Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.151
Filtrar
1.
J Agric Food Chem ; 72(20): 11405-11414, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38717990

RESUMO

This study investigated the multiple herbicide resistance (MHR) mechanism of one Echinochloa crus-galli population that was resistant to florpyrauxifen-benzyl (FPB), cyhalofop-butyl (CHB), and penoxsulam (PEX). This population carried an Ala-122-Asn mutation in the acetolactate synthase (ALS) gene but no mutation in acetyl-CoA carboxylase (ACCase) and transport inhibitor response1 (TIR1) genes. The metabolism rate of PEX was 2-fold higher, and the production of florpyrauxifen-acid and cyhalofop-acid was lower in the resistant population. Malathion and 4-chloro-7-nitrobenzoxadiazole (NBD-Cl) could reverse the resistance, suggesting that cytochrome P450 (CYP450) and glutathione S-transferase (GST) contribute to the enhanced metabolism. According to RNA-seq and qRT-PCR validation, two CYP450 genes (CYP71C42 and CYP71D55), one GST gene (GSTT2), two glycosyltransferase genes (rhamnosyltransferase 1 and IAAGLU), and two ABC transporter genes (ABCG1 and ABCG25) were induced by CHB, FPB, and PEX in the resistant population. This study revealed that the target mutant and enhanced metabolism were involved in the MHR mechanism in E. crus-galli.


Assuntos
Sistema Enzimático do Citocromo P-450 , Echinochloa , Resistência a Herbicidas , Herbicidas , Mutação , Proteínas de Plantas , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Herbicidas/metabolismo , Echinochloa/genética , Echinochloa/efeitos dos fármacos , Echinochloa/metabolismo , Echinochloa/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/genética , Plantas Daninhas/metabolismo , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Butanos , Nitrilas , Sulfonamidas , Uridina/análogos & derivados
2.
Nat Commun ; 15(1): 4083, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744825

RESUMO

Energetic stress compels cells to evolve adaptive mechanisms to adjust their metabolism. Inhibition of mTOR kinase complex 1 (mTORC1) is essential for cell survival during glucose starvation. How mTORC1 controls cell viability during glucose starvation is not well understood. Here we show that the mTORC1 effectors eukaryotic initiation factor 4E binding proteins 1/2 (4EBP1/2) confer protection to mammalian cells and budding yeast under glucose starvation. Mechanistically, 4EBP1/2 promote NADPH homeostasis by preventing NADPH-consuming fatty acid synthesis via translational repression of Acetyl-CoA Carboxylase 1 (ACC1), thereby mitigating oxidative stress. This has important relevance for cancer, as oncogene-transformed cells and glioma cells exploit the 4EBP1/2 regulation of ACC1 expression and redox balance to combat energetic stress, thereby supporting transformation and tumorigenicity in vitro and in vivo. Clinically, high EIF4EBP1 expression is associated with poor outcomes in several cancer types. Our data reveal that the mTORC1-4EBP1/2 axis provokes a metabolic switch essential for survival during glucose starvation which is exploited by transformed and tumor cells.


Assuntos
Acetil-CoA Carboxilase , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Ciclo Celular , Sobrevivência Celular , Ácidos Graxos , Glucose , Alvo Mecanístico do Complexo 1 de Rapamicina , Animais , Humanos , Camundongos , Acetil-CoA Carboxilase/metabolismo , Acetil-CoA Carboxilase/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Fatores de Iniciação em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/genética , Ácidos Graxos/metabolismo , Glucose/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , NADP/metabolismo , Estresse Oxidativo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Biossíntese de Proteínas
3.
Int J Biol Macromol ; 270(Pt 2): 132243, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744369

RESUMO

Myoblast differentiation depends on fatty acid oxidation (FAO),and its rate-limiting enzyme acetyl-CoA carboxylase 2 (ACC2) participate in the regulation skeletal muscle development. However, the precise regulatory mechanism is still unknown. Using previous RNA-sequencing data from our laboratory, we explored the effect of ACC2 on myoblast differentiation, as a candidate gene, since its expression is higher in myoblasts of lamb (first day of age) than that of the fetus (75th day of pregnancy). Our findings show that siACC2 inhibited myoblast proliferation, promoted differentiation, and boosted mitochondrial and fatty acid oxidation activities. The effect of ACC2 on goat muscle cell differentiation was modulated by Etomoxir, a CPT1A inhibitor. Notably, the AMPK/ACC2 pathway was found to regulate fatty acid oxidation and goat muscle cell differentiation. Inhibiting the AMPK/ACC2 pathway significantly reduced CPT1A expression. These findings indicate that AMPK/ACC2 regulate goat myoblast differentiation via fatty acid oxidation, contributing to understanding the mechanism of goat skeletal muscle development.


