Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
BMC Microbiol ; 23(1): 198, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495951

RESUMO

BACKGROUND: Acanthamoeba castellanii is a free-living protist that feeds on diverse bacteria. A. castellanii has frequently been utilized in studies on microbial interactions. Grazing bacteria also exhibit diverse effects on the physiological characteristics of amoebae, such as their growth, encystation, and cytotoxicity. Since the composition of amoebae amino acids is closely related to cellular activities, it can indicate the overall responses of A. castellanii to various stimuli. METHOD: A. castellanii was exposed to different culture conditions in low-nutrient medium with heat-killed DH5α to clarify their effects. A targeted metabolomic technique was utilized to evaluate the concentration of cellular amino acids. The amino acid composition and pathways were analyzed by two web-based tools: MetaboAnalyst and Pathview. Then, long-term exposure to A. castellanii was investigated through in silico and in vitro methods to elucidate the homeostasis of amino acids and the growth of A. castellanii. RESULTS: Under short-term exposure, all kinds of amino acids were enriched in all exposed groups. In contrast to the presence of heat-killed bacteria, the medium exhibited obvious effects on the amino acid composition of A. castellanii. After long-term exposure, the amino acid composition was more similar to that of the control group. A. castellanii may achieve amino acid homeostasis through pathways related to alanine, aspartate, citrulline, and serine. DISCUSSION: Under short-term exposure, compared to the presence of bacteria, the type of medium exerted a more powerful effect on the amino acid composition of the amoeba. Previous studies focused on the interaction of the amoeba and bacteria with effective secretion systems and effectors. This may have caused the effects of low-nutrient environments to be overlooked. CONCLUSION: When A. castellanii was stimulated in the coculture system through various methods, such as the presence of bacteria and a low-nutrient environment, it accumulated intracellular amino acids within a short period. However, different stimulations correspond to different amino acid compositions. After long-term exposure, A. castellanii achieved an amino acid equilibrium by downregulating the biosynthesis of several amino acids.


Assuntos
Acanthamoeba castellanii , Aminoácidos , Escherichia coli , Acanthamoeba castellanii/química , Acanthamoeba castellanii/crescimento & desenvolvimento , Acanthamoeba castellanii/fisiologia , Técnicas de Cocultura , Aminoácidos/análise , Aclimatação , Temperatura Alta , Meios de Cultura
2.
Proc Natl Acad Sci U S A ; 119(32): e2122659119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914149

RESUMO

Predatory protozoa play an essential role in shaping microbial populations. Among these protozoa, Acanthamoeba are ubiquitous in the soil and aqueous environments inhabited by Listeria monocytogenes. Observations of predator-prey interactions between these two microorganisms revealed a predation strategy in which Acanthamoeba castellanii assemble L. monocytogenes in aggregates, termed backpacks, on their posterior. The rapid formation and specific location of backpacks led to the assumption that A. castellanii may recruit L. monocytogenes by releasing an attractant. However, this hypothesis has not been validated, and the mechanisms driving this process remained unknown. Here, we combined video microscopy, microfluidics, single-cell image analyses, and theoretical modeling to characterize predator-prey interactions of A. castellanii and L. monocytogenes and determined whether bacterial chemotaxis contributes to the backpack formation. Our results indicate that L. monocytogenes captures are not driven by chemotaxis. Instead, random encounters of bacteria with amoebae initialize bacterial capture and aggregation. This is supported by the strong correlation between experimentally derived capture rates and theoretical encounter models at the single-cell level. Observations of the spatial rearrangement of L. monocytogenes trapped by A. castellanii revealed that bacterial aggregation into backpacks is mainly driven by amoeboid locomotion. Overall, we show that two nonspecific, independent mechanisms, namely random encounters enhanced by bacterial motility and predator surface-bound locomotion, drive backpack formation, resulting in a bacterial aggregate on the amoeba ready for phagocytosis. Due to the prevalence of these two processes in the environment, we expect this strategy to be widespread among amoebae, contributing to their effectiveness as predators.


Assuntos
Acanthamoeba castellanii , Listeria monocytogenes , Acanthamoeba castellanii/fisiologia , Quimiotaxia , Locomoção , Microfluídica , Microscopia de Vídeo , Fagocitose , Análise de Célula Única
3.
Exp Parasitol ; 239: 108312, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35738459

RESUMO

Acanthamoeba castellanii is a free-living protozoan that causes several severe human parasitic diseases such as Acanthamoeba keratitis and granulomatous encephalitis. A. castellanii feeds on bacteria, yeasts, and other organic particles as food sources, but the mechanisms of digestion in acanthamoebal cells are unclear. Rab GTPases participate in endosomal delivery in eukaryotes after phagocytosis. This study aimed to determine the potential functions of A. castellanii Rab7 (AcRab7), which is involved in phagocytosis, and the relationship between AcRab7 and further cellular physiological phenomena. In this study, the inhibitor CID1067700 (CID) was used to specifically inhibit the binding of nucleotides to confirm the potential functions of AcRab7. Cellular proliferation and ATP assays were also used to detect underlying cellular physiological functions after blocking the phagocytosis pathway. We found that AcRab7 expression increased as the co-culture time with Escherichia coli increased. Immunofluorescence staining showed that AcRab7 colocalized with lysosomes in its GTP-activating form. In addition, AcRab7 inhibition resulted in a reduction in cell proliferation and ATP levels. Our results suggest that AcRab7 participates in endosomal delivery and dominates energy production and cell growth.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba castellanii , Ceratite por Acanthamoeba/parasitologia , Acanthamoeba castellanii/fisiologia , Trifosfato de Adenosina , Escherichia coli , Humanos , Fagocitose
4.
Microbiol Spectr ; 9(3): e0064221, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34851177

