Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Int J Syst Evol Microbiol ; 71(12)2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34914575

RESUMO

Strain NIBR12T (=KACC 22094T=HAMBI 3739T), a novel Gram-stain-negative, obligate aerobic, non-spore-forming, non-motile and coccobacillus-shaped bacterium, was isolated from a cyanobacterial sample culture (Microcysitis aeruginosa NIBRCYC000000452). The newly identified bacterial strain grew optimally in modified Reasoner's 2A medium under the following conditions: 0 % (w/v) NaCl, pH 7.5 and 35 °C. Phylogenetic analysis using the 16S rRNA gene sequence confirmed that strain NIBR12T belongs to the genus Roseococcus, with its closest neighbours being Roseococcus suduntuyensis SHETT (98.8%), Roseococcus thiosulfatophilus RB-3T (97.7%), "Sediminicoccus rosea" R-30T (95.7 %) and Rubritepida flocculans H-8T (95.0 %). Genomic comparison of strain NIBR12T with type species in the genus Roseococcus was conducted using digital DNA-DNA hybridization, average nucleotide identity and average amino acid identity analyses, resulting in values of ≤53.7, ≤93.7 and ≤96.1 %, respectively. The genomic DNA G+C content of strain NIBR12T was 70.9 mol%. The major fatty acids of strain NIBR12T were summed feature 8 (C18 : 1 ω7c and/or C18:1 ω6c) and summed feature 3 (C16 : 1 ω6c/C16 : 1 ω7c). Q-9 was its major respiratory quinone. Moreover, the major polar lipids of strain NIBR12T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine. Based on our chemotaxonomic, genotypic and phenotype analyses, strain NIBR12T is identified as represeting a novel species of the genus Roseococcus, for which the name Roseococcus microcysteis sp. nov. is proposed.


Assuntos
Acetobacteraceae/classificação , Microcystis , Filogenia , Acetobacteraceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
2.
Nat Commun ; 12(1): 5027, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34413311

RESUMO

Engineered living materials (ELMs) based on bacterial cellulose (BC) offer a promising avenue for cheap-to-produce materials that can be programmed with genetically encoded functionalities. Here we explore how ELMs can be fabricated in a modular fashion from millimetre-scale biofilm spheroids grown from shaking cultures of Komagataeibacter rhaeticus. Here we define a reproducible protocol to produce BC spheroids with the high yield bacterial cellulose producer K. rhaeticus and demonstrate for the first time their potential for their use as building blocks to grow ELMs in 3D shapes. Using genetically engineered K. rhaeticus, we produce functionalized BC spheroids and use these to make and grow patterned BC-based ELMs that signal within a material and can sense and report on chemical inputs. We also investigate the use of BC spheroids as a method to regenerate damaged BC materials and as a way to fuse together smaller material sections of cellulose and synthetic materials into a larger piece. This work improves our understanding of BC spheroid formation and showcases their great potential for fabricating, patterning and repairing ELMs based on the promising biomaterial of bacterial cellulose.


Assuntos
Acetobacteraceae/crescimento & desenvolvimento , Bioengenharia/métodos , Biofilmes , Celulose/química , Engenharia Genética/métodos , Medicina Regenerativa/métodos , Acetobacteraceae/química , Acetobacteraceae/isolamento & purificação , Celulose/isolamento & purificação
3.
Artigo em Inglês | MEDLINE | ID: mdl-34292142

RESUMO

Two novel Gram-staining-negative, aerobic, cocci-shaped, non-motile, non-spore forming, pink-pigmented bacteria designated strains T6T and T18T, were isolated from a biocrust (biological soil crust) sample from the vicinity of the Tabernas Desert (Spain). Both strains were catalase-positive and oxidase-negative, and grew under mesophilic, neutrophilic and non-halophilic conditions. According to the 16S rRNA gene sequences, strains T6T and T18T showed similarities with Belnapia rosea CGMCC 1.10758T and Belnapia moabensis CP2CT (98.11 and 98.55% gene sequence similarity, respectively). The DNA G+C content was 69.80 and 68.96% for strains T6T and T18T, respectively; the average nucleotide identity by blast (ANIb) and digital DNA-DNA hybridization (dDDH) values confirmed their adscription to two novel species within the genus Belnapia. The predominant fatty acids were summed feature 8 (C18 : 1ω7c/C18 : 1ω6c), C16 : 0, C18 : 1 2-OH and summed feature 3 (C16 : 1ω7c/C16 : 1ω6c). According to he results of the polyphasic study, strains T6T and T18T represent two novel species in the genus Belnapia (which currently includes only three species), for which names Belnapia mucosa sp. nov. (type strain T6T = CECT 30228T=DSM 112073T) and Belnapia arida sp. nov. (type strain T18T=CECT 30229T=DSM 112074T) are proposed, respectively.