Assuntos
Proteínas Quinases Ativadas por AMP , Acetil-CoA Carboxilase , Diferenciação Celular , Ácidos Graxos , Cabras , Mioblastos , Oxirredução , Animais , Ácidos Graxos/metabolismo , Mioblastos/metabolismo , Mioblastos/citologia , Acetil-CoA Carboxilase/metabolismo , Acetil-CoA Carboxilase/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proliferação de Células , Compostos de Epóxi/farmacologia , Transdução de Sinais
4.
J Agric Food Chem ; 72(21): 12014-12028, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38748759

RESUMO

Alopecurus aequalis Sobol. is a predominant grass weed in Chinese winter wheat fields, posing a substantial threat to crop production owing to its escalating herbicide resistance. This study documented the initial instance of an A. aequalis population (AHFT-3) manifesting resistance to multiple herbicides targeting four distinct sites: acetyl-CoA carboxylase (ACCase), acetolactate synthase, photosystem II, and 1-deoxy-d-xylulose-5-phosphate synthase. AHFT-3 carried an Asp-to-Gly mutation at codon 2078 of ACCase, with no mutations in the remaining three herbicide target genes, and exhibited no overexpression of any target gene. Compared with the susceptible population AHFY-3, AHFT-3 metabolized mesosulfuron-methyl, isoproturon, and bixlozone faster. The inhibition and comparison of herbicide-detoxifying enzyme activities indicated the participation of cytochrome P450s in the resistance to all four herbicides, with glutathione S-transferases specifically linked to mesosulfuron-methyl. Three CYP72As and a Tau class glutathione S-transferase, markedly upregulated in resistant plants, potentially played pivotal roles in the multiple-herbicide-resistance phenotype.


Assuntos
Acetil-CoA Carboxilase , Resistência a Herbicidas , Herbicidas , Proteínas de Plantas , Poaceae , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Herbicidas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Poaceae/genética , Poaceae/metabolismo , Poaceae/efeitos dos fármacos , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Mutação , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/genética , Plantas Daninhas/metabolismo
5.
J Agric Food Chem ; 72(21): 12029-12044, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38752706

RESUMO

Weeds present a significant challenge to agricultural productivity, and acetyl-CoA carboxylase (ACCase)-inhibiting herbicides have proven to be effective in managing weed populations in rice fields. To develop ACCase-inhibiting herbicide-resistant rice, we generated mutants of rice ACCase (OsACC) featuring Ile-1792-Leu or Gly-2107-Ser substitutions through ethyl methyl sulfonate (EMS) mutagenesis. The Ile-1792-Leu mutant displayed cross-resistance to aryloxyphenoxypropionate (APP) and phenylpyrazoline (DEN) herbicides, whereas the Gly-2107-Ser mutants primarily exhibited cross-resistance to APP herbicides with diminished resistance to the DEN herbicide. In vitro assays of the OsACC activity revealed an increase in resistance to haloxyfop and quizalofop, ranging from 4.84- to 29-fold in the mutants compared to that in wild-type. Structural modeling revealed that both mutations likely reduce the binding affinity between OsACC and ACCase inhibitors, thereby imparting resistance. This study offers insights into two target-site mutations, contributing to the breeding of herbicide-resistant rice and presenting alternative weed management strategies in rice cultivation.


Assuntos
Acetil-CoA Carboxilase , Inibidores Enzimáticos , Resistência a Herbicidas , Herbicidas , Mutação , Oryza , Proteínas de Plantas , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/antagonistas & inibidores , Acetil-CoA Carboxilase/metabolismo , Acetil-CoA Carboxilase/química , Oryza/genética , Oryza/enzimologia , Herbicidas/farmacologia , Herbicidas/química , Resistência a Herbicidas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/genética , Plantas Daninhas/enzimologia
6.
Sci Rep ; 14(1): 10544, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719860

