U. dioica in a HF diet, attenuates fat accumulation, insulin resistance, and inflammation. This is achieved by preventing dysregulation of immune homeostasis and in the presence of excess fat, reducing fat and glucose absorption.


Assuntos
Linfócitos B , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Obesidade , Urtica dioica , Animais , Dieta Hiperlipídica/efeitos adversos , Masculino , Obesidade/metabolismo , Urtica dioica/química , Linfócitos B/metabolismo , Linfócitos B/imunologia , Resistência à Insulina , Absorção Intestinal/efeitos dos fármacos , Camundongos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/efeitos dos fármacos , Nutrientes , Fenótipo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/imunologia , Verduras/química , Intestinos/efeitos dos fármacos , Intestinos/imunologia
10.
J Nat Med ; 78(3): 693-701, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38587581

RESUMO

Mountain caviar is a fruit of Kochia scoparia that contains momordin Ic as a major saponin constituent. Its extract (MCE) has been shown to suppress blood glucose elevations in the human oral glucose tolerance test (OGTT) as well as increases in blood glucose in OGTT, gastric emptying (GE), and glucose incorporation in the small intestine in rats. However, the effects of MCE and momordin Ic on glucose absorption in mice and these action mechanisms have not been examined for more than 2 decades. Therefore, we herein investigated the effects of MCE, its saponin fraction, and momordin Ic on blood glucose elevations in mice. Mouse blood glucose elevation tests were performed on carbohydrate-loaded mice. The mountain caviar saponin fraction significantly delayed blood glucose elevations in glucose-, sucrose-, and soluble starch-loaded mice. In glucose-loaded mice, the saponin fraction, MCE, and momordin Ic significantly suppressed rapid glucose elevations after glucose loading, but not sucrose loading. A mouse GE study was performed by loading with glucose and phenolphthalein solution. Momordin Ic and MCE strongly suppressed mouse GE. Intestinal glucose absorption was evaluated by the incorporation of 2-deoxyglucose (2-DG) into Caco-2 cell layers and mouse duodenum wall vesicles. The results obtained showed that momordin Ic inhibited the incorporation of 2-DG into Caco-2 cells and mouse duodenum vesicles. Collectively, these results suggest that MCE, particularly the principal saponin, momordin Ic, preferably suppressed glucose-induced blood glucose elevations and delayed carbohydrate-induced glucose elevations in mice. The underlying mechanism was found to involve the suppression of GE and intestinal glucose absorption.


Assuntos
Glicemia , Glucose , Hipoglicemiantes , Extratos Vegetais , Saponinas , Animais , Camundongos , Saponinas/farmacologia , Saponinas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Humanos , Células CACO-2 , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Masculino , Glicemia/efeitos dos fármacos , Glucose/metabolismo , Absorção Intestinal/efeitos dos fármacos , Teste de Tolerância a Glucose , Esvaziamento Gástrico/efeitos dos fármacos , Frutas/química , Camundongos Endogâmicos ICR
11.
Int J Pharm ; 656: 124120, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38621613