Assuntos
Acetobacteraceae/classificação , Clima Desértico , Filogenia , Microbiologia do Solo , Acetobacteraceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espanha
4.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804872

RESUMO

Granulibacter bethesdensis can infect patients with chronic granulomatous disease, an immunodeficiency caused by reduced phagocyte NADPH oxidase function. Intact G. bethesdensis (Gb) is hypostimulatory compared to Escherichia coli, i.e., cytokine production in human blood requires 10-100 times more G. bethesdensis CFU/mL than E. coli. To better understand the pathogenicity of G. bethesdensis, we isolated its lipopolysaccharide (GbLPS) and characterized its lipid A. Unlike with typical Enterobacteriaceae, the release of presumptive Gb lipid A from its LPS required a strong acid. NMR and mass spectrometry demonstrated that the carbohydrate portion of the isolated glycolipid consists of α-Manp-(1→4)-ß-GlcpN3N-(1→6)-α-GlcpN-(1⇿1)-α-GlcpA tetra-saccharide substituted with five acyl chains: the amide-linked N-3' 14:0(3-OH), N-2' 16:0(3-O16:0), and N-2 18:0(3-OH) and the ester-linked O-3 14:0(3-OH) and 16:0. The identification of glycero-d-talo-oct-2-ulosonic acid (Ko) as the first constituent of the core region of the LPS that is covalently attached to GlcpN3N of the lipid backbone may account for the acid resistance of GbLPS. In addition, the presence of Ko and only five acyl chains may explain the >10-fold lower proinflammatory potency of GbKo-lipidA compared to E. coli lipid A, as measured by cytokine induction in human blood. These unusual structural properties of the G.bethesdensis Ko-lipid A glycolipid likely contribute to immune evasion during pathogenesis and resistance to antimicrobial peptides.


Assuntos
Acetobacteraceae/metabolismo , Doença Granulomatosa Crônica/microbiologia , Lipídeo A/química , Acetatos/análise , Acetobacteraceae/isolamento & purificação , Acetobacteraceae/patogenicidade , Sequência de Carboidratos , Citocinas/sangue , Doença Granulomatosa Crônica/sangue , Humanos , Lipídeo A/metabolismo
5.
Carbohydr Polym ; 260: 117807, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33712153

RESUMO

To date, the production of bacterial nanocellulose (BNC) by standard methods has been well known, while the use of low-cost feedstock as an alternative medium still needs to be explored for BNC commercialization. This study explores the prospect for the use of the different aqueous extract of fruit peel wastes (aE-FPW) as a nutrient and carbon source for the production of BNC. Herein, this objective was accomplished by the use of a novel, high- yielding strain, isolated from rotten apple and further identified as Komagataeibacter xylinus IITR DKH20 using 16 s rRNA sequencing analysis. The physicochemical properties of BNC matrix collected from the various aE-FPW mediums were similar or advanced to those collected with the HS medium. Statistical optimization of BNC based on Central Composite Design was performed to study the effect of significant parameters and the results demonstrated that the BNC yield (11.44 g L-1) was increased by 4.5 fold after optimization.


Assuntos
Acetobacteraceae/metabolismo , Celulose/metabolismo , Nanoestruturas/química , Acetobacteraceae/classificação , Acetobacteraceae/genética , Acetobacteraceae/isolamento & purificação , Celulose/química , Celulose/isolamento & purificação , Frutas/microbiologia , Malus/microbiologia , Microscopia de Força Atômica , Filogenia , RNA Ribossômico 16S/química , RNA Ribossômico 16S/isolamento & purificação , RNA Ribossômico 16S/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
6.
mBio ; 12(2)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785632