RESUMO

The increasing amount of weeds surviving herbicide represents a very serious problem for crop management. The interaction between microbial community of soil and herbicide resistance, along with the potential evolutive consequences, are still poorly known and need to be investigated to better understand the impact on agricultural management. In our study, we analyzed the microbial composition of soils in 32 farms, located in the Northern Italy rice-growing area (Lombardy) with the aim to evaluate the relationship between the microbial composition and the incidence of resistance to acetolactate synthase (ALS) and acetyl-CoA carboxylase (ACCase) inhibiting herbicides in Echinochloa species. We observed that the coverage of weeds survived herbicide treatment was higher than 60% in paddy fields with a low microbial biodiversity and less than 5% in those with a high microbial biodiversity. Fungal communities showed a greater reduction in richness than Bacteria. In soils with a reduced microbial diversity, a significant increase of some bacterial and fungal orders (i.e. Lactobacillales, Malasseziales and Diaporthales) was observed. Interestingly, we identified two different microbial profiles linked to the two conditions: high incidence of herbicide resistance (H-HeR) and low incidence of herbicide resistance (L-HeR). Overall, the results we obtained allow us to make hypotheses on the greater or lesser probability of herbicide resistance occurrence based on the composition of the soil microbiome and especially on the degree of biodiversity of the microbial communities.


Assuntos
Acetolactato Sintase , Acetil-CoA Carboxilase , Echinochloa , Resistência a Herbicidas , Herbicidas , Microbiologia do Solo , Itália/epidemiologia , Herbicidas/farmacologia , Acetolactato Sintase/antagonistas & inibidores , Acetolactato Sintase/genética , Echinochloa/efeitos dos fármacos , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/antagonistas & inibidores , Plantas Daninhas/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Biodiversidade , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/classificação , Solo/química , Fungos/efeitos dos fármacos , Fungos/isolamento & purificação , Fungos/genética
7.
Trends Endocrinol Metab ; 35(7): 563-565, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38664153

RESUMO

Liver-targeted acetyl-coenzyme A (CoA) carboxylase (ACC) inhibitors in metabolic dysfunction-associated steatotic liver disease (MASLD) trials reveal notable secondary effects: hypertriglyceridemia and altered glucose metabolism, paradoxically with reduced hepatic steatosis. In their study, Deja et al. explored how hepatic ACC influences metabolism using different pharmacological and genetic methods, coupled with targeted metabolomics and stable isotope-based tracing techniques.


Assuntos
Acetil-CoA Carboxilase , Fígado , Acetil-CoA Carboxilase/metabolismo , Acetil-CoA Carboxilase/genética , Humanos , Fígado/metabolismo , Animais , Fígado Gorduroso/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico
8.
J Neuroimmunol ; 390: 578344, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38640826

RESUMO

BACKGROUND: Targeting ACC1 (acetyl coenzyme A carboxylase 1) to restore the balance between T-helper 17 (Th17) cells and regulatory T cells (Tregs) through metabolic reprogramming has emerged as a promising strategy for reducing neuroinflammation following stroke. We examined the roles of potential miRNAs in regulating ACC1 expression in Tregs and treating ischemic stroke. METHODS: The expression of miR-24-3p in CD4+T cells of mice was confirmed. Then the protective effects of Ago-24-3p in a mouse model of prolonged occlusion of the distal middle cerebral artery (dMCAO) were examined. We analyzed the infiltration of Tregs and CD3+T cells into the brain and evaluated the improvement of neurological deficits induced by Ago-24-3p using the Modified Garcia Score and foot fault testing. RESULTS: Our investigation revealed that miR-24-3p specifically targets ACC1. Elevated levels of miR-24-3p have been demonstrated to increase the population of Tregs and enhance their proliferation and suppressive capabilities. Conversely, targeted reduction of ACC1 in CD4+T cells has been shown to counteract the improved functionality of Tregs induced by miR-24-3p. In a murine model of dMCAO, administration of Ago-24-3p resulted in a substantial reduction in the size of the infarct within the ischemic brain area. This effect was accompanied by an upregulation of Tregs and a downregulation of CD3+T cells in the ischemic brain region. In ACC1 conditional knockout mice, the ability of Ago-24-3p to enhance infiltrating Treg cells and diminish CD3+T cells in the ischemic brain area has been negated. Furthermore, its capacity to reduce infarct volume has been reversed. Furthermore, we demonstrated that Ago-24-3p sustained improvement in post-stroke neurological deficits for up to 4 weeks after the MCAO procedure. CONCLUSIONS: MiR-24-3p shows promise in the potential to reduce ACC1 expression, enhance the immunosuppressive activity of Tregs, and alleviate injuries caused by ischemic stroke. These discoveries imply that miR-24-3p could be a valuable therapeutic option for treating ischemic stroke.