RESUMO

Mobbing, group attack of prey on predator, is a behavior seen in many animal species in which prey animals use numbers and coordination to counter individually superior predators. We studied attack behavior of Pseudomonas aeruginosa toward the bacterivore Acanthamoeba castellanii. This behavior consists of directed motility toward and specific adhesion to the predator cells, enacted in seconds and responding to both prey and predator population densities. Attack coordination relies on remote sensing of the predator and the use of the Pseudomonas quinolone signal (PQS), a P. aeruginosa species-specific quorum sensing molecule. Mutants unable to produce the PQS show unspecific adhesion and reduced survival, and a corresponding increase in predator population occurs as a result of predation. The addition of an external PQS restored some predator-specific adherence within seconds, suggesting a novel response mechanism to this quorum sensing (QS) signal. Fast behavioral response of P. aeruginosa to PQS is also supported by the rate of signal accumulation in the culture, reaching relevant concentrations within minutes, enabling bacteria response to self population density in these short timescales. These results portray a well-regulated group attack of the bacteria against their predator, reacting within seconds to environmental cues and species-specific signaling, which is analogous in many ways to animal mobbing behavior. IMPORTANCE Pseudomonas aeruginosa was shown previously to attack amoebae and other predators by adhering to them and injecting them with virulent substances. In this work, we show that an active, coordinated group behavior is enacted by the bacteria to utilize these molecular components, responding to both predator and bacterial population density. In addition to their ecological significance, immediate behavioral changes observed in response to PQS suggest the existence of a fast QS signal cascade, which is different from canonical QS that relies on slow-to-respond gene regulation. Similar regulatory circuits may drive other bacterial adaptations and pathogenicity mechanisms and may have important clinical implications.


Assuntos
Acanthamoeba castellanii/microbiologia , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum , Acanthamoeba castellanii/crescimento & desenvolvimento , Acanthamoeba castellanii/fisiologia , Aderência Bacteriana , Interações Hospedeiro-Patógeno , Cinética , Dinâmica Populacional , Pseudomonas aeruginosa/química
5.
Microbiol Spectr ; 9(3): e0051221, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34935418

RESUMO

Acanthamoeba castellanii is a free-living, pathogenic ameba found in the soil and water. It invades the body through ulcerated skin, the nasal passages, and eyes and can cause blinding keratitis and granulomatous encephalitis. However, the mechanisms underlying the opportunistic pathogenesis of A. castellanii remain unclear. In this study, we observed that commensal bacteria significantly reduced the cytotoxicity of the ameba on mammalian cells. This effect occurred in the presence of both Gram-positive and Gram-negative commensals. Additionally, commensals mitigated the disruption of cell junctions. Ex vivo experiments on mouse eyeballs further showed that the commensals protected the corneal epithelial layer. Together, these findings indicate that A. castellanii is pathogenic to individuals with a dysbiosis of the microbiota at infection sites, further highlighting the role of commensals as a natural barrier during parasite invasion. IMPORTANCE Acanthamoeba castellanii, an opportunistic protozoan widely present in the environment, can cause Acanthamoeba keratitis and encephalitis in humans. However, only a few reports describe how the ameba acts as an opportunistic pathogen. Our study showed that the normal microbiota interfered with the cytotoxicity of Acanthamoeba, persevered during Acanthamoeba invasion, and reduced corneal epithelium peeling in the mouse eyeball model. This suggests that commensals may act as a natural barrier against Acanthamoeba invasion. In future, individuals who suffer from Acanthamoeba keratitis should be examined for microbiota absence or dysbiosis to reduce the incidence of Acanthamoeba infection in clinical settings.


Assuntos
Ceratite por Acanthamoeba/parasitologia , Acanthamoeba castellanii/fisiologia , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/fisiologia , Ceratite por Acanthamoeba/microbiologia , Animais , Córnea/microbiologia , Córnea/parasitologia , Epitélio/parasitologia , Feminino , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Simbiose
6.
Can J Microbiol ; 67(6): 476-490, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34057367

RESUMO

Pseudomonas chlororaphis PA23 is a biocontrol agent capable of protecting canola against the fungal pathogen Sclerotinia sclerotiorum. In addition to producing antifungal compounds, this bacterium synthesizes and accumulates polyhydroxyalkanoate (PHA) polymers as carbon and energy storage compounds. Because the role of PHA in PA23 physiology is currently unknown, we investigated the impact of this polymer on stress resistance, adherence to surfaces, and interaction with the protozoan predator Acanthamoeba castellanii. Three PHA biosynthesis mutants were created, PA23phaC1, PA23phaC1ZC2, and PA23phaC1ZC2D, which accumulated reduced PHA. Our phenotypic assays revealed that PA23phaC1ZC2D produced less phenazine (PHZ) compared with the wild type (WT) and the phaC1 and phaC1ZC2 mutants. All three mutants exhibited enhanced sensitivity to UV irradiation, starvation, heat stress, cold stress, and hydrogen peroxide. Moreover, motility, exopolysaccharide production, biofilm formation, and root attachment were increased in strains with reduced PHA levels. Interaction studies with the amoeba A. castellanii revealed that the WT and the phaC1 and phaC1ZC2 mutants were consumed less than the phaC1ZC2D mutant, likely due to decreased PHZ production by the latter. Collectively these findings indicate that PHA accumulation enhances PA23 resistance to a number of stresses in vitro, which could improve the environmental fitness of this bacterium in hostile environments.


Assuntos
Acanthamoeba castellanii/fisiologia , Biofilmes/crescimento & desenvolvimento , Poli-Hidroxialcanoatos/metabolismo , Pseudomonas chlororaphis/fisiologia , Estresse Fisiológico/fisiologia , Aderência Bacteriana , Brassica napus/microbiologia , Mutação , Fenazinas/metabolismo , Poli-Hidroxialcanoatos/genética , Polissacarídeos Bacterianos/metabolismo , Pseudomonas chlororaphis/genética , Pseudomonas chlororaphis/metabolismo
7.
mBio ; 12(2)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33906924

RESUMO

Amoeboid predators, such as amoebae, are proposed to select for survival traits in soil microbes such as Cryptococcus neoformans; these traits can also function in animal virulence by defeating phagocytic immune cells, such as macrophages. Consistent with this notion, incubation of various fungal species with amoebae enhanced their virulence, but the mechanisms involved are unknown. In this study, we exposed three strains of C. neoformans (1 clinical and 2 environmental) to predation by Acanthamoeba castellanii for prolonged times and then analyzed surviving colonies phenotypically and genetically. Surviving colonies comprised cells that expressed either pseudohyphal or yeast phenotypes, which demonstrated variable expression of traits associated with virulence, such as capsule size, urease production, and melanization. Phenotypic changes were associated with aneuploidy and DNA sequence mutations in some amoeba-passaged isolates, but not in others. Mutations in the gene encoding the oligopeptide transporter (CNAG_03013; OPT1) were observed among amoeba-passaged isolates from each of the three strains. Isolates derived from environmental strains gained the capacity for enhanced macrophage toxicity after amoeba selection and carried mutations on the CNAG_00570 gene encoding Pkr1 (AMP-dependent protein kinase regulator) but manifested reduced virulence in mice because they elicited more effective fungal-clearing immune responses. Our results indicate that C. neoformans survival under constant amoeba predation involves the generation of strains expressing pleiotropic phenotypic and genetic changes. Given the myriad potential predators in soils, the diversity observed among amoeba-selected strains suggests a bet-hedging strategy whereby variant diversity increases the likelihood that some will survive predation.IMPORTANCECryptococcus neoformans is a ubiquitous environmental fungus that is also a leading cause of fatal fungal infection in humans, especially among immunocompromised patients. A major question in the field is how an environmental yeast such as C. neoformans becomes a human pathogen when it has no need for an animal host in its life cycle. Previous studies showed that C. neoformans increases its pathogenicity after interacting with its environmental predator amoebae. Amoebae, like macrophages, are phagocytic cells that are considered an environmental training ground for pathogens to resist macrophages, but the mechanism by which C. neoformans changes its virulence through interactions with protozoa is unknown. Our study indicates that fungal survival in the face of amoeba predation is associated with the emergence of pleiotropic phenotypic and genomic changes that increase the chance of fungal survival, with this diversity suggesting a bet-hedging strategy to ensure that some forms survive.


Assuntos
Acanthamoeba castellanii/fisiologia , Criptococose/microbiologia , Cryptococcus neoformans/patogenicidade , Fagocitose , Acanthamoeba castellanii/microbiologia , Animais , Criptococose/imunologia , Cryptococcus neoformans/classificação , Cryptococcus neoformans/genética , Citocinas/imunologia , Feminino , Humanos , Larva/microbiologia , Macrófagos/microbiologia , Camundongos Endogâmicos C57BL , Mariposas/microbiologia , Fagócitos/microbiologia , Fenótipo , Virulência
8.
Exp Parasitol ; 218: 107985, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32918877

RESUMO

Acanthamoeba castellanii is a protist that has a high predation efficiency for bacteria in a number of monoxenic culture experiments. However, the role of A. castellanii in the microbial community is still unknown because of the lack of studies on multiple-species interactions. The aim of this study was to investigate the change of bacterial composition after A. castellanii emerges in a water environment. We added A. castellanii to an environmental water sample and incubated it for two days. Then, we performed 16S ribosomal RNA sequencing techniques to analyze the changes in bacterial composition. In this study, A. castellanii slightly increased the relative abundance of a few opportunistic pathogens, such as Legionella, Roseomonas, and Haemophilus. This result may be related to the training ground hypothesis. On the other hand, the growth of some bacteria was inhibited, such as Cyanobacteria and Firmicutes. Although A. castellanii did not drastically change the whole bacterial community, we surprisingly found the dissolved oxygen concentration was increased after incubation with A. castellanii. We applied environmental water at the laboratory scale to investigate the interactions among A. castellanii, complex microbial communities and the environment. We identified the bacteria that are sensitive to A. castellanii and further found the novel relationship between dissolved oxygen and microbial interaction. Our results helped to clarify the role of A. castellanii in microbial communities.


Assuntos
Acanthamoeba castellanii/fisiologia , Bdellovibrio/isolamento & purificação , Legionella/isolamento & purificação , Microbiota/fisiologia , Oxigênio/metabolismo , Acanthamoeba castellanii/genética , Bdellovibrio/genética , Bdellovibrio/fisiologia , DNA/isolamento & purificação , Legionella/genética , Legionella/patogenicidade , Legionella/fisiologia , Lagoas/microbiologia , Lagoas/parasitologia , RNA Ribossômico 16S/química , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Virulência
9.
Mycoses ; 63(12): 1331-1340, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32869415

RESUMO

BACKGROUND: Trichophyton rubrum (Tr) is the main aetiological agent of human dermatophytosis, being isolated from the environment and keratinised tissues. In the environment, Tr can interact with other organisms, such as free-living amoebas (FLA), which can act as an alternative host system to study the interaction between microbes and phagocytic cells. OBJECTIVES: To characterise the Acanthamoeba castellanii (ALX)-Tr interaction. METHODS: Interaction was characterised in three conditions: trophozoites (PYG), late (PYG/NES) and early (NES) encystation stimulus, evaluating encystation kinetics, phagocytosis, exocytosis and fungicidal activity dynamics. RESULTS: Tr was able to induce ALX encystation and be internalised by ALX. The number of internalised conidia was high at 1 hour, and ALX presented fungicidal activity with increased intracellular ROS production and exocytosis. In PYG/NES, phagocytosis and ROS production were reduced, with decreased ALX's fungicidal activity. However, in NES there was an increased fungal engulfment, and a reduced ROS production and higher fungal burden. Furthermore, exogenous mannose decreased phagocytosis of Tr conidia, and divalent cations induced ROS production and increased ALX's fungicidal activity. Interestingly, phagocytosis was reduced in the presence of cytoskeleton inhibitor, but exocytosis was increased, suggesting that Tr conidia may have alternative pathways to escape ALX's cells. CONCLUSION: A castellanii is a proper model for studying Tr-FLA interaction, since ALX can engulf, produce ROS and kill Tr, and all these parameters are influenced by an encystation stimulus and divalent cations. Moreover, this interaction is likely to occur in the environment implicating in the adaptation to environmental stressful conditions in both organisms.


Assuntos
Acanthamoeba castellanii/microbiologia , Acanthamoeba castellanii/fisiologia , Arthrodermataceae/fisiologia , Interações entre Hospedeiro e Microrganismos , Cátions , Exocitose , Humanos , Ceratite/microbiologia , Macrófagos/microbiologia , Ácido Peroxinitroso/análise , Fagocitose , Espécies Reativas de Oxigênio/análise , Esporos Fúngicos/fisiologia
10.
Sci Rep ; 10(1): 11759, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678116

RESUMO

The insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF1-R) play key roles in growth, regulation of nutrient metabolism and carbohydrate homeostasis. Insulin-like molecules in prokaryotes and other early life have been reported. However, an account of metabolic effects of insulin, transcriptomic evidence of expression of glucose transporting channels (GLUT) and homology modelling of IR and IGF1-R like proteins in unicellular life-forms have yet to be established. Acanthamoeba spp. has existed for about 2 billion years and is one of the earliest mitochondriate unicellular eukaryotic cells on Earth. Despite Acanthamoeba spp. being grown in a medium called peptone-yeast-glucose (PYG) for over 50 years, the mechanism and regulation of glucose uptake by IR or IGF1-R molecules in this microbe has not yet been reported. Several methods were utilized to validate the effects of insulin on trophozoites of A. castellanii, including: growth assays with insulin, estimation of glucose and potassium (K+) entry into the cell, and histology showing anabolic effects on proteins. Bioinformatic computational tools and homology modeling demonstrated the involvement of IR like proteins, GLUT, and adapter proteins in mediating the IR cascade. Growth assays showed proliferative effects in a dose range of 2.98-5.97 µmol/mL of insulin. After insulin exposure, A. castellanii trophozoites displayed enhanced Periodic acid-Sciff (PAS) staining. Amino acid sequence similarities and homology modelling revealed ACA1_163470 in Acanthamoeba spp. to be a homolog of human-IR. Acanthamoeba protein ACA1_336150 shares similarities with IGF1-R. Additionally, some proteins like ACA1_060920 have attributes of GLUT like channels on homology modelling and show similarity with human GLUT. Knowledge of IR and insulin effects in Acanthamoeba spp. contributes to its biology and advances current understanding behind the evolution of IR and IGF1-R signalling cascade.


Assuntos
Acanthamoeba castellanii/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Insulina/metabolismo , Receptor de Insulina/metabolismo , Acanthamoeba castellanii/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Evolução Biológica , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Regulação da Expressão Gênica , Glucose/metabolismo , Imuno-Histoquímica , Insulina/farmacologia , Metformina/farmacologia , Modelos Moleculares , Conformação Proteica , Receptor de Insulina/química , Receptor de Insulina/genética , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
11.
mSphere ; 5(2)2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32350094

RESUMO

Cryptococcus neoformans and Cryptococcus gattii are pathogenic fungi that cause significant morbidity and mortality. Cell surface hydrophobicity (CSH) is a biophysical parameter that influences the adhesion of fungal cells or spores to biotic and abiotic surfaces. C. neoformans is encased by polysaccharide capsule that is highly hydrophilic and is a critical determinant of virulence. In this study, we report large differences in the CSH of some C. neoformans and C. gattii strains. The capsular polysaccharides of C. neoformans strains differ in repeating motifs and therefore vary in the number of hydroxyl groups, which, along with higher-order structure of the capsule, may contribute to the variation in hydrophobicity that we observed. We found that cell wall composition, in the context of chitin-chitosan content, does not influence CSH. For C. neoformans, CSH correlated with phagocytosis by natural soil predator Acanthamoeba castellanii Furthermore, capsular binding of the protective antibody (18B7), but not the nonprotective antibody (13F1), altered the CSH of C. neoformans strains. Variability in CSH could be an important characteristic in comparing the biological properties of cryptococcal strains.IMPORTANCE The interaction of a microbial cell with its environment is influenced by the biophysical properties of a cell. The affinity of the cell surface for water, defined by the cell surface hydrophobicity (CSH), is a biophysical parameter that varies among different strains of Cryptococcus neoformans The CSH influences the phagocytosis of the yeast by its natural predator in the soil, the amoeba. Studying variation in biophysical properties like CSH gives us insight into the dynamic host-predator interaction and host-pathogen interaction in a damage-response framework.


Assuntos
Acanthamoeba castellanii/fisiologia , Parede Celular/química , Cryptococcus neoformans/fisiologia , Interações Hidrofóbicas e Hidrofílicas , Interações Microbianas , Acanthamoeba castellanii/microbiologia , Quitina/análise , Quitosana/análise , Cryptococcus neoformans/química , Fagocitose
12.
J Fr Ophtalmol ; 43(4): 330-333, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32151474

RESUMO

Acanthamoeba keratitis due to a genus of free-living amoebae is a severe corneal infection. Treatment of this disease is based on the combined use of antiseptics and other drugs, including azoles. We tested isavuconazole, the latest marketed azole, in vitro, against A. castellanii, A. lenticulata and A. hatchetti. Our results show that isavuconazole presents slight amoebistatic activity against A. castellanii trophozoites but no cysticidal activity. Isavuconazole could be used only in association for management of AK due to A. castellanii.


Assuntos
Ceratite por Acanthamoeba/parasitologia , Acanthamoeba/efeitos dos fármacos , Nitrilas/farmacologia , Piridinas/farmacologia , Triazóis/farmacologia , Acanthamoeba/classificação , Acanthamoeba/crescimento & desenvolvimento , Acanthamoeba/fisiologia , Ceratite por Acanthamoeba/tratamento farmacológico , Acanthamoeba castellanii/efeitos dos fármacos , Acanthamoeba castellanii/crescimento & desenvolvimento , Acanthamoeba castellanii/fisiologia , Animais , Relação Dose-Resposta a Droga , Humanos , Nitrilas/uso terapêutico , Encistamento de Parasitas/efeitos dos fármacos , Testes de Sensibilidade Parasitária , Piridinas/uso terapêutico , Triazóis/uso terapêutico , Trofozoítos/efeitos dos fármacos
13.
Curr Eye Res ; 45(10): 1205-1210, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32065854

RESUMO

Purpose: To evaluate the in vivo efficacy of rose bengal (RB)-mediated photodynamic antimicrobial therapy (PDAT) for treatment of Acanthamoeba castellanii keratitis (AK). Materials and Methods: An animal (rabbit) AK model was successfully achieved via intrastromal inoculation of a suspension of A. castellanii cells and trophozoites. Prior to RB-PDAT (pre-treatment, day-5), the severity of the induced corneal infection was graded numerically for epithelial defects, stromal edema, neovascularity, and stromal opacity/infiltration. The right eyes of rabbits (n = 18) were divided equally into three groups (n = 6/group): control (no treatment); 0.1% RB+518 nm irradiation (5.4 J/cm2); and 0.2% RB+518 nm irradiation (5.4 J/cm2). On post-treatment day-5, animals were euthanized, after which corneal buttons were excised and submitted for real-time polymerase chain reaction (RT-PCR) analysis. Results: Post-treatment clinical scores of the 0.1 and 0.2% RB groups indicated significant improvement compared to control group scores (pre-treatment clinical scores; 5.17 ± 0.98, 7.50 ± 0.62, and 6.17 ± 0.70 and post-treatment clinical scores; 4.50 ± 0.56, (p = .043), 3.50 ± 0.99 (p = .039), 6.83 ± 1.66 (p = .34), respectively). RT-PCR analysis revealed that the mean cycle threshold (Ct) values were significantly higher in treated-group corneas compared to control-group corneas, with no significant differences between treated-groups (Mean Ct values; 34.33, 34.5, and 29.67 for 0.1 and 0.2% RB, and control groups). There was a statistically significant negative correlation between post-treatment clinical scores and Ct values (r = -0.474, p-value 0.047). Conclusions: Our results demonstrate that RB-PDAT is effective in decreasing the parasitic load and clinical severity of AK.


Assuntos
Ceratite por Acanthamoeba/tratamento farmacológico , Antiprotozoários/uso terapêutico , Corantes Fluorescentes/uso terapêutico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Rosa Bengala/uso terapêutico , Ceratite por Acanthamoeba/diagnóstico , Acanthamoeba castellanii/efeitos dos fármacos , Acanthamoeba castellanii/fisiologia , Animais , Córnea/parasitologia , DNA de Protozoário/genética , DNA de Protozoário/isolamento & purificação , Modelos Animais de Doenças , Carga Parasitária , Coelhos , Reação em Cadeia da Polimerase em Tempo Real
14.
Curr Microbiol ; 77(5): 836-845, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31932998

RESUMO

Amoebic bacterial interactions are the most ancient form of host pathogen interactions. Here, we investigate the fate of Salmonella typhimurium and Acanthamoeba castellanii T4 genotype upon mutual interactions in a nutrition free environment. The role of type 1 fimbriae and motility of S. typhimurium during interactions with A. castellanii has also been investigated. Deletion of genes encoding the type 1 fimbriae subunit FimA, type 1 fimbriae tip protein FimH, chemotaxis regulatory proteins CheA and CheY and major flagella subunits FliC and FljB was performed through homologous recombination. In vitro association, invasion and survival assays of S. typhimurium wild-type and mutant strains were performed upon co-incubation of bacteria with A. castellanii trophozoites in a nutrition free environment. The deletion gene encoding type 1 fimbriae subunit FimA reduced, whereas the deletion of genes encoding flagella subunits FliC and FljB of flagella enhanced the association capability of S. typhimurium with A. castellanii. Invasion of A. castellanii by Salmonella was significantly reduced upon the loss of type 1 fimbriae subunit FimA and type 1 fimbriae tip protein FimH. Co-incubation of S. typhimurium with A. castellanii in phosphate buffered saline medium stimulated the growth of S. typhimurium wild-type and mutant strains. Viable A. castellanii trophozoites count became significantly reduced upon co-incubation with S. typhimurium within 48 h. Type 1 fimbriae play a pivotal role in the adherence of S. typhimurium to the A. castellanii cell surface. Subsequently, this interaction provides S. typhimurium an advantage in growth.


Assuntos
Acanthamoeba castellanii/microbiologia , Acanthamoeba castellanii/fisiologia , Fímbrias Bacterianas/metabolismo , Interações Hospedeiro-Patógeno , Salmonella typhimurium/fisiologia , Acanthamoeba castellanii/genética , Aderência Bacteriana , Fímbrias Bacterianas/genética , Deleção de Genes , Genótipo , Mutação , Salmonella typhimurium/genética
15.
Mycoses ; 63(3): 302-307, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31820499

RESUMO

BACKGROUND: Sporotrichosis is a group of zoonotic subcutaneous mycoses, found worldwide and caused by fungi belonging to the genus Sporothrix. Protozoans of the genus Acanthamoeba are widely distributed, and some species may be pathogenic and/or opportunistic. These organisms coexist in the same environment and may interact. OBJECTIVES: This study determined the profile of interactions of S schenckii sensu stricto and S brasiliensis with A castellanii, using an in vitro co-culture model to evaluate the intrinsic characteristics of the two Sporothrix species and A castellanii. METHODS: We compared the rate of phagocytosis of S schenckii sensu stricto and S brasiliensis by A castellanii; the viability of S schenckii sensu stricto and S brasiliensis after contact with A castellanii; the viability of the amoeba after contact with a fungal species; and the influence of S schenckii sensu stricto and S brasiliensis on the encystment process of A castellanii. RESULTS: The analyses indicated that A castellanii phagocytised both S schenckii and S brasiliensis, with significantly more S schenckii than S brasiliensis in the first two hours of contact. Our results showed a significant increase in conidia and hyphae count after 72 hours of co-culture of A castellanii with S brasiliensis, and the amoebae lysed after they ingested the fungi, indicating that the fungi probably used the amoebae as a source of nutrition. CONCLUSIONS: Our results were obtained in vitro and these organisms may not behave similarly in vivo; in vivo studies of co-infections are necessary in order to gain a thorough understanding of this relationship.


Assuntos
Acanthamoeba castellanii/fisiologia , Fagocitose/fisiologia , Sporothrix/fisiologia , Acanthamoeba castellanii/microbiologia , Técnicas de Cocultura , Meios de Cultura , Corantes Fluorescentes , Indóis , Esporos Fúngicos/fisiologia , Sporothrix/classificação
16.
PLoS Negl Trop Dis ; 13(10): e0007742, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31589617

RESUMO

Paracoccidioides spp. are thermodimorphic fungi that cause a neglected tropical disease (paracoccidioidomycosis) that is endemic to Latin America. These fungi inhabit the soil, where they live as saprophytes with no need for a mammalian host to complete their life cycle. Despite this, they developed sophisticated virulence attributes allowing them not only to survive in host tissues but also to cause disease. A hypothesis for selective pressures driving the emergence or maintenance of virulence of soil fungi is their interaction with soil predators such as amoebae and helminths. We evaluated the presence of environmental amoeboid predators in soil from armadillo burrows where Paracoccidioides had been previously detected and tested if the interaction of Paracoccidioides with amoebae selects for fungi with increased virulence. Nematodes, ciliates, and amoebae-all potential predators of fungi-grew in cultures from soil samples. Microscopical observation and ITS sequencing identified the amoebae as Acanthamoeba spp, Allovahlkampfia spelaea, and Vermamoeba vermiformis. These three amoebae efficiently ingested, killed and digested Paracoccidioides spp. yeast cells, as did laboratory adapted axenic Acanthamoeba castellanii. Sequential co-cultivation of Paracoccidioides with A. castellanii selected for phenotypical traits related to the survival of the fungus within a natural predator as well as in murine macrophages and in vivo (Galleria mellonella and mice). These changes in virulence were linked to the accumulation of cell wall alpha-glucans, polysaccharides that mask recognition of fungal molecular patterns by host pattern recognition receptors. Altogether, our results indicate that Paracoccidioides inhabits a complex environment with multiple amoeboid predators that can exert selective pressure to guide the evolution of virulence traits.


Assuntos
Amoeba/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Paracoccidioides/fisiologia , Microbiologia do Solo , Acanthamoeba castellanii/fisiologia , Amoeba/citologia , Amoeba/microbiologia , Animais , Tatus , Cilióforos , Técnicas de Cocultura , Modelos Animais de Doenças , Fungos , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nematoides , Paracoccidioides/patogenicidade , Paracoccidioidomicose/microbiologia , Fagocitose , Solo , Virulência , Fatores de Virulência/fisiologia
17.
Parasit Vectors ; 12(1): 467, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31597577

RESUMO

BACKGROUND: Pathogenic protozoans use extracellular vesicles (EVs) for intercellular communication and host manipulation. Acanthamoeba castellanii is a free-living protozoan that may cause severe keratitis and fatal granulomatous encephalitis. Although several secreted molecules have been shown to play crucial roles in the pathogenesis of Acanthamoeba, the functions and components of parasite-derived EVs are far from understood. METHODS: Purified EVs from A. castellanii were confirmed by electron microscopy and nanoparticle tracking analysis. The functional roles of parasite-derived EVs in the cytotoxicity to and immune response of host cells were examined. The protein composition in EVs from A. castellanii was identified and quantified by LC-MS/MS analysis. RESULTS: EVs from A. castellanii fused with rat glioma C6 cells. The parasite-derived EVs induced an immune response from human THP-1 cells and a cytotoxic effect in C6 cells. Quantitative proteomic analysis identified a total of 130 proteins in EVs. Among the identified proteins, hydrolases (50.2%) and oxidoreductases (31.7%) were the largest protein families in EVs. Furthermore, aminopeptidase activities were confirmed in EVs from A. castellanii. CONCLUSIONS: The proteomic profiling and functional characterization of EVs from A. castellanii provide an in-depth understanding of the molecules packaged into EVs and their potential mechanisms mediating the pathogenesis of this parasite.


Assuntos
Acanthamoeba castellanii/fisiologia , Exossomos/química , Exossomos/fisiologia , Proteômica , Ceratite por Acanthamoeba/parasitologia , Acanthamoeba castellanii/patogenicidade , Acanthamoeba castellanii/ultraestrutura , Aminopeptidases/análise , Animais , Infecções Protozoárias do Sistema Nervoso Central/parasitologia , Meios de Cultura , DNA Complementar/biossíntese , Exossomos/imunologia , Exossomos/ultraestrutura , Humanos , Microscopia Eletrônica de Transmissão , Neuroglia/parasitologia , RNA de Protozoário/genética , RNA de Protozoário/isolamento & purificação , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células THP-1/imunologia , Células THP-1/parasitologia
18.
J Vis Exp ; (148)2019 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-31282879

RESUMO

To simulate Cryptococcus infection, amoeba, which is the natural predator of cryptococcal cells in the environment, can be used as a model for macrophages. This predatory organism, similar to macrophages, employs phagocytosis to kill internalized cells. With the aid of a confocal laser-scanning microscope, images depicting interactive moments between cryptococcal cells and amoeba are captured. The resolution power of the electron microscope also helps to reveal the ultrastructural detail of cryptococcal cells when trapped inside the amoeba food vacuole. Since phagocytosis is a continuous process, quantitative data is then integrated in the analysis to explain what happens at the timepoint when an image is captured. To be specific, relative fluorescence units are read in order to quantify the efficiency of amoeba in internalizing cryptococcal cells. For this purpose, cryptococcal cells are stained with a dye that makes them fluoresce once trapped inside the acidic environment of the food vacuole. When used together, information gathered through such techniques can provide critical information to help draw conclusions on the behavior and fate of cells when internalized by amoeba and, possibly, by other phagocytic cells.


Assuntos
Acanthamoeba castellanii/fisiologia , Cryptococcus neoformans , Fagocitose , Acanthamoeba castellanii/ultraestrutura , Cryptococcus neoformans/ultraestrutura , Fluorescência , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Fagócitos
19.
Korean J Parasitol ; 57(3): 217-223, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31284343

RESUMO

Acanthamoeba castellanii has ubiquitous distribution and causes primary acanthamoebic keratitis (AK). AK is a common disease in contact lens wearers and results in permanent visual impairment or blindness. In this study, we observed the cytopathic effect, in vitro cytotoxicity, and secretion pattern of cytokines in human corneal epithelial cells (HCECs) induced by A. castellanii trophozoites and/or cysts. Morphological observation revealed that panked dendritic HCECs co-cultured with amoeba cysts had changed into round shape and gradually died. Such changes were more severe in co-culture with cyst than those of co-cultivation with trophozoites. In vitro cytotoxicity assay revealed the highest cytotoxicity to HCECs in the co-culture system with amoeba cysts. A. castellanii induced the expression of IL-1α, IL-6, IL-8, and CXCL1 in HCECs. Secreted levels of IL-1α, IL-6, and IL-8 in HCECs co-cultured with both trophozoites and cysts were increased at an early incubation time (3 and 6 hr). These results suggested that cytopathic changes and pro-inflammatory cytokines release of HCECs in response to A. castellanii, especially amoebic cysts, are an important mechanism for AK development.


Assuntos
Ceratite por Acanthamoeba/imunologia , Acanthamoeba castellanii/fisiologia , Córnea/citologia , Células Epiteliais/imunologia , Trofozoítos/fisiologia , Ceratite por Acanthamoeba/parasitologia , Acanthamoeba castellanii/crescimento & desenvolvimento , Células Cultivadas , Córnea/imunologia , Córnea/parasitologia , Células Epiteliais/parasitologia , Humanos , Interleucina-1/genética , Interleucina-1/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-8/genética , Interleucina-8/imunologia , Trofozoítos/crescimento & desenvolvimento
20.
mBio ; 10(3)2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31088922

RESUMO

Legionella pneumophila is an important opportunistic pathogen for which environmental reservoirs are crucial for the infection of humans. In the environment, free-living amoebae represent key hosts providing nutrients and shelter for highly efficient intracellular proliferation of L. pneumophila, which eventually leads to lysis of the protist. However, the significance of other bacterial players for L. pneumophila ecology is poorly understood. In this study, we used a ubiquitous amoeba and bacterial endosymbiont to investigate the impact of this common association on L. pneumophila infection. We demonstrate that L. pneumophila proliferation was severely suppressed in Acanthamoeba castellanii harboring the chlamydial symbiont Protochlamydia amoebophila The amoebae survived the infection and were able to resume growth. Different environmental amoeba isolates containing the symbiont were equally well protected as different L. pneumophila isolates were diminished, suggesting ecological relevance of this symbiont-mediated defense. Furthermore, protection was not mediated by impaired L. pneumophila uptake. Instead, we observed reduced virulence of L. pneumophila released from symbiont-containing amoebae. Pronounced gene expression changes in the presence of the symbiont indicate that interference with the transition to the transmissive phase impedes the L. pneumophila infection. Finally, our data show that the defensive response of amoebae harboring P. amoebophila leaves the amoebae with superior fitness reminiscent of immunological memory. Given that mutualistic associations between bacteria and amoebae are widely distributed, P. amoebophila and potentially other amoeba endosymbionts could be key in shaping environmental survival, abundance, and virulence of this important pathogen, thereby affecting the frequency of human infection.IMPORTANCE Bacterial pathogens are generally investigated in the context of disease. To prevent outbreaks, it is essential to understand their lifestyle and interactions with other microbes in their natural environment. Legionella pneumophila is an important human respiratory pathogen that survives and multiplies in biofilms or intracellularly within protists, such as amoebae. Importantly, transmission to humans occurs from these environmental sources. Legionella infection generally leads to rapid host cell lysis. It was therefore surprising to observe that amoebae, including fresh environmental isolates, were well protected during Legionella infection when the bacterial symbiont Protochlamydia amoebophila was also present. Legionella was not prevented from invading amoebae but was impeded in its ability to develop fully virulent progeny and were ultimately cleared in the presence of the symbiont. This study highlights how ecology and virulence of an important human pathogen is affected by a defensive amoeba symbiont, with possibly major consequences for public health.


Assuntos
Acanthamoeba castellanii/microbiologia , Chlamydiales/fisiologia , Legionella pneumophila/patogenicidade , Simbiose , Acanthamoeba castellanii/fisiologia , Expressão Gênica , Humanos , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...