RESUMO

The mosquito microbiota is composed of several lineages of microorganisms whose ecological roles and evolutionary histories have yet to be investigated in depth. Among these microorganisms, Asaia bacteria play a prominent role, given their abundance in the gut, reproductive organs, and salivary glands of different mosquito species, while their presence has also been reported in several other insects. Notably, Asaia has great potential as a tool for the control of mosquito-borne diseases. Here, we present a wide phylogenomic analysis of Asaia strains isolated from different species of mosquito vectors and from different populations of the Mediterranean fruit fly (medfly), Ceratitis capitata, an insect pest of worldwide economic importance. We show that phylogenetically distant lineages of Asaia experienced independent genome reductions, despite following a common pattern, characterized by the early loss of genes involved in genome stability. This result highlights the role of specific metabolic pathways in the symbiotic relationship between Asaia and the insect host. Finally, we discovered that all but one of the Asaia strains included in the study possess the pyrethroid hydrolase gene. Phylogenetic analysis revealed that this gene is ancestral in Asaia, strongly suggesting that it played a role in the establishment of the symbiotic association between these bacteria and the mosquito hosts. We propose that this gene from the symbiont contributed to initial pyrethroid resistance in insects harboring Asaia, also considering the widespread production of pyrethrins by several plants.IMPORTANCE We have studied genome reduction within several strains of the insect symbiont Asaia isolated from different species/strains of mosquito and medfly. Phylogenetically distant strains of Asaia, despite following a common pattern involving the loss of genes related to genome stability, have undergone independent genome reductions, highlighting the peculiar role of specific metabolic pathways in the symbiotic relationship between Asaia and its host. We also show that the pyrethroid hydrolase gene is present in all the Asaia strains isolated except for the South American malaria vector Anopheles darlingi, for which resistance to pyrethroids has never been reported, suggesting a possible involvement of Asaia in determining resistance to insecticides.


Assuntos
Acetobacteraceae/genética , Proteínas de Bactérias/metabolismo , Ceratitis capitata/microbiologia , Culicidae/microbiologia , Genoma Bacteriano , Filogenia , Simbiose , Acetobacteraceae/classificação , Acetobacteraceae/isolamento & purificação , Acetobacteraceae/fisiologia , Animais , Proteínas de Bactérias/genética , Ceratitis capitata/efeitos dos fármacos , Ceratitis capitata/fisiologia , Culicidae/efeitos dos fármacos , Culicidae/fisiologia , Evolução Molecular , Tamanho do Genoma , Resistência a Inseticidas , Inseticidas/farmacologia , Masculino , Piretrinas/farmacologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-33439113

RESUMO

As part of a study investigating the microbiome of bee hives and honey, two novel strains (TMW 2.1880T and TMW 2.1889T) of acetic acid bacteria were isolated and subsequently taxonomically characterized by a polyphasic approach, which revealed that they cannot be assigned to known species. The isolates are Gram-stain-negative, aerobic, pellicle-forming, catalase-positive and oxidase-negative. Cells of TMW 2.1880T are non-motile, thin/short rods, and cells of TMW 2.1889T are motile and occur as rods and long filaments. Morphological, physiological and phylogenetic analyses revealed a distinct lineage within the genus Bombella. Strain TMW 2.1880T is most closely related to the type strain of Bombella intestini with a 16S rRNA gene sequence similarity of 99.5 %, and ANIb and in silico DDH values of 94.16 and 56.3 %, respectively. The genome of TMW 2.1880T has a size of 1.98 Mb and a G+C content of 55.3 mol%. Strain TMW 2.1889T is most closely related to the type strain of Bombella apis with a 16S rRNA gene sequence similarity of 99.5 %, and ANIb and in silico DDH values of 85.12 and 29.5 %, respectively. The genome of TMW 2.1889T has a size of 2.07 Mb and a G+C content of 60.4 mol%. Ubiquinone analysis revealed that both strains contained Q-10 as the main respiratory quinone. Major fatty acids for both strains were C16 : 0, C19 : 0 cyclo ω8c and summed feature 8, respectively, and additionally C14 : 0 2-OH only for TMW 2.1880T and C14 : 0 only for TMW 2.1889T. Based on polyphasic evidence, the two isolates from honeycombs of Apis mellifera represent two novel species of the genus Bombella, for which the names Bombella favorum sp. nov and Bombella mellum sp. nov. are proposed. The designated respective type strains are TMW 2.1880T (=LMG 31882T=CECT 30114T) and TMW 2.1889T (=LMG 31883T=CECT 30113T).