Assuntos
Acetil-CoA Carboxilase , Isquemia Encefálica , MicroRNAs , Linfócitos T Reguladores , Células Th17 , Animais , Camundongos , Acetil-CoA Carboxilase/genética , Isquemia Encefálica/imunologia , Infarto da Artéria Cerebral Média , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Linfócitos T Reguladores/metabolismo , Células Th17/metabolismo
9.
mBio ; 15(5): e0341423, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38572988

RESUMO

Acetyl-CoA carboxylases (ACCs) convert acetyl-CoA to malonyl-CoA, a key step in fatty acid biosynthesis and autotrophic carbon fixation pathways. Three functionally distinct components, biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP), and carboxyltransferase (CT), are either separated or partially fused in different combinations, forming heteromeric ACCs. However, an ACC with fused BC-BCCP and separate CT has not been identified, leaving its catalytic mechanism unclear. Here, we identify two BC isoforms (BC1 and BC2) from Chloroflexus aurantiacus, a filamentous anoxygenic phototroph that employs 3-hydroxypropionate (3-HP) bi-cycle rather than Calvin cycle for autotrophic carbon fixation. We reveal that BC1 possesses fused BC and BCCP domains, where BCCP could be biotinylated by E. coli or C. aurantiacus BirA on Lys553 residue. Crystal structures of BC1 and BC2 at 3.2 Å and 3.0 Å resolutions, respectively, further reveal a tetramer of two BC1-BC homodimers, and a BC2 homodimer, all exhibiting similar BC architectures. The two BC1-BC homodimers are connected by an eight-stranded ß-barrel of the partially resolved BCCP domain. Disruption of ß-barrel results in dissociation of the tetramer into dimers in solution and decreased biotin carboxylase activity. Biotinylation of the BCCP domain further promotes BC1 and CTß-CTα interactions to form an enzymatically active ACC, which converts acetyl-CoA to malonyl-CoA in vitro and produces 3-HP via co-expression with a recombinant malonyl-CoA reductase in E. coli cells. This study revealed a heteromeric ACC that evolves fused BC-BCCP but separate CTα and CTß to complete ACC activity.IMPORTANCEAcetyl-CoA carboxylase (ACC) catalyzes the rate-limiting step in fatty acid biosynthesis and autotrophic carbon fixation pathways across a wide range of organisms, making them attractive targets for drug discovery against various infections and diseases. Although structural studies on homomeric ACCs, which consist of a single protein with three subunits, have revealed the "swing domain model" where the biotin carboxyl carrier protein (BCCP) domain translocates between biotin carboxylase (BC) and carboxyltransferase (CT) active sites to facilitate the reaction, our understanding of the subunit composition and catalytic mechanism in heteromeric ACCs remains limited. Here, we identify a novel ACC from an ancient anoxygenic photosynthetic bacterium Chloroflexus aurantiacus, it evolves fused BC and BCCP domain, but separate CT components to form an enzymatically active ACC, which converts acetyl-CoA to malonyl-CoA in vitro and produces 3-hydroxypropionate (3-HP) via co-expression with recombinant malonyl-CoA reductase in E. coli cells. These findings expand the diversity and molecular evolution of heteromeric ACCs and provide a structural basis for potential applications in 3-HP biosynthesis.


Assuntos
Acetil-CoA Carboxilase , Carbono-Nitrogênio Ligases , Chloroflexus , Acetil-CoA Carboxilase/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/química , Carbono-Nitrogênio Ligases/metabolismo , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/química , Chloroflexus/genética , Chloroflexus/metabolismo , Chloroflexus/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Biotina/metabolismo , Biotina/biossíntese , Malonil Coenzima A/metabolismo , Acetilcoenzima A/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Ácido Graxo Sintase Tipo II
10.
Mol Biol Rep ; 51(1): 402, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456942

RESUMO

BACKGROUND: Acetyl-CoA carboxylase (ACC) catalyzes the carboxylation of acetyl-CoA to malonyl-CoA. Malonyl-CoA, which plays a key role in regulating glucose and lipid metabolism, is not only a substrate for fatty acid synthesis but also an inhibitor of the oxidation pathway. ACC exists as two isoenzymes that are encoded by two different genes. ACC1 in grass carp (Ctenopharyngodon idellus) has been cloned and sequenced. However, studies on the cloning, tissue distribution, and function of ACC2 in grass carp were still rare. METHODS AND RESULTS: The full-length cDNA of acc2 was 8537 bp with a 7146 bp open reading frame encoding 2381 amino acids. ACC2 had a calculated molecular weight of 268.209 kDa and an isoelectric point of 5.85. ACC2 of the grass carp shared the closest relationship with that of the common carp (Sinocyclocheilus grahami). The expressions of acc1 and acc2 mRNA were detected in all examined tissues.  The expression level of acc1 was high in the brain and fat but absent in the midgut and hindgut. The expression level of acc2 in the kidney was significantly higher than in other tissues, followed by the heart, brain, muscle, and spleen. ACCs inhibitor significantly reduced the levels of glucose, malonyl-CoA, and triglyceride in hepatocytes. CONCLUSIONS: This study showed that the function of ACC2 was evolutionarily conserved from fish to mammals. ACCs inhibitor inhibited the biological activity of ACCs, and reduced fat accumulation in grass carp.