RESUMO

While various non-ionic surfactants at low concentrations have been shown to increase the transport of P-gp substrates in vitro, in vivo studies in rats have shown that a higher surfactant concentration is needed to increase the oral absorption of e.g. the P-gp substrates digoxin and etoposide. The aim of the present study was to investigate if intestinal digestion of surfactants could be the reason for this deviation between in vitro and in vivo data. Therefore, Kolliphor EL, Brij-L23, Labrasol and polysorbate 20 were investigated for their ability to inhibit P-gp and increase digoxin absorption in vitro. Transport studies were performed in Caco-2 cells, while P-gp inhibition and cell viability assays were performed in MDCKII-MDR1 cells. Polysorbate 20, Kolliphor EL and Brij-L23 increased absorptive transport and decreased secretory digoxin transport in Caco-2 cells, whereas only polysorbate 20 and Brij-L23 showed P-gp inhibiting properties in the MDCKII-MDR1 cells. Polysorbate 20 and Brij-L23 were chosen for in vitro digestion prior to transport- or P-gp inhibiting assays. Brij-L23 was not digestible, whereas polysorbate 20 reached a degree of digestion around 40%. Neither of the two surfactants showed any significant difference in their ability to affect absorptive or secretory transport of digoxin after pre-digestion. Furthermore, the P-gp inhibiting effects of polysorbate 20 were not decreased significantly. In conclusion, the mechanism behind the non-ionic surfactant mediated in vitro P-gp inhibition seemed independent of the intestinal digestion and the results presented here did not suggest it to be the cause of the observed discrepancy between in vitro and in vivo.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Digoxina , Polissorbatos , Tensoativos , Animais , Cães , Humanos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Digestão/efeitos dos fármacos , Digoxina/farmacocinética , Glicerídeos/metabolismo , Absorção Intestinal/efeitos dos fármacos , Células Madin Darby de Rim Canino , Polissorbatos/farmacologia , Tensoativos/farmacologia
12.
J Pharm Biomed Anal ; 245: 116156, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636190

RESUMO

Persicaria capitata (Buch.-Ham. ex D. Don) H. Gross, a traditional Chinese medicinal plant, is often used to treat various urologic disorders in China. P. capitata extracts (PCE) have been used in combination with levofloxacin (LVFX) to treat urinary tract infections (UTIs) for a long time. However, little is known about the absorption of LVFX and transporter expression in the intestine after combined treatment with PCE, restricting the development and utilization of PCE. In view of this, a UPLC-MS/MS method was established for the determination of LVFX in intestinal sac fluid samples and in situ intestinal circulation perfusate samples to explore the effect of PCE on the intestinal absorption characteristics of LVFX ex vivo and in vivo. To further evaluate the interaction between LVFX and PCE, western blotting, immunohistochemistry, and RT-qPCR were utilized to determine the expression levels of drug transporters (OATP1A2, P-gp, BCRP, and MRP2) involved in the intestinal absorption of LVFX after combined treatment with PCE. Using the everted intestinal sac model, the absorption rate constant (Ka) and cumulative drug absorption (Q) of LVFX in each intestinal segment were significantly lower in groups treated with PCE than in the control group. Ka at 2 h decreased most in the colon segment (from 0.088 to 0.016 µg/h·cm2), and Q at 2 h decreased most in the duodenum (from 213.29 to 33.92 µg). Using the intestinal circulation perfusion model, the Ka value and percentage absorption rate (A) of LVFX in the small intestine decreased significantly when PCE and LVFX were used in combination. These results showed that PCE had a strong inhibitory effect on the absorption of LVFX in the rat small intestine (ex vivo and in vivo intestinal segments). In addition, PCE increased the protein and mRNA expression levels of efflux transporters (P-gp, BCRP, and MRP2) and decreased the expression of the uptake transporter OATP1A2 significantly. The effects increased as the PCE concentration increased. These findings indicated that PCE changed the absorption characteristics of levofloxacin, possibly by affecting the expression of transporters in the small intestine. In addition to revealing a herb-drug interaction (HDI) between PCE and LVFX, these results provide a basis for further studies of their clinical efficacy and mechanism of action.


Assuntos
Interações Ervas-Drogas , Absorção Intestinal , Mucosa Intestinal , Levofloxacino , Ratos Sprague-Dawley , Animais , Levofloxacino/farmacologia , Levofloxacino/farmacocinética , Absorção Intestinal/efeitos dos fármacos , Ratos , Masculino , Mucosa Intestinal/metabolismo , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacocinética , Medicamentos de Ervas Chinesas/farmacologia , Espectrometria de Massas em Tandem/métodos , Extratos Vegetais/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Antibacterianos/farmacocinética
13.
Mar Drugs ; 22(4)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38667804