Assuntos
Acetobacteraceae/classificação , Abelhas/microbiologia , Mel/microbiologia , Filogenia , Acetobacteraceae/isolamento & purificação , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Alemanha , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/análogos & derivados , Ubiquinona/química
8.
Int J Syst Evol Microbiol ; 70(11): 5918-5925, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33034550

RESUMO

Two Gram-stain-negative, facultative anaerobic, chemoheterotrophic, pink-coloured, rod-shaped and non-motile bacterial strains, PAMC 26568 and PAMC 26569T, were isolated from an Antarctic lichen. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strains PAMC 26568 and PAMC 26569T belong to the family Acetobacteraceae and the most closely related species are Gluconacetobacter takamatsuzukensis (96.1 %), Gluconacetobacter tumulisoli (95.9 %) and Gluconacetobacter sacchari (95.7 %). Phylogenomic and genomic relatedness analyses showed that strains PAMC 26568 and PAMC 26569T are clearly distinguished from other genera in the family Acetobacteraceae by average nucleotide identity values (<72.8 %) and the genome-to-genome distance values (<22.5 %). Genomic analysis revealed that strains PAMC 26568 and PAMC 26569T do not contain genes involved in atmospheric nitrogen fixation and utilization of sole carbon compounds such as methane and methanol. Instead, strains PAMC 26568 and PAMC 26569T possess genes to utilize nitrate and nitrite and certain monosaccharides and disaccharides. The major fatty acids (>10 %) are summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c; 40.3-40.4 %), C18 : 1 2OH (22.7-23.7 %) and summed feature 2 (C14 : 0 3OH and/or C16 : 1 iso I; 12.0 % in PAMC 26568). The major respiratory quinone is Q-10. The genomic DNA G+C content of PAMC 26568 and PAMC 26569T is 64.6 %. Their distinct phylogenetic position and some physiological characteristics distinguish strains PAMC 26568 and PAMC 26569T from other genera in the family Acetobacteraceae supporting the proposal of Lichenicola gen. nov., with the type species Lichenicola cladoniae sp. nov. (type strain, PAMC 26569T=KCCM 43315T=JCM 33604T).


Assuntos
Acetobacteraceae/classificação , Líquens/microbiologia , Filogenia , Acetobacteraceae/isolamento & purificação , Regiões Antárticas , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/análogos & derivados , Ubiquinona/química
9.
Carbohydr Res ; 498: 108163, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33035917

RESUMO

Acid sulfate soil is found throughout Southeast Asia, and its strong acidity (pH 2-4) is accompanied by various plant growth-inhibiting factors that can reduce crop production. Among these factors, aluminum elution from the soil due to soil acidity strongly inhibits crop growth and is particularly problematic for agricultural production. We previously isolated Acidocella aluminiidurans strain AL46, a highly aluminum-tolerant bacterium, from the rhizospheres of the grass Panicum repens, inhabiting the acid sulfate soil in Vietnam. To elucidate the mechanism underlying the high aluminum tolerance of strain AL46, in the present study, we investigated the aluminum-adsorption ability of strain AL46 surface polysaccharides and confirmed the strong adsorption ability of the capsular polysaccharide (AL46CPS). Based on this finding, we further determined the chemical structure of AL46CPS using 1H and 13C NMR spectroscopy by conducting 2D DQF-COSY, TOCSY, HSQC, HMBC, and NOESY experiments. AL46CPS comprises a trisaccharide repeating unit with the following structure: [→2)-ß-d-Rhap-(1 â†’ 3)-α-d-Rhap-(1 â†’ 2)-α-d-Rhap-(1→]n. These findings highlight the potential application of AL46CPS as a new aluminum-adsorbing substance in acidic environments to prevent crop loss.


Assuntos
Acetobacteraceae/química , Alumínio/metabolismo , Panicum/microbiologia , Raízes de Plantas/microbiologia , Polissacarídeos Bacterianos/metabolismo , Solo/química , Sulfatos/química , Acetobacteraceae/isolamento & purificação , Adsorção , Sequência de Carboidratos , Polissacarídeos Bacterianos/química
10.
J Microbiol ; 58(12): 988-997, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33095388