Assuntos
Carpas , Animais , Carpas/genética , Carpas/metabolismo , Clonagem Molecular , Sequência de Bases , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Expressão Gênica , Glucose , Mamíferos/metabolismo
11.
J Sci Food Agric ; 104(10): 5882-5895, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38407390

RESUMO

BACKGROUND: Yellow leaf green tea (YLGT) is a new variety of Camellia sinensis (L.) O. Ktze, which has yellow leaves and the unique qualities of 'three green through three yellow'. The present study aimed to investigate the anti-obesity effect of YLGT in mice fed a high-fat diet (HFD) and to explore the potential mechanisms by regulating the AMPK/ACC/SREBP1c signaling pathways and gut microbiota. RESULTS: The results showed that YLGT aqueous extract reduced body weight, hepatic inflammation, fat accumulation and hyperlipidemia in HFD-induced C57BL/6J mice, and also accelerated energy metabolism, reduced fat synthesis and suppressed obesity by activating the AMPK/CPT-1α signaling pathway and inhibiting the FAS/ACC/SREBP-1c signaling pathway. Fecal microbiota transplantation experiment further confirmed that the alteration of gut microbiota (e.g. increasing unclassified_Muribaculaceae and decreasing Colidextribacter) might be an important cause of YLGT water extract inhibiting obesity. CONCLUSION: In conclusion, YLGT has a broad application prospect in the treatment of obesity and the development of anti-obesity function beverages. © 2024 Society of Chemical Industry.


Assuntos
Proteínas Quinases Ativadas por AMP , Camellia sinensis , Dieta Hiperlipídica , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Obesidade , Extratos Vegetais , Folhas de Planta , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 1 , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Obesidade/metabolismo , Obesidade/microbiologia , Obesidade/tratamento farmacológico , Obesidade/dietoterapia , Camundongos , Camellia sinensis/química , Masculino , Transdução de Sinais/efeitos dos fármacos , Folhas de Planta/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Proteínas Quinases Ativadas por AMP/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Humanos , Acetil-CoA Carboxilase/metabolismo , Acetil-CoA Carboxilase/genética , Chá/química , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/administração & dosagem
12.
Cell Rep Med ; 5(2): 101401, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38340725

RESUMO

The p63 protein has pleiotropic functions and, in the liver, participates in the progression of nonalcoholic fatty liver disease (NAFLD). However, its functions in hepatic stellate cells (HSCs) have not yet been explored. TAp63 is induced in HSCs from animal models and patients with liver fibrosis and its levels positively correlate with NAFLD activity score and fibrosis stage. In mice, genetic depletion of TAp63 in HSCs reduces the diet-induced liver fibrosis. In vitro silencing of p63 blunts TGF-ß1-induced HSCs activation by reducing mitochondrial respiration and glycolysis, as well as decreasing acetyl CoA carboxylase 1 (ACC1). Ectopic expression of TAp63 induces the activation of HSCs and increases the expression and activity of ACC1 by promoting the transcriptional activity of HER2. Genetic inhibition of both HER2 and ACC1 blunt TAp63-induced activation of HSCs. Thus, TAp63 induces HSC activation by stimulating the HER2-ACC1 axis and participates in the development of liver fibrosis.


Assuntos
Células Estreladas do Fígado , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Ativação Metabólica , Cirrose Hepática/genética , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Fibrose , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo
13.
Biotechnol Appl Biochem ; 71(2): 402-413, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38287712