RESUMO

High blood cholesterol levels are a major risk factor for cardiovascular diseases. A purified aqueous extract of Fucus vesiculosus, rich in phlorotannins and peptides, has been described for its potential to inhibit cholesterol biosynthesis and intestinal absorption. In this work, the effect of this extract on intestinal cells' metabolites and proteins was analysed to gain a deeper understanding of its mode of action on lipids' metabolism, particularly concerning the absorption and transport of exogenous cholesterol. Caco-2 cells, differentiated into enterocytes, were exposed to the extract, and analysed by untargeted metabolomics and proteomics. The results of the metabolomic analysis showed statistically significant differences in glutathione content of cells exposed to the extract compared to control cells, along with an increased expression of fatty acid amides in exposed cells. A proteomic analysis showed an increased expression in cells exposed to the extract compared to control cells of FAB1 and NPC1, proteins known to be involved in lipid metabolism and transport. To the extent of our knowledge, this study is the first use of untargeted metabolomics and a proteomic analysis to investigate the effects of F. vesiculosus on differentiated Caco-2 cells, offering insights into the molecular mechanism of the extract's compounds on intestinal cells.


Assuntos
Fucus , Proteômica , Humanos , Células CACO-2 , Fucus/química , Proteômica/métodos , Anticolesterolemiantes/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolômica , Colesterol/metabolismo , Absorção Intestinal/efeitos dos fármacos , Extratos Vegetais/farmacologia , Intestinos/efeitos dos fármacos
14.
Int J Pharm ; 656: 124115, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38614430

RESUMO

Fibroblast growth factor 21 (FGF21) shows great therapeutic potential in metabolic, neurodegenerative and inflammatory diseases. However, current FGF21 administration predominantly relies on injection rather than oral ingestion due to its limited stability and activity post-gastrointestinal transit, thereby hindering its clinical utility. Milk-derived exosomes (mEx) have emerged as a promising vehicle for oral drug delivery due to their ability to maintain structural integrity in the gastrointestinal milieu. To address the challenge associated with oral delivery of FGF21, we encapsulated FGF21 within mEx (mEx@FGF21) to protect its activity post-oral administration. Additionally, we modified the surface of mEx@FGF21 by introducing transferrin (TF) to enhance intestinal absorption and transport, designated TF-mEx@FGF21. In vitro results demonstrated that the surface modification of TF promoted FGF21 internalization by intestinal epithelial cells. Orally administered TF-mEx@FGF21 showed promising therapeutic effects in septic mice. This study represents a practicable strategy for advancing the clinical application of oral FGF21 delivery.


Assuntos
Fatores de Crescimento de Fibroblastos , Inflamação , Sepse , Fatores de Crescimento de Fibroblastos/administração & dosagem , Animais , Administração Oral , Camundongos , Sepse/tratamento farmacológico , Inflamação/tratamento farmacológico , Masculino , Exossomos , Transferrina/administração & dosagem , Transferrina/química , Camundongos Endogâmicos C57BL , Leite , Humanos , Sistemas de Liberação de Medicamentos , Absorção Intestinal/efeitos dos fármacos
15.
Food Funct ; 15(9): 4785-4804, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38511466

RESUMO

A diet containing natural active compounds that can inhibit the hydrolytic activity of α-glucosidase on carbohydrates and intestinal glucose absorption is an effective means of controlling postprandial hyperglycemia. Phlorizin and polydatin as phenolic glycosides have a high affinity for the catalytic site of α-glucosidase, but exhibited unsatisfactory competitive inhibitory capacity, with an IC50 of 0.97 and >2 mM, respectively. However, dodecyl-acylated derivatives of phlorizin and polydatin exerted α-glucosidase inhibitory capacity, with an IC50 of 55.10 and 70.95 µM, respectively, which were greatly enhanced and much stronger than that of acarbose with an IC50 of 2.46 mM. The SPR assay suggested the high affinity of dodecyl phlorizin and dodecyl polydatin to α-glucosidase with equilibrium dissociation constant (KD) values of 12.0 and 7.9 µM, respectively. Both dodecyl phlorizin and dodecyl polydatin reduced the catalytic ability of α-glucosidase by reversible noncompetitive and uncompetitive mixed inhibition, which bind noncovalently to the allosteric site 2 through hydrogen bonds and hydrophobic interactions, thereby inducing the secondary structure unfolding and intrinsic fluorescence quenching of α-glucosidase. Confocal microscopy detection visually showed significant inhibitory effects on FITC-labeled glucose uptake in intestinal Caco-2 cells by phlorizin, polydatin, dodecyl phlorizin and dodecyl polydatin. In addition, based on the differentiated Caco-2 cell monolayer model, dodecyl phlorizin and dodecyl polydatin suppressed intestinal glucose transport more effectively than phlorizin and polydatin, suggesting that they were promising in vivo hypoglycemic active compounds.


Assuntos
Glucose , Glucosídeos , Inibidores de Glicosídeo Hidrolases , Hipoglicemiantes , Florizina , Estilbenos , alfa-Glucosidases , Florizina/farmacologia , Florizina/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Estilbenos/farmacologia , Estilbenos/química , Glucosídeos/farmacologia , Glucosídeos/química , alfa-Glucosidases/metabolismo , alfa-Glucosidases/química , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Células CACO-2 , Glucose/metabolismo , Animais , Absorção Intestinal/efeitos dos fármacos
16.
Pharm Res ; 41(5): 849-861, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38485855

RESUMO

PURPOSE: Olmesartan medoxomil (olmesartan-MX), an ester-type prodrug of the angiotensin II receptor blocker (ARB) olmesartan, is predominantly anionic at intestinal pH. Human organic anion transporting polypeptide 2B1 (OATP2B1) is expressed in the small intestine and is involved in the absorption of various acidic drugs. This study was designed to test the hypothesis that OATP2B1-mediated uptake contributes to the enhanced intestinal absorption of olmesartan-MX, even though olmesartan itself is not a substrate of OATP2B1. METHODS: Tetracycline-inducible human OATP2B1- and rat Oatp2b1-overexpressing HEK 293 cell lines (hOATP2B1/T-REx-293 and rOatp2b1/T-REx-293, respectively) were established to characterize OATP2B1-mediated uptake. Rat jejunal permeability was measured using Ussing chambers. ARBs were quantified by liquid chromatography-tandem mass spectrometry. RESULTS: Significant olmesartan-MX uptake was observed in hOATP2B1/T-REx-293 and rOatp2b1/T-REx-293 cells, whereas olmesartan uptake was undetectable or much lower than olmesartan-MX uptake, respectively. Furthermore, olmesartan-MX exhibited several-fold higher uptake in Caco-2 cells and greater permeability in rat jejunum compared to olmesartan. Olmesartan-MX uptake in hOATP2B1/T-REx-293 cells and in Caco-2 cells was significantly decreased by OATP2B1 substrates/inhibitors such as 1 mM estrone-3-sulfate, 100 µM rifamycin SV, and 100 µM fluvastatin. Rat Oatp2b1-mediated uptake and rat jejunal permeability of olmesartan-MX were significantly decreased by 50 µM naringin, an OATP2B1 inhibitor. Oral administration of olmesartan-MX with 50 µM naringin to rats significantly reduced the area under the plasma concentration-time curve of olmesartan to 76.9%. CONCLUSION: Olmesartan-MX is a substrate for OATP2B1, and the naringin-sensitive transport system contributes to the improved intestinal absorption of olmesartan-MX compared with its parent drug, olmesartan.


Assuntos
Imidazóis , Absorção Intestinal , Olmesartana Medoxomila , Transportadores de Ânions Orgânicos , Pró-Fármacos , Tetrazóis , Animais , Humanos , Absorção Intestinal/efeitos dos fármacos , Olmesartana Medoxomila/metabolismo , Pró-Fármacos/farmacocinética , Pró-Fármacos/metabolismo , Células HEK293 , Tetrazóis/farmacocinética , Tetrazóis/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Masculino , Imidazóis/farmacocinética , Imidazóis/metabolismo , Ratos , Ratos Sprague-Dawley , Jejuno/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacocinética , Bloqueadores do Receptor Tipo 1 de Angiotensina II/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Permeabilidade/efeitos dos fármacos , Células CACO-2
17.
Clin Transl Gastroenterol ; 15(4): e00689, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38334953

RESUMO

INTRODUCTION: Only 20%-30% of individuals with alcohol use disorder (AUD) develop alcoholic liver disease (ALD). While the development of gut-derived endotoxemia is understood to be a required cofactor, increased intestinal permeability in ALD is not completely understood. METHODS: We recruited 178 subjects-58 healthy controls (HCs), 32 with ALD, 53 with AUD but no liver disease (ALC), and 35 with metabolic dysfunction-associated steatotic liver disease (MASLD). Intestinal permeability was assessed by a sugar cocktail as a percentage of oral dose. The permeability test was repeated after an aspirin challenge in a subset. RESULTS: Five-hour urinary lactulose/mannitol ratio (primarily representing small intestinal permeability) was not statistically different in HC, ALC, ALD, and MASLD groups ( P = 0.40). Twenty-four-hour urinary sucralose (representing whole gut permeability) was increased in ALD ( F = 5.3, P < 0.01) and distinguished ALD from ALC; 24-hour sucralose/lactulose ratio (primarily representing colon permeability) separated the ALD group ( F = 10.2, P < 0.01) from the MASLD group. After aspirin challenge, intestinal permeability increased in all groups and ALD had the largest increase. DISCUSSION: In a group of patients, we confirmed that (i) the ALD group has increased intestinal permeability compared with the HC, ALC, or MASLD group. In addition, because small bowel permeability (lactulose/mannitol ratio) is normal, the disruption of intestinal barrier seems to be primarily in the large intestine; (ii) decreased resiliency of intestinal barrier to injurious agents (such as NSAID) might be the mechanism for gut leak in subset of AUD who develop ALD.


Assuntos
Mucosa Intestinal , Lactulose , Hepatopatias Alcoólicas , Manitol , Permeabilidade , Sacarose/análogos & derivados , Humanos , Masculino , Hepatopatias Alcoólicas/metabolismo , Pessoa de Meia-Idade , Feminino , Lactulose/urina , Lactulose/administração & dosagem , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Adulto , Manitol/urina , Manitol/administração & dosagem , Estudos de Casos e Controles , Aspirina/administração & dosagem , Absorção Intestinal/efeitos dos fármacos , Sacarose/administração & dosagem , Alcoolismo/complicações , Alcoolismo/metabolismo , Idoso , Função da Barreira Intestinal
18.
Biosci Biotechnol Biochem ; 88(5): 493-498, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38378922

RESUMO

Polyphenols are compounds of plant origin with several documented bioactivities related to health promotion. Some polyphenols are hard to be absorbed into the body due to their structural characteristics. This review focuses on the health beneficial effects of polyphenols mediated by intestinal hormones, particularly related to the systemic functions through the secretion of glucagon-like peptide-1 (GLP-1), an enteric hormone that stimulates postprandial insulin secretion. GLP-1 is secreted from L cells in the distal small intestine. Therefore, some poorly absorbed polyphenols are known to have the ability to act on the intestines and promote GLP-1 secretion. It has been reported that it not only reduces hyperglycemia but also prevents obesity by reduction of overeating and improves blood vessel function. This review discusses examples of health effects of polyphenols mediated by GLP-1 secretion.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Polifenóis , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Polifenóis/metabolismo , Polifenóis/farmacologia , Humanos , Animais , Absorção Intestinal/efeitos dos fármacos , Obesidade/metabolismo , Obesidade/tratamento farmacológico , Insulina/metabolismo
19.
J Pharm Pharmacol ; 76(5): 559-566, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38215001

RESUMO

Imperatorin (IMP) is the main bioactive furanocoumarin of Angelicae dahuricae radix, which is a well-known traditional Chinese medicine. The purpose of this study was to elucidate the role of IMP in promoting absorption and the possible mechanism on the compatible drugs of Angelicae dahuricae radix. The influence of IMP on drugs' intestinal absorption was conducted by the Caco-2 cell model. The mechanism was studied by investigating the transcellular transport mode of IMP and its influence on P-glycoprotein (P-gp)-mediated efflux, protein expression of P-gp and tight junction, and cell membrane potential. The result showed IMP promoted the uptake of osthole, daidzein, ferulic acid, and puerarin and improved the transport of ferulic acid and puerarin in Caco-2 cells. The absorption-promoting mechanism of IMP might involve the reduction of the cell membrane potential, decrease of P-gp-mediated drug efflux and inhibition of the P-gp expression level in the cellular pathway, and the loosening of the tight junction protein by the downregulation of the expression levels of occludin and claudin-1 in the paracellular pathway. This study provides new insights into the understanding of the improved bioavailability of Angelicae dahuricae radix with its compatible drugs.


Assuntos
Angelica , Ácidos Cumáricos , Cumarínicos , Furocumarinas , Absorção Intestinal , Isoflavonas , Furocumarinas/farmacologia , Humanos , Células CACO-2 , Angelica/química , Absorção Intestinal/efeitos dos fármacos , Isoflavonas/farmacologia , Ácidos Cumáricos/farmacologia , Ácidos Cumáricos/farmacocinética , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/farmacocinética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Junções Íntimas/metabolismo , Junções Íntimas/efeitos dos fármacos , Transporte Biológico , Ocludina/metabolismo , Raízes de Plantas
20.
J Pharm Sci ; 113(6): 1546-1554, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38218315

RESUMO

Information on the conditions under which drugs are transferred from the stomach through the upper small intestine after a high-calorie, high-fat meal is very limited. To simulate the drug presence after disintegration and arrival in the antral region, paracetamol solution and Sporanox® amorphous solid dispersion pellets at two dose levels were administered to the antrum of 8 healthy adults 30 min after administration of a high-calorie, high-fat meal on a crossover basis. The overall median buffer capacity of antral contents was estimated to be 18.0 and 24.0 mmol/ml/ΔpH when titrating with NaOH and HCl, respectively. The corresponding values for the contents of upper the small intestine were 14.0 and 16.8 mmol/ml/ΔpH, respectively. The drug transfer process from the antrum through the upper small intestine occurred with apparent first-order kinetics. The best estimate for the antral emptying half-life was 39min and 45min for paracetamol and itraconazole, respectively, the apparent volume of contents of the upper small intestine was more than double compared with previously reported values in the fasted state, the half-life of drug elimination from the upper small intestine was similar to recent estimates for highly permeable drugs in the fasted state, and the apparent volume of antral contents during the first couple of hours post drug administration was 303mL. Information collected in this study could increase the reliability of in silico and/or in vitro modelling approaches applied in clinical drug development.


Assuntos
Acetaminofen , Intestino Delgado , Humanos , Adulto , Intestino Delgado/metabolismo , Masculino , Acetaminofen/farmacocinética , Acetaminofen/administração & dosagem , Feminino , Adulto Jovem , Estudos Cross-Over , Esvaziamento Gástrico/fisiologia , Refeições , Dieta Hiperlipídica/efeitos adversos , Jejum/metabolismo , Absorção Intestinal/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Interações Alimento-Droga , Estômago/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...