RESUMO

In this study, bacterial strains Ha5T, Ta1, and Jb2 were isolated from different colonies of weaver ant Oecophylla smaragdina. They were identified as bacterial symbionts of the ant belonging to family Acetobacteraceae and were distinguished as different strains based on distinctive random-amplified polymorphic DNA (RAPD) fingerprints. Cells of these bacterial strains were Gram-negative, rod-shaped, aerobic, non-motile, catalase-positive and oxidase-negative. They were able to grow at 15-37°C (optimum, 28-30°C) and in the presence of 0-1.5% (w/v) NaCl (optimum 0%). Their predominant cellular fatty acids were C18:1ω7c, C16:0, C19:0ω8c cyclo, C14:0, and C16:0 2-OH. Strains Ha5T, Ta1, and Jb2 shared highest 16S rRNA gene sequence similarity (94.56-94.63%) with Neokomagataea tanensis NBRC106556T of family Acetobacteraceae. Both 16S rRNA gene sequence-based phylogenetic analysis and core gene-based phylogenomic analysis placed them in a distinct lineage in family Acetobacteraceae. These bacterial strains shared higher than species level thresholds in multiple overall genome-relatedness indices which indicated that they belonged to the same species. In addition, they did not belong to any of the current taxa of Acetobacteraceae as they had low pairwise average nucleotide identity (< 71%), in silico DNA-DNA hybridization (< 38%) and average amino acid identity (< 67%) values with all the type members of the family. Based on these results, bacterial strains Ha5T, Ta1, and Jb2 represent a novel species of a novel genus in family Acetobacteaceae, for which we propose the name Oecophyllibacter saccharovorans gen. nov. sp. nov., and strain Ha5T as the type strain.


Assuntos
Acetobacteraceae/classificação , Acetobacteraceae/isolamento & purificação , Acetobacteraceae/fisiologia , Formigas/microbiologia , Filogenia , Simbiose/fisiologia , Acetobacteraceae/genética , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Malásia , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico , Análise de Sequência de DNA , Ubiquinona
11.
Int J Syst Evol Microbiol ; 70(11): 5634-5639, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32924923

RESUMO

A Gram-stain-negative, strictly aerobic bacterium, designated strain PeD5T, was isolated from a green alga Pediastrum duplex from the Nakdong river of the Republic of Korea. Cells were non-motile cocci, catalase-negative and oxidase-positive. Growth of PeD5T was observed at 25-40 °C (optimum, 35 °C) and pH 5.0-10.0 (optimum, pH 7-8), and in the presence of 0-0.25% (w/v) NaCl (optimum, 0%). PeD5T contained C16:0, C18:1ω7c 11-methyl, summed feature 3 (comprising C16:1ω7c and/or C16:1ω6c) and summed feature 8 (comprising C18:1ω7c and/or C18:1ω6c) as major cellular fatty acids (>5%) and ubiquinone-10 as the sole isoprenoid quinone. Phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified phospholipid and an unidentified aminolipid were detected as major polar lipids. The genomic DNA G+C content of PeD5T was 71.0 mol%. PeD5T was most closely related to Roseomonas stagni HS-69T with a 97.6% 16S rRNA sequence similarity and shared less than 96.3% 16S rRNA sequence similarities with type strains of other species. Phylogenetic analysis based on 16S rRNA gene sequences indicated that PeD5T formed a phyletic lineage with Roseomonas stagni HS-69T within the genus Roseomonas. On the basis of results of phenotypic, chemotaxonomic and molecular analysis, strain PeD5T clearly represents a novel species of the genus Roseomonas, for which the name Roseomonas algicola sp. nov. is proposed. The type strain is PeD5T (=KACC 19925T=JCM 33309T).


Assuntos
Acetobacteraceae/classificação , Clorofíceas/microbiologia , Filogenia , Acetobacteraceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , República da Coreia , Rios/microbiologia , Análise de Sequência de DNA , Ubiquinona/análogos & derivados , Ubiquinona/química
12.
Int J Syst Evol Microbiol ; 70(9): 5141-5148, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32812857

RESUMO

Bacterial strain CCP-6T, isolated from a freshwater pond in Taiwan, was characterized using a polyphasic taxonomy approach. Phylogenetic analyses based on 16S rRNA gene sequences and an up-to-date bacterial core gene set (92 protein clusters) indicated that strain CCP-6T is affiliated with species in the genus Rhodovarius. Strain CCP-6T was most closely related to Rhodovarius lipocyclicus CCUG 44693T with a 98.9% 16S rRNA gene sequence similarity. Cells were Gram-stain-negative, aerobic, non-motile, rod-shaped and formed light pink-coloured colonies. Optimal growth occurred at 30 °C, pH 6 and in the absence of NaCl. The major fatty acids of strain CCP-6T were C18 : 1 ω7c, C16 : 0 and C19 : 0 cyclo ω8c. The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, phosphatidyldimethylethanolamine, phosphatidylmethylethanolamine, diphosphatidylglycerol, three unidentified aminophospholipids and an unidentified phospholipid. The predominant polyamine was spermidine. The major isoprenoid quinone was Q-10. The DNA G+C content of the genomic DNA was 69.3 mol%. Strain CCP-6T showed 85.8% average nucleotide identity and 14.5% digital DNA-DNA hybridization identity with Rhodovarius lipocyclicus CCUG 44693T. On the basis of the genotypic, chemotaxonomic and phenotypic data, strain CCP-6T represents a novel species in the genus Rhodovarius, for which the name Rhodovarius crocodyli sp. nov. is proposed. The type strain is CCP-6T (=BCRC 81095T=LMG 30310T=KCTC 62188T).


Assuntos
Acetobacteraceae/classificação , Filogenia , Lagoas/microbiologia , Acetobacteraceae/isolamento & purificação , Jacarés e Crocodilos , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espermidina/química , Taiwan , Ubiquinona/análogos & derivados , Ubiquinona/química
13.
Int J Syst Evol Microbiol ; 70(8): 4591-4601, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32658637

RESUMO

Gram-negative, aerobic, chemo-organotrophic and bacteriochlorophyll a-containing bacterial strains, KEBCLARHB70RT, KAMCLST3051 and KAMCLST3152, were isolated from the thalli of Cladonia arbuscula and Cladonia stellaris lichens. Cells from the strains were coccoid and reproduced by binary division. They were motile at the early stages of growth and utilized sugars and alcohols. All strains were psychrophilic and acidophilic, capable of growth between pH 3.5 and 7.5 (optimum, pH 5.5), and at 4-30 °C (optimum, 10-15 °C). The major fatty acids were C18 : 1 ω7c and C18 : 0; the lipids were phosphatidylcholines, phosphatidylethanolamines, phosphatidic acids, phosphatidylglycerol, glycolipids, diphosphatidylglycerol and polar lipids with an unknown structure. The quinone was Q-10. The DNA G+C content was 67.8 mol%. Comparative 16S rRNA gene analysis together with other data, supported that the strains, KEBCLARHB70RT, KAMCLST3051 and KAMCLST3152 belonged to the same species. Whole genome analysis of the strain KEBCLARHB70RT and average amino acid identity values confirmed its distinctive phylogenetic position within the family Acetobacteraceae. Phenotypic, ecological and genomic characteristics distinguished strains KEBCLARHB70RT, KAMCLST3051 and KAMCLST3152 from all genera in the family Acetobacteraceae. Therefore, we propose a novel genus and a novel species, Lichenicoccus roseus gen. nov., sp. nov., for these novel Acetobacteraceae members. Strain KEBCLARHB70RT (=KCTC 72321T=VKM B-3305T) has been designated as the type strain.


Assuntos
Acetobacteraceae/classificação , Líquens/microbiologia , Filogenia , Acetobacteraceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Bacterioclorofila A , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Glicolipídeos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Federação Russa , Análise de Sequência de DNA , Ubiquinona/análogos & derivados , Ubiquinona/química
14.
Sci Rep ; 10(1): 3491, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32103077

RESUMO

Bacterial nanocellulose (BNC) has been drawing enormous attention because of its versatile properties. Herein, we shed light on the BNC production by a novel bacterial isolate (MD1) utilizing various agro-industrial wastes. Using 16S rRNA nucleotide sequences, the isolate was identified as Komagataeibacter saccharivorans MD1. For the first time, BNC synthesis by K. saccharivorans MD1 was investigated utilizing wastes of palm date, fig, and sugarcane molasses along with glucose on the Hestrin-Schramm (HS) medium as a control. After incubation for 168 h, the highest BNC yield was perceived on the molasses medium recording 3.9 g/L with an initial concentration of (v/v) 10%. The physicochemical characteristics of the BNC sheets were inspected adopting field-emission scanning electron microscope (FESEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) analysis. The FESEM characterization revealed no impact of the wastes on either fiber diameter or the branching scheme, whereas the AFM depicted a BNC film with minimal roughness was generated using date wastes. Furthermore, a high crystallinity index was estimated by XRD up to 94% for the date wastes-derived BNC, while the FTIR analyses exhibited very similar profiles for all BNC films. Additionally, mechanical characteristics and water holding capacity of the produced BNCs were studied. Our findings substantiated that expensive substrates could be exchanged by agro-industrial wastes for BNC production conserving its remarkable physical and microstructural properties.


Assuntos
Acetobacteraceae/metabolismo , Celulose/biossíntese , Resíduos Industriais , Nanoestruturas/química , Acetobacteraceae/classificação , Acetobacteraceae/genética , Acetobacteraceae/isolamento & purificação , Técnicas de Cultura Celular por Lotes , Celulose/química , Meios de Cultura/química , Módulo de Elasticidade , Microscopia de Força Atômica , Filogenia , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração , Água/química
15.
Int J Syst Evol Microbiol ; 70(1): 251-258, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31622229

RESUMO

Thermotolerant bacterial nanocellulose-producing strains, designated MSKU 9T and MSKU 15, were isolated from persimmon and sapodilla fruits, respectively. These strains were aerobic, Gram-stain-negative, had rod-shaped cells, were non-motile and formed white-cream colonies. Phylogeny based on the 16S rRNA gene sequences revealed that MSKU 9T and MSKU 15 represented members of the genus Komagataeibacter and formed a monophyletic branch with K. swingsii JCM 17123T and K. europaeus DSM 6160T. The genomic analysis revealed that overall genomic relatedness index values of MSKU 9T with K. swingsii JCM 17123T and K. europaeus DSM 6160T were ~90 % average nucleotide identity (ANI) and ≤58.2 % digital DNA-DNA hybridization (dDDH), respectively. MSKU 9T and MSKU 15 can be differentiated from the closely related K. swingsii JCM 17123T by their growth on 30 % d-glucose and ability to utilize and to form acid from raffinose and sucrose as carbon sources, and from K. europaeus DSM 6160T by their ability to grow without acetic acid. The genomic DNA G+C contents of MSKU 9T and MSKU 15 were 60.4 and 60.2 mol%, respectively. The major fatty acids of MSKU 9T and MSKU 15 were summed feature 8 (C18 : 1 ω7c and/or C18  : 1ω6c). The respiratory quinone was determined to be Q10. On the basis of the results of the polyphasic taxonomic analysis, MSKU 9T (=TBRC 9844T=NBRC 113802T) represents a novel species of the genus Komagataeibacter, for which the name Komagataeibacter diospyri sp. nov. is proposed.


Assuntos
Acetobacteraceae/classificação , Diospyros/microbiologia , Manilkara/microbiologia , Filogenia , Acetobacteraceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Frutas/microbiologia , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Tailândia , Ubiquinona/análogos & derivados , Ubiquinona/química
16.
Int J Syst Evol Microbiol ; 69(10): 3248-3255, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31355740

RESUMO

A heterotrophic and acidophilic bacterial strain, G45-3T, was isolated from acidic mine drainage sampled in Fujian Province, PR China. Cells of strain G45-3T were Gram-stain-negative, non-spore-forming, non-motile and rod-shaped. Catalase and oxidase activities were positive. Strain G45-3T grew aerobically at 20-45 °C (optimum, 37 °C) and at pH 2.5-5.0 (optimum, pH 4.0). Photosynthetic pigments were not produced. Analysis of 16S rRNA gene sequences showed that strain G45-3T was phylogenetically related to different members of the family Acetobacteraceae, and the sequence identities to Acidisphaera rubrifaciens JCM 10600T, Rhodovastum atsumiense G2-11T and Rhodopila globiformis ATCC 35887T were 95.9 , 95.3 and 95.3 %, respectively. Strain G45-3T contained ubiquinone-10 as its respiratory quinone. The major polar lipids were determined to be diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, an unidentified aminophospholipid and an unidentified aminolipid. The predominant fatty acids were cyclo-C19 : 0ω8c, C18 : 1ω7c, C16 : 0 and C18 : 0. The genome of G45-3T consists of one chromosome (3 907 406 bp) and three plasmids (68 344, 45 771 and 16 090 bp), with an average G+C content of 65.9 mol%. Based on the results of phenotypic and genomic analyses, it is concluded that strain G45-3T represents a novel species of a new genus, for which the name Acidibrevibacterium fodinaquatile gen. nov., sp. nov. is proposed. A. fodinaquatile is nominated as type species and its type strain is G45-3T (=CGMCC 1.16069T=KCTC 62275T).


Assuntos
Acetobacteraceae/classificação , Mineração , Filogenia , Acetobacteraceae/isolamento & purificação , Ácidos , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
17.
J Microbiol Biotechnol ; 29(4): 617-624, 2019 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-30856704

RESUMO

Bacterial nanocellulose (BNC) which is generally synthesized by several species of bacteria has a wide variety of industrial uses, particularly in the food and material industries. However, the low levels of BNC production during the fermentation process should be overcome to reduce its production cost. Therefore, in this study, we screened and identified a new cellulose-producing bacterium, optimized production of the cellulose, and investigated the morphological properties of the cellulosic materials. Out of 147 bacterial isolates from ripened fruits and traditional vinegars, strain SFCB22-18 showed the highest capacity for BNC production and was identified as Komagataeibacter sp. based on 16S rRNA sequence analysis. During 6-week fermentation of the strain using an optimized medium containing 3.0% glucose, 2.5% yeast extract, 0.24% acetic acid, 0.27% Na2HPO4, and 0.5% ethanol at 30°C, about 5 g/l of cellulosic material was produced. Both imaging and IR analysis proved that the produced cellulose would be nanoscale bacterial cellulose.


Assuntos
Acetobacteraceae/metabolismo , Celulose/química , Diospyros/microbiologia , Fermentação , Nanoestruturas/química , Acetobacteraceae/classificação , Acetobacteraceae/genética , Acetobacteraceae/isolamento & purificação , Biotecnologia/métodos , Meios de Cultura/química , RNA Ribossômico 16S/genética , Análise de Sequência , Temperatura
18.
Int J Syst Evol Microbiol ; 69(5): 1384-1389, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30816841

RESUMO

A Gram-stain-negative, facultatively aerobic bacterial strain, designated DB1506T, of the family Acetobacteraceae, was isolated from an air-conditioning system in the Republic of Korea. Colonies were pink- to rosy-coloured and cells were non-motile cocci with catalase- and oxidase-positive activities. Growth of strain DB1506T was observed at 20-37 °C (optimum, 30 °C), pH 5.5-8.5 (pH 7.0) and in the presence of 0-0.5 % (w/v) NaCl (0 %). Strain DB1506T contained summed feature 8 (comprising C18 : 1ω7c and/or C18 : 1ω6c) and C18 : 1 2-OH as major fatty acids and ubiquinone-10 as the sole isoprenoid quinone. Phosphatidylglycerol, phosphatidylethanolamine, unidentified phospholipids, unidentified aminolipids and unidentified polar lipids were detected as major polar lipids. The G+C content of the genomic DNA calculated from the whole genome sequence was 72.5 mol%. Strain DB1506T was most closely related to Paracraurococcus ruber NS89T, Dankookia rubra WS-10T and Siccirubricoccus deserti SYSU D8009T with 16S rRNA gene sequence similarities of 96.01, 95.88 and 95.44 %, respectively, but strain DB1506T formed a clearly distinct phylogenic lineage from them within the family Acetobacteraceae. On the basis of phenotypic, chemotaxonomic and molecular properties, strain DB1506T represents a novel species of a new genus within the family Acetobacteraceae, for which the name Roseicella frigidaeris gen. nov., sp. nov. is proposed. The type strain is DB1506T (=KACC 19791T=JCM 32945T).


Assuntos
Acetobacteraceae/classificação , Ar Condicionado , Filogenia , Acetobacteraceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Ubiquinona/química
19.
Int J Syst Evol Microbiol ; 69(3): 727-731, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30605080

RESUMO

A Gram-stain-negative, strictly aerobic, catalase-positive and oxidase-positive bacterium, designated strain HR-AST, was isolated from a water sample of the Han River located in the Republic of Korea. Cells were motile rods with a polar flagellum. Growth was observed at 5-35 °C (optimum of 25 °C) and pH 6-8 (optimum of pH 7) and in the presence of 0-2 % (w/v) NaCl (optimum of 0 %). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain HR-AST formed a tight phylogenic lineage with Zavarzinia compransoris LMG 5821T. Strain HR-AST was most closely related to Z. compransoris LMG 5821T with a 98.7 % 16S rRNA gene sequence similarity and had very low similarities (below 91.0 %) to other type strains with validly published names. Average nucleotide identity and in silico DNA-DNA hybridization values between strain HR-AST and Z. compransoris DSM 1231T were 80.4 and 23.1 %, respectively. Strain HR-AST contained ubiquinone-10 as the major quinone and homospermidine and putrescine as the major polyamines. The major fatty acids were summed feature 8 (C18 : 1 ω6c and/or C18 : 1 ω7c), C16 : 0 and C18 : 1 2-OH. Strain HR-AST contained diphosphatidylglycerol, an