Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 247: 125742, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37437681

RESUMO

This study aimed to combine the active targeting function of folate (FA) receptor-mediated endocytosis with the pH-responsive drug delivery of poly (ethylene glycol)-grafted-poly (-amino ester) copolymers (PEG-PAE) in cancer targeting therapy. Herein, O-carboxymethylated chitosan (OCMC) was grafted with hydrophobic deoxycholic acid (DOCA). Further, PEG-PAE and FA-conjugated DOCA modified OCMC were synthesized to develop the potential cancer-targeted carrier (PEG-PAE-DOMC-FA), for which the structure was investigated by 1H NMR and FTIR. Then riccardin D (RD) was successfully loaded for tumor-targeted drug delivery. The particle size, zeta potential, encapsulating efficiencies, and loading content profiles of PEG-PAE-DOMC-FA/RD showed a strong dependence on the environmental pH values. The cumulative release of PEG-PAE-DOMC-FA/RD at pH 5.0 (90.63 %) was higher than pH 7.4 (51.12 %), which also indicated the pH sensitivity. Moreover, a lower IC50 and higher coumarin-6 uptake were found because of the folate-receptor-mediated endocytosis. In pharmacokinetic study, PEG-PAE-DOMC-FA/RD significantly improved the mean retention time (MRT) and AUC(0-∞) from 7.89 h and 36.1 mg/L·h of control group to 10.03 h and 123.8 mg/L·h. In the xenograft mice model, stronger antitumor efficacy and lower toxicity were confirmed. In conclusion, the multi-functional micelles could be considered as a promising vehicle for delivering hydrophobic drugs to tumors.


Assuntos
Quitosana , Acetato de Desoxicorticosterona , Neoplasias , Humanos , Camundongos , Animais , Micelas , Quitosana/uso terapêutico , Acetato de Desoxicorticosterona/uso terapêutico , Polietilenoglicóis/química , Neoplasias/tratamento farmacológico , Ácido Fólico/química , Concentração de Íons de Hidrogênio , Portadores de Fármacos/química , Linhagem Celular Tumoral
2.
Acta Pharmacol Sin ; 44(6): 1149-1160, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36473990

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is highly prevalent, and lacks effective treatment. The aberration of WNT pathway underlies many pathological processes including cardiac fibrosis and hypertrophy, while porcupine is an acyltransferase essential for the secretion of WNT ligands. In this study we investigated the role of WNT signaling pathway in HFpEF as well as whether blocking WNT signaling by a novel porcupine inhibitor CGX1321 alleviated HFpEF. We established two experimental HFpEF mouse models, namely the UNX/DOCA model and high fat diet/L-NAME ("two-hit") model. The UNX/DOCA and "two-hit" mice were treated with CGX1321 (3 mg·kg-1·d-1) for 4 and 10 weeks, respectively. We showed that CGX1321 treatment significantly alleviated cardiac hypertrophy and fibrosis, thereby improving cardiac diastolic function and exercise performance in both models. Furthermore, both canonical and non-canonical WNT signaling pathways were activated, and most WNT proteins, especially WNT3a and WNT5a, were upregulated during the development of HEpEF in mice. CGX1321 treatment inhibited the secretion of WNT ligands and repressed both canonical and non-canonical WNT pathways, evidenced by the reduced phosphorylation of c-Jun and the nuclear translocation of ß-catenin and NFATc3. In an in vitro HFpEF model, MCM and ISO-treated cardiomyocytes, knockdown of porcupine by siRNA leads to a similar inhibitory effect on WNT pathways, cardiomyocyte hypertrophy and cardiac fibroblast activation as CGX1321 did, whereas supplementation of WNT3a and WNT5a reversed the anti-hypertrophy and anti-fibrosis effect of CGX1321. We conclude that WNT signaling activation plays an essential role in the pathogenesis of HFpEF, and porcupine inhibitor CGX1321 exerts a therapeutic effect on HFpEF in mice by attenuating cardiac hypertrophy, alleviating cardiac fibrosis and improving cardiac diastolic function.


Assuntos
Cardiomiopatias , Acetato de Desoxicorticosterona , Insuficiência Cardíaca , Animais , Camundongos , Cardiomegalia/patologia , Cardiomiopatias/patologia , Acetato de Desoxicorticosterona/farmacologia , Acetato de Desoxicorticosterona/uso terapêutico , Fibrose , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos , Volume Sistólico/fisiologia , Via de Sinalização Wnt
3.
Curr Hypertens Rep ; 19(4): 32, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28353076

RESUMO

Hypertension is a multifaceted disease that is involved in ∼40% of cardiovascular mortalities and is the result of both genetic and environmental factors. Because of its complexity, hypertension has been studied by using various models and approaches, each of which tends to focus on individual organs or tissues to isolate the most critical and treatable causes of hypertension and the related damage to end-organs. Animal models of hypertension have ranged from Goldblatt's kidney clip models in which the origin of the disease is clearly renal to animals that spontaneously develop hypertension either through targeted genetic manipulations, such as the TGR(mRen2)27, or selective breeding resulting in more enigmatic origins, as exemplified by the spontaneously hypertensive rat (SHR). These two genetically derived models simulate the less-common human primary hypertension in which research has been able to define a Mendelian linkage. Several models are more neurogenic or endocrine in nature and illustrate that crosstalk between the nervous system and hormones can cause a significant rise in blood pressure (BP). This review will examine one of these neurogenic models of hypertension, i.e., the deoxycorticosterone acetate (DOCA), reduced renal mass, and high-salt diet (DOCA-salt) rodent model, one of the most common experimental models used today. Although the DOCA-salt model is mainly believed to be neurogenic and has been shown to impact the central and peripheral nervous systems, it also significantly involves many other body organs.


Assuntos
Acetato de Desoxicorticosterona/uso terapêutico , Hipertensão/tratamento farmacológico , Animais , Pressão Sanguínea , Humanos , Hipertensão/fisiopatologia , Rim/fisiopatologia , Cloreto de Sódio na Dieta
4.
Circulation ; 135(10): 964-977, 2017 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-27927713

RESUMO

BACKGROUND: Dietary intake of fruit and vegetables is associated with lower incidence of hypertension, but the mechanisms involved have not been elucidated. Here, we evaluated the effect of a high-fiber diet and supplementation with the short-chain fatty acid acetate on the gut microbiota and the prevention of cardiovascular disease. METHODS: Gut microbiome, cardiorenal structure/function, and blood pressure were examined in sham and mineralocorticoid excess-treated mice with a control diet, high-fiber diet, or acetate supplementation. We also determined the renal and cardiac transcriptome of mice treated with the different diets. RESULTS: We found that high consumption of fiber modified the gut microbiota populations and increased the abundance of acetate-producing bacteria independently of mineralocorticoid excess. Both fiber and acetate decreased gut dysbiosis, measured by the ratio of Firmicutes to Bacteroidetes, and increased the prevalence of Bacteroides acidifaciens. Compared with mineralocorticoid-excess mice fed a control diet, both high-fiber diet and acetate supplementation significantly reduced systolic and diastolic blood pressures, cardiac fibrosis, and left ventricular hypertrophy. Acetate had similar effects and markedly reduced renal fibrosis. Transcriptome analyses showed that the protective effects of high fiber and acetate were accompanied by the downregulation of cardiac and renal Egr1, a master cardiovascular regulator involved in cardiac hypertrophy, cardiorenal fibrosis, and inflammation. We also observed the upregulation of a network of genes involved in circadian rhythm in both tissues and downregulation of the renin-angiotensin system in the kidney and mitogen-activated protein kinase signaling in the heart. CONCLUSIONS: A diet high in fiber led to changes in the gut microbiota that played a protective role in the development of cardiovascular disease. The favorable effects of fiber may be explained by the generation and distribution of one of the main metabolites of the gut microbiota, the short-chain fatty acid acetate. Acetate effected several molecular changes associated with improved cardiovascular health and function.


Assuntos
Acetato de Desoxicorticosterona/farmacologia , Fibras na Dieta/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Hipertensão/prevenção & controle , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Pressão Sanguínea/efeitos dos fármacos , Acetato de Desoxicorticosterona/uso terapêutico , Fibras na Dieta/uso terapêutico , Suplementos Nutricionais , Modelos Animais de Doenças , Fibrose , Trato Gastrointestinal/microbiologia , Hipertensão/patologia , Hipertensão/veterinária , Rim/metabolismo , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miocárdio/patologia , Tamanho do Órgão/efeitos dos fármacos , Análise de Componente Principal , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Transcriptoma/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...