RESUMO

Malonyl-CoA serves as the main building block for the biosynthesis of many important polyketides, as well as fatty acid-derived compounds, such as biofuel. Escherichia coli, Corynebacterium gultamicum, and Saccharomyces cerevisiae have recently been engineered for the biosynthesis of such compounds. However, the developed processes and strains often have insufficient productivity. In the current study, we used enzyme-engineering approach to improve the binding of acetyl-CoA with ACC. We generated different mutations, and the impact was calculated, which reported that three mutations, that is, S343A, T347W, and S350W, significantly improve the substrate binding. Molecular docking investigation revealed an altered binding network compared to the wild type. In mutants, additional interactions stabilize the binding of the inner tail of acetyl-CoA. Using molecular simulation, the stability, compactness, hydrogen bonding, and protein motions were estimated, revealing different dynamic properties owned by the mutants only but not by the wild type. The findings were further validated by using the binding-free energy (BFE) method, which revealed these mutations as favorable substitutions. The total BFE was reported to be -52.66 ± 0.11 kcal/mol for the wild type, -55.87 ± 0.16 kcal/mol for the S343A mutant, -60.52 ± 0.25 kcal/mol for T347W mutant, and -59.64 ± 0.25 kcal/mol for the S350W mutant. This shows that the binding of the substrate is increased due to the induced mutations and strongly corroborates with the docking results. In sum, this study provides information regarding the essential hotspot residues for the substrate binding and can be used for application in industrial processes.


Assuntos
Acetil-CoA Carboxilase , Streptomyces antibioticus , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Streptomyces antibioticus/metabolismo , Acetilcoenzima A/genética , Simulação de Acoplamento Molecular , Mutação , Saccharomyces cerevisiae/metabolismo , Escherichia coli/metabolismo
14.
Pestic Biochem Physiol ; 198: 105711, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225069

RESUMO

Severe infestations of American sloughgrass (Beckmannia syzigachne (Steud.) Fernald) in wheat fields throughout Anhui Province, China, pose a significant threat to local agricultural production. This study aims to evaluate the susceptibility of 37 B. syzigachne populations collected from diverse wheat fields in Anhui Province to three commonly used herbicides: fenoxaprop-P-ethyl, mesosulfuron-ethyl, and isoproturon. Single-dose testing revealed that out of the 37 populations, 31, 26, and 11 populations had either evolved or were evolving resistance to fenoxaprop-P-ethyl, mesosulfuron-ethyl, and isoproturon, respectively. Among them, 25 populations displayed concurrent resistance to both fenoxaprop-P-ethyl and mesosulfuron-ethyl, while eight exhibited resistance to all three tested herbicides. Whole-plant bioassays confirmed that approximately 84% of the fenoxaprop-P-ethyl-resistant populations manifested high-level resistance (resistance index (RI) ≥10); 62% of the mesosulfuron-ethyl-resistant populations and 82% of the isoproturon-resistant populations exhibited low- to moderate-level resistance (2 ≤ RI <10). Three distinct target-site mutations were identified in 27% of fenoxaprop-P-ethyl-resistant populations, with no known resistance mutations detected in the remaining herbicide-resistant populations. The inhibition of cytochrome P450s (P450s) and/or glutathione S-transferases (GSTs) substantially increased susceptibility in the majority of resistant populations lacking mutations at the herbicide target site. In conclusion, resistance to fenoxaprop-P-ethyl and mesosulfuron-ethyl was widespread in B. syzigachne within Anhui Province's wheat fields, while resistance to isoproturon was rapidly evolving due to its escalating usage. Target-site mutations were present in approximately one-third of fenoxaprop-P-ethyl-resistant populations, and alternative mechanisms involving P450s and/or GSTs could explain the resistance observed in most of the remaining populations.


Assuntos
Herbicidas , Oxazóis , Compostos de Fenilureia , Propionatos , Triticum , Triticum/genética , Poaceae , China , Herbicidas/farmacologia , Resistência a Herbicidas/genética , Acetil-CoA Carboxilase/genética
15.
Int J Food Microbiol ; 413: 110585, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38246023

RESUMO

Acetyl-CoA carboxylase (ACC), which catalyzes acetyl-CoA to produce malonyl-CoA, is crucial for the synthesis of mycotoxins, ergosterol, and fatty acids in various genera. However, its biofunction in Aspergillus flavus has not been reported. In this study, the accA gene was deleted and site-mutated to explore the influence of ACC on sporulation, sclerotium formation, and aflatoxin B1 (AFB1) biosynthesis. The results revealed that ACC positively regulated conidiation and sclerotium formation, but negatively regulated AFB1 production. In addition, we found that ACC is a succinylated protein, and mutation of lysine at position 990 of ACC to glutamic acid or arginine (accAK990E or accAK990R) changed the succinylation level of ACC. The accAK990E and accAK990R mutations (to imitate the succinylation and desuccinylation at K990 of ACC, respectively) downregulated fungal conidiation and sclerotium formation while increasing AFB1 production, revealing that the K990 is an important site for ACC's biofunction. These results provide valuable perspectives for future mechanism studies of the emerging roles of succinylated ACC in the regulation of the A. flavus phenotype, which is advantageous for the prevention and control of A. flavus hazards.


Assuntos
Acetil-CoA Carboxilase , Aspergillus flavus , Aspergillus flavus/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Virulência , Aflatoxina B1 , Mutação
16.
Fish Shellfish Immunol ; 146: 109387, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272331

RESUMO

Acetyl-CoA carboxylase (ACC) plays a regulatory role in both fatty acid synthesis and oxidation, controlling the process of lipid deposition in the liver. Given that existing studies have shown a close relationship between low phosphorus (P) and hepatic lipid deposition, this study was conducted to investigate whether ACC plays a crucial role in this relationship. Zebrafish liver cell line (ZFL) was incubated under low P medium (LP, P concentration: 0.77 mg/L) or adequate P medium (AP, P concentration: 35 mg/L) for 240 h. The results showed that, compared with AP-treated cells, LP-treated cells displayed elevated lipid accumulation, and reduced fatty acid ß-oxidation, ATP content, and mitochondrial mass. Furthermore, transcriptomics analysis revealed that LP-treated cells significantly increased lipid synthesis (Acetyl-CoA carboxylases (acc), Stearyl coenzyme A dehydrogenase (scd)) but decreased fatty acid ß-oxidation (Carnitine palmitoyltransferase I (cptI)) and (AMP-activated protein kinase (ampk)) mRNA levels compared to AP-treated cells. The phosphorylation of AMPK and ACC, and the protein expression of CPTI were significantly decreased in LP-treated cells compared with those in AP-treated cells. After 240 h of LP treatment, PF-05175157 (an ACC inhibitor) was supplemented in the LP treatment for an additional 12 h. PF-05175157-treated cells showed higher phosphorylation of ACC, higher protein expression of CPTI, and lower protein expression of FASN, lower TG content, enhanced fatty acid ß-oxidation, increased ATP content, and mitochondrial mass compared with LP-treated cells. PF-05175157 also relieved the LP-induced oxidative stress and inflammatory response. Overall, these findings suggest that ACC is a promising target for treating LP-induced elevation of lipid deposition in ZFL, and can alleviate oxidative stress and inflammatory response.


Assuntos
Acetil-CoA Carboxilase , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Fígado/metabolismo , Estresse Oxidativo , Ácidos Graxos/metabolismo , Fósforo , Lipídeos , Trifosfato de Adenosina/metabolismo
17.
Free Radic Biol Med ; 212: 464-476, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38211832

RESUMO

Lipid metabolic reprogramming has been recognized as a hallmark of human cancer. Acetyl-CoA Carboxylases (ACCs) are key rate-limiting enzymes involved in fatty acid metabolism regulation by catalyzing the carboxylation of acetyl-CoA to malonyl-CoA. Previously, most studies focused on the role of ACC1 in fatty acid metabolism in cancer, while the function of ACC2 remains largely uncharacterized in human cancers, especially in ovarian cancer (OC). Here, we show that ACC2 was significantly downregulated in cancerous tissue of OC, and the downregulation of ACC2 is closely associated with lager tumor size, metastases and worse prognosis in OC patients. Downregulation of ACC2 promoted proliferation and metastasis of OC both in vitro and in vivo by enhancing FAO. Notably, mitochondria-associated ubiquitin ligase (MARCH5) was identified to interact with and downregulate ACC2 by ubiquitination and degradation in OC. Moreover, ACC2 downregulation-enhanced FAO contributed to the progression of OC promoted by MARCH5. In conclusion, our findings demonstrate that MARCH5-mediated downregulation of ACC2 promotes FAO and tumorigenesis in OC, suggesting MARCH5-ACC2 axis as a potent candidate for the treatment and prevention of OC.


Assuntos
Acetil-CoA Carboxilase , Ácidos Graxos , Neoplasias Ovarianas , Ubiquitina-Proteína Ligases , Feminino , Humanos , Acetilcoenzima A/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Regulação para Baixo , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Neoplasias Ovarianas/genética , Ubiquitina-Proteína Ligases/metabolismo
18.
Insect Sci ; 31(2): 387-404, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37486126

RESUMO

Lipid and sugar homeostasis is critical for insect development and survival. In this study, we characterized an acetyl coenzyme A carboxylase gene in Blattella germanica (BgACC) that is involved in both lipogenesis and sugar homeostasis. We found that BgACC was dominantly expressed in the fat body and integument, and was significantly upregulated after molting. Knockdown of BgACC in 5th-instar nymphs did not affect their normal molting to the next nymphal stage, but it caused a lethal phenotype during adult emergence. BgACC-RNA interference (RNAi) significantly downregulated total free fatty acid (FFA) and triacylglycerol (TAG) levels, and also caused a significant decrease of cuticular hydrocarbons (CHCs). Repression of BgACC in adult females affected the development of oocytes and resulted in sterile females, but BgACC-RNAi did not affect the reproductive ability of males. Interestingly, knockdown of BgACC also changed the expression of insulin-like peptide genes (BgILPs), which mimicked a physiological state of high sugar uptake. In addition, BgACC was upregulated when B. germanica were fed on a high sucrose diet, and repression of BgACC upregulated the expression of the glycogen synthase gene (BgGlyS). Moreover, BgACC-RNAi increased the circulating sugar levels and glycogen storage, and a longevity assay suggested that BgACC was important for the survival of B. germanica under conditions of high sucrose uptake. Our results confirm that BgACC is involved in multiple lipid biogenesis and sugar homeostasis processes, which further modulates insect reproduction and sugar tolerance. This study benefits our understanding of the crosstalk between lipid and sugar metabolism.


Assuntos
Acetil-CoA Carboxilase , Blattellidae , Feminino , Animais , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Lipogênese , Blattellidae/genética , Blattellidae/metabolismo , Homeostase , Açúcares/metabolismo , Sacarose/metabolismo , Lipídeos
19.
Pest Manag Sci ; 80(3): 1523-1532, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37966429

RESUMO

BACKGROUND: Brome grass (Bromus diandrus Roth) is prevalent in the southern and western cropping regions of Australia, where it causes significant economic damage. A targeted herbicide resistance survey was conducted in 2020 by collecting brome grass populations from 40 farms in Western Australia and subjecting these samples to comprehensive herbicide screening. One sample (population 172-20), from a field that had received 12 applications of clethodim over 20 years of continuous cropping, was found to be highly resistant to the acetyl-CoA carboxylase (ACCase)-inhibiting herbicides clethodim and quizalofop, and so the molecular basis of resistance was investigated. RESULTS: All 31 individuals examined from population 172-20 carried the same resistance-endowing point mutation causing an aspartate-to-glycine substitution at position 2078 in the translated ACCase protein sequence. A wild-type susceptible population and the resistant population had similar expression levels of plastidic ACCase genes. The level of resistance to quizalofop, either standalone or in mixture with clethodim, in population 172-20 was lower under cooler growing conditions. CONCLUSION: Target-site resistance to ACCase-inhibiting herbicides, conferred by one ACCase mutation, was selected in all tested brome plants infesting a field with a history of repeated clethodim use. This mutation appears to have been fixed in the infesting population. Notably, clethodim resistance in this population was not detected by the farmer, and a high future incidence of quizalofop resistance is anticipated. Herbicide resistance testing is essential for the detection of evolving weed resistance issues and to inform effective management strategies. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Bromus , Cicloexanonas , Herbicidas , Propionatos , Quinoxalinas , Humanos , Mutação , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Acetil-CoA Carboxilase/genética , Poaceae , Proteínas de Plantas/genética
20.
Int Immunol ; 36(3): 129-139, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38041796

RESUMO

To meet the energetic requirements associated with activation, proliferation, and survival, T cells switch their metabolic signatures from energetically quiescent to activated. However, little is known about the role of metabolic pathway controlling the development of invariant natural killer T (iNKT) cells. In the present study, we found that acetyl-CoA carboxylase 1 (ACC1), a rate-limiting enzyme for the fatty acid biosynthesis pathway, plays an essential role in the development of iNKT cells in the thymus. Mice lacking T-cell specific ACC1 showed a reduced number of iNKT cells with an increased proportion of iNKT cells at immature stages 0 and 1. Furthermore, mixed bone marrow (BM) chimera experiments revealed that T-cell intrinsic ACC1 expression was selectively important for the development of thymic iNKT cells, especially for the differentiation of the NKT1 cell subset. Our single-cell RNA-sequencing (scRNA-seq) data and functional analysis demonstrated that ACC1 is responsible for survival of developing iNKT cells. Thus, these findings highlighted a novel role of ACC1 in controlling thymic iNKT cell development mediated by the control of cell survival.


Assuntos
Células T Matadoras Naturais , Camundongos , Animais , Timo , Diferenciação Celular , Adipogenia , Ácidos Graxos/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...