Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 264: 118685, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33137369

RESUMO

BACKGROUND: Differentiation of bone marrow eosinophils (BM-EO) and its trafficking to peripheral blood and respiratory mucosa are a hallmark of inflammatory diseases. Staphylococcal enterotoxin B (SEB) has been shown to aggravate airways eosinophilic inflammation. This study aimed to investigate the effects of mouse airways SEB exposure on BM-EO population, as well as its adhesive properties and release of cytokines/chemokines that orchestrate BM-EO trafficking to lungs. METHODS: Male BALB/c mice were intranasally exposed to SEB (1 µg), and at 4, 16, 24 and 48 h thereafter, bone marrow (BM), circulating blood and bronchoalveolar lavage (BAL) fluid were collected. Levels of cytokines/chemokines and expressions of VLA-4 and CCR3 in BM were evaluated. Adhesion of BM to ICAM-1 and VCAM-1 were also evaluated. RESULTS: SEB exposure promoted a marked eosinophil influx to BAL at 16 and 24 h after exposure, which was accompanied by significant increases in counts of immature (16 h) and mature (4 to 48 h) forms of eosinophil in BM, along with blood eosinophilia (16 h). In BM, higher levels of eotaxin, IL-5, IL-4, IL-3 and IL-7 were detected at 16 to 48 h. SEB also significantly increased CCR3 expression and calcium levels in BM-EO, and enhanced the cell adhesion to ICAM-1 (24 h) and ICAM-1 (48 h). CONCLUSION: Airways SEB exposure increases the number of eosinophils in BM by mechanisms involving a network of cytokine and chemokine release, facilitating the BM-EO adhesion to ICAM-1 and VCAM-1 to gain access to the peripheral blood and lung tissues.


Assuntos
Administração Intranasal/métodos , Medula Óssea/metabolismo , Enterotoxinas/metabolismo , Eosinófilos/metabolismo , Pulmão/metabolismo , Absorção Nasal/fisiologia , Animais , Medula Óssea/microbiologia , Líquido da Lavagem Broncoalveolar/microbiologia , Enterotoxinas/administração & dosagem , Enterotoxinas/sangue , Eosinófilos/microbiologia , Pulmão/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Staphylococcus aureus/metabolismo
2.
Eur J Pharm Biopharm ; 154: 186-194, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32681963

RESUMO

Our previous mouse studies demonstrated that mean bioavailability of exendin-4, which is an injectable glucagon-like peptide-1 (GLP-1) analogue whose molecular weight (Mw) and isoelectric point (pI) are ca. 4.2 kDa and 4.5, respectively, administered nasally with poly(N-vinylacetamide-co-acrylic acid) (PNVA-co-AA) bearing D-octaarginine, which is a typical cell-penetrating peptide, was 20% relative to subcutaneous administration even though it was less than 1% when exendin-4 alone was given nasally. The studies also revealed that the absorption-enhancing ability of D-octaarginine-linked PNVA-co-AA for exendin-4 was statistically equivalent to that of sodium salcaprozate (SNAC), which is an absorption enhancer formulated in tablets of semaglutide approved recently as an orally available GLP-1 analogue. From a perspective of clinical application of our technology, we have separately developed hyaluronic acid modified with L-octaarginine via a tetraglycine spacer which would be degraded in biological conditions. The present study revealed that tetraglycine-L-octaarginine-linked hyaluronic acid enhanced nasal absorption of exendin-4 in mice, as did D-octaarginine-linked PNVA-co-AA. There was no significant difference in absorption-enhancing abilities between the hyaluronic acid derivative and SNAC when octreotide (Mw: ca. 1.0 kDa, pI: 8.3) and lixisenatide (Mw: ca. 4.9 kDa, pI: 9.5) were used as a model protein drug. On the other hand, SNAC did not significantly enhance nasal absorption of somatropin (Mw: ca. 22.1 kDa, pI: 5.3) when compared with absorption enhancer-free conditions. Substitution of SNAC with tetraglycine-L-octaarginine-linked hyaluronic acid resulted in a 5-fold increase in absolute bioavailability of somatropin with statistical significance. It appeared that pI hardly ever influenced absorption-enhancing abilities of both enhancers. Results indicated that our polysaccharide derivative would be a promising absorption enhancer which delivers biologics applied on the nasal mucosa into systemic circulation and was of greater advantage than SNAC for enhancing nasal absorption of protein drugs with a larger Mw.


Assuntos
Ácido Hialurônico/administração & dosagem , Absorção Nasal/efeitos dos fármacos , Oligopeptídeos/administração & dosagem , Peptídeos/administração & dosagem , Administração Intranasal , Animais , Exenatida/administração & dosagem , Exenatida/química , Exenatida/farmacocinética , Hormônio do Crescimento Humano/administração & dosagem , Hormônio do Crescimento Humano/química , Hormônio do Crescimento Humano/farmacocinética , Ácido Hialurônico/química , Ácido Hialurônico/farmacocinética , Camundongos , Absorção Nasal/fisiologia , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/metabolismo , Octreotida/administração & dosagem , Octreotida/química , Octreotida/farmacocinética , Oligopeptídeos/química , Oligopeptídeos/farmacocinética , Peptídeos/química , Peptídeos/farmacocinética
3.
Drug Dev Ind Pharm ; 46(5): 697-705, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32293206

RESUMO

The purpose of this study was to investigate the nasal absorption rate and nasal mucosal toxicity of thermosensitive ketamine in situ gels containing various absorption enhancers. The optimal composition ratio for the gel matrix was determined to be 17.2% Poloxamer 407 and 2% Poloxamer 188, as this combination resulted in solutions with a gelation point within the range found in the nasal cavity. Ketamine gels containing the tested enhancers, namely, ethylenediaminetetraacetic acid disodium salt, hydroxypropyl-ß-cyclodextrin, propylene glycol, or Tween-80, were compared with enhancer-free counterparts to determine the absorption of the drug, in vivo by measuring its plasma levels in rats and in vitro using a Franz diffusion cell. Moreover, the toxicity of each gel type was assessed by microscopic observation of the morphology of rat nasal mucosa as well as by determining the mobility of the mucosal cilia using an established toad model. The results showed that gels containing hydroxypropyl-ß-cyclodextrin could promote the absorption of ketamine without added toxicity compared to enhancer-free gels. Thus, we consider hydroxypropyl-ß-cyclodextrin as the most promising absorption enhancer for the nasal administration of ketamine using in situ gels.


Assuntos
Portadores de Fármacos/toxicidade , Ketamina/toxicidade , Absorção Nasal/efeitos dos fármacos , Mucosa Nasal/efeitos dos fármacos , Poloxâmero/toxicidade , Administração Intranasal/métodos , Analgésicos/síntese química , Analgésicos/metabolismo , Analgésicos/toxicidade , Animais , Anuros , Portadores de Fármacos/síntese química , Portadores de Fármacos/metabolismo , Feminino , Géis , Ketamina/síntese química , Ketamina/metabolismo , Masculino , Absorção Nasal/fisiologia , Mucosa Nasal/metabolismo , Técnicas de Cultura de Órgãos , Poloxâmero/síntese química , Poloxâmero/metabolismo , Ratos , Ratos Sprague-Dawley , Temperatura
4.
Biol Pharm Bull ; 42(1): 144-148, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30606986

RESUMO

The transnasal route for the delivery of water-soluble macromolecules, such as bioactive peptides and proteins, has attracted interest, although the use of permeation enhancers is required due to the poor permeabilities of these macromolecules across the nasal mucosa. With polycationic compounds, such as poly-L-arginine and chitosan, the nasal absorption of hydrophilic macromolecules is molecular weight- and concentration-dependently enhanced without causing cytotoxicity. In the present study, we evaluated the effect of various molecular weights and concentrations of poly-L-ornithine (PLO), a polycationic compound, on the nasal absorption and the damage to the nasal mucosa in vivo. PLO enhanced the nasal absorption of fluorescein isothiocyanate-dextran (FD-4), used as a model drug, and the bioavailability of FD-4 increased with the concentration of PLO. The enhancement effect was also dependent on the molecular weight. The administration of PLO at a concentration that sufficed for enhancing the nasal absorption had no effect on the activity of lactic dehydrogenase and the protein leakage in the nasal fluid, as indices of nasal mucosa damage. These findings suggest that a transnasal delivery system using PLO is a useful strategy for improving the nasal absorption of water-soluble macromolecules without toxicity to the nasal mucosa.


Assuntos
Imidazóis/metabolismo , Absorção Nasal/efeitos dos fármacos , Peptídeos/metabolismo , Éteres Fenílicos/metabolismo , Tensoativos/metabolismo , Água , Animais , Sinergismo Farmacológico , Imidazóis/administração & dosagem , Masculino , Absorção Nasal/fisiologia , Peptídeos/administração & dosagem , Éteres Fenílicos/administração & dosagem , Ratos , Ratos Wistar , Solubilidade/efeitos dos fármacos , Tensoativos/administração & dosagem , Água/metabolismo
5.
Am J Respir Crit Care Med ; 199(6): 773-783, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30309268

RESUMO

RATIONALE: Leptin treats upper airway obstruction and alveolar hypoventilation in leptin-deficient ob/ob mice. However, obese humans and mice with diet-induced obesity (DIO) are resistant to leptin because of poor permeability of the blood-brain barrier. We propose that intranasal leptin will bypass leptin resistance and treat sleep-disordered breathing in obesity. OBJECTIVES: To assess if intranasal leptin can treat obesity hypoventilation and upper airway obstruction during sleep in mice with DIO. METHODS: Male C57BL/6J mice were fed with a high-fat diet for 16 weeks. A single dose of leptin (0.4 mg/kg) or BSA (vehicle) were administered intranasally or intraperitoneally, followed by either sleep studies (n = 10) or energy expenditure measurements (n = 10). A subset of mice was treated with leptin daily for 14 days for metabolic outcomes (n = 20). In a separate experiment, retrograde viral tracers were used to examine connections between leptin receptors and respiratory motoneurons. MEASUREMENTS AND MAIN RESULTS: Acute intranasal, but not intraperitoneal, leptin decreased the number of oxygen desaturation events in REM sleep, and increased ventilation in non-REM and REM sleep, independently of metabolic effects. Chronic intranasal leptin decreased food intake and body weight, whereas intraperitoneal leptin had no effect. Intranasal leptin induced signal transducer and activator of transcription 3 phosphorylation in hypothalamic and medullary centers, whereas intraperitoneal leptin had no effect. Leptin receptor-positive cells were synaptically connected to respiratory motoneurons. CONCLUSIONS: In mice with DIO, intranasal leptin bypassed leptin resistance and significantly attenuated sleep-disordered breathing independently of body weight.


Assuntos
Leptina/metabolismo , Absorção Nasal/fisiologia , Obesidade/complicações , Síndromes da Apneia do Sono/complicações , Síndromes da Apneia do Sono/fisiopatologia , Sono/fisiologia , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais
6.
Biol Pharm Bull ; 40(2): 212-219, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28154262

RESUMO

The effect of changes in the mucosal fluid volume on the nasal drug absorption of powder formulations was evaluated using warfarin (WF), piroxicam (PXC), and norfloxacin (NFX) as model drugs. Lactose and sodium chloride (NaCl), which are water soluble and small-sized chemicals that increase osmotic pressure after dissolution, were used as excipients to change the mucosal fluid volume. The in vitro study using a Madin-Darby canine kidney (MDCK) cell monolayer indicated that lactose and NaCl, sprayed over the surface of air interface monolayers, increased the fluid volume on the monolayer surface and enhanced the transepithelial transport of the model drugs. The in vivo animal study indicated that the nasal absorption of PXC is enhanced by lactose and NaCl after nasal administration of the powder formulations. This is likely due to the enhanced dissolution of PXC on fluid-rich nasal mucosa and an increase in the effective surface area for drug permeation, which lead to better nasal absorption. However, both excipients failed to increase the nasal absorption of WF and NFX. To clarify the mechanism of the drug-dependent effect of lactose and NaCl, the nasal residence of the formulation was examined using FD70 as a non-absorbable marker. The nasal clearance of FD70 was enhanced by lactose and NaCl, leading to a decrease in the nasal drug absorption. Lactose and NaCl caused no damage to the nasal tissue. These results indicate that the addition of water-soluble excipients such as lactose to powder formulations can enhance the nasal absorption of highly permeable but poorly soluble drugs.


Assuntos
Excipientes/metabolismo , Absorção Nasal/fisiologia , Mucosa Nasal/metabolismo , Migração Transendotelial e Transepitelial/fisiologia , Administração Intranasal , Animais , Química Farmacêutica , Cães , Excipientes/administração & dosagem , Excipientes/química , Humanos , Células Madin Darby de Rim Canino , Masculino , Absorção Nasal/efeitos dos fármacos , Mucosa Nasal/efeitos dos fármacos , Pós , Ratos , Ratos Wistar , Migração Transendotelial e Transepitelial/efeitos dos fármacos
7.
Eur J Pharm Sci ; 96: 284-289, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27664332

RESUMO

Despite the numerous advantages of powder formulations, few studies have described their nasal drug absorption. The first aim of this study was to compare the drug absorption from powder formulation with that from a liquid formulation in rats. Since pharmaceutical excipients are usually added to most powder formulations, the second aim of the study was to investigate the effect of hydroxypropyl cellulose (HPC) on nasal drug absorption from the powder. Three types of HPC with different polymerization degrees were used: HPC(SL), HPC(M), and HPC(H). The model drugs were warfarin (BCS Class I), piroxicam (BCS Class II), and sumatriptan (BCS Class III). The absorption of these model drugs in the powder form was higher than that from the solution. All HPCs failed to enhance warfarin absorption, while the piroxicam absorption was enhanced only by HPC(M). Sumatriptan absorption was not enhanced by HPC(SL), but by HPC(M) and HPC(H). The differences in nasal absorption of the three model drugs promoted by HPCs depend on the permeability and solubility of the drug. Moreover, the nasal retention of different formulations was increased by HPCs. Because HPCs showed no toxic effect on the nasal epithelium. These findings indicate that powder formulations supplemented with HPC are a valuable and promising approach to increase the nasal absorption of highly soluble and poorly permeable drugs.


Assuntos
Celulose/análogos & derivados , Absorção Nasal/fisiologia , Mucosa Nasal/metabolismo , Administração Intranasal , Animais , Celulose/administração & dosagem , Celulose/sangue , Celulose/química , Química Farmacêutica , Masculino , Absorção Nasal/efeitos dos fármacos , Mucosa Nasal/efeitos dos fármacos , Pós , Ratos , Ratos Wistar , Viscosidade
8.
Eur J Pharm Sci ; 95: 96-102, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27260088

RESUMO

Besides the opioids the standard management of the World Health Organization suggests NSAIDs (non-steroidal anti-inflammatory drugs) alone or in combination to enhance analgesia in malignant and non-malignant pain therapy. The applicability of NSAIDs in a nasal formulation is a new approach in pharmaceutical technology. In order to enhance the nasal absorption of meloxicam (MX) as an NSAID, its salt form, meloxicam potassium monohydrate (MXP), registered by Egis Plc., was investigated in comparison with MX. The physico-chemical properties of the drugs (structural analysis, solubility and dissolution rate) and the mucoadhesivity of nasal formulations were controlled. In vitro and in vivo studies were carried out to determine the nasal applicability of MXP as a drug candidate in pain therapy. It can be concluded that MX and MXP demonstrated the same equilibrium solubility at the pH5.60 of the nasal mucosa (0.017mg/ml); nonetheless, MXP indicated faster dissolution and a higher permeability through the synthetic membrane. The animal studies justified the short Tmax value (15min) and the high AUC of MXP, which is important in acute pain therapy. It can be assumed that the low mucoadhesivity of MXP spray did not increase the residence time in the nasal cavity, and the elimination from the nasal mucosa was therefore faster than in the case of MX. Further experiments are necessary to prove the therapeutic relevance of this MXP-containing innovative intranasal formulation.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/química , Absorção Nasal/efeitos dos fármacos , Tiazinas/administração & dosagem , Tiazinas/química , Tiazóis/administração & dosagem , Tiazóis/química , Administração Intranasal , Animais , Anti-Inflamatórios não Esteroides/metabolismo , Masculino , Meloxicam , Absorção Nasal/fisiologia , Ratos , Ratos Sprague-Dawley , Solubilidade/efeitos dos fármacos , Tiazinas/metabolismo , Tiazóis/metabolismo
9.
Pharm Res ; 33(8): 1936-44, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27194003

RESUMO

PURPOSE: To probe the suitability of a dry-powder oxytocin formulation containing a carrier (µco™; SNBL, Ltd.) for intranasal (IN) administration to treat post-partum hemorrhage in the developing world. Specifically, to investigate (1) whether IN administration can achieve rapid systemic absorption in cynomolgus monkeys, and (2) whether the formulation exhibits sufficient physical and chemical stability. This study was conducted to support Merck for Mothers, Merck's 10-year global initiative to end preventable maternal deaths. METHODS: A partial-crossover pharmacokinetic (PK) study in cynomolgus monkeys (n = 6) was utilized to compare in vivo absorption of dry-powder IN oxytocin at three dose levels against an IM injection of an aqueous oxytocin formulation. Particle size distribution, delivered dose and chemical assay were monitored over a 12 month stability study. RESULTS: IN administration of oxytocin resulted in short (5 min) Tmax and good dose linearity in AUC and Cmax over the dose range tested (10-80 IU per animal). The relative bioavailability (BA) of IN oxytocin to IM injection was approximately 12%. The 80 IU formulation exhibited good physical stability and consistent dosing. After 12 months at 30°C/65%RH, pouched samples retained 86.0% of their original assay value. CONCLUSIONS: The PK and stability data suggests that IN administration of oxytocin formulated in the µco™ carrier may represent a viable option for rapid systemic absorption in humans and a product compatible with resource-scarce regions.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Absorção Nasal/fisiologia , Ocitocina/administração & dosagem , Ocitocina/metabolismo , Administração Intranasal , Animais , Estudos Cross-Over , Macaca fascicularis , Masculino , Absorção Nasal/efeitos dos fármacos , Ocitócicos/administração & dosagem , Ocitócicos/metabolismo , Fatores de Tempo
10.
Eur J Pharm Biopharm ; 99: 45-53, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26639201

RESUMO

We performed positron emission tomography (PET) using 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) to evaluate the pharmacokinetics of nasal drug absorption in the rat. The dosing solution of [(18)F]FDG was varied in volume (ranging from 5 to 25 µl) and viscosity (using 0% to 3% concentrations of hydroxypropylcellulose). We modeled the pharmacokinetic parameters regarding the nasal cavity and pharynx using mass balance equations, and evaluated the values that were obtained by fitting concentration-time profiles using WinNonlin® software. The regional nasal permeability was also estimated using the active surface area derived from the PET images. The translocation of [(18)F]FDG from the nasal cavity was visualized using PET. Analysis of the PET imaging data revealed that the pharmacokinetic parameters were independent of the dosing solution volume; however, the viscosity increased the absorption rate constant and decreased the mucociliary clearance rate constant. Nasal permeability was initially higher but subsequently decreased until the end of the study, indicating regional differences in permeability in the nasal cavity. We concluded that the visualization of drug translocation in the nasal cavity in the rat using PET enables quantitative analysis of nasal drug absorption, thereby facilitating the development of nasal formulations for human use.


Assuntos
Fluordesoxiglucose F18/análise , Fluordesoxiglucose F18/farmacocinética , Absorção Nasal/fisiologia , Cavidade Nasal/diagnóstico por imagem , Cavidade Nasal/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Animais , Masculino , Absorção Nasal/efeitos dos fármacos , Cavidade Nasal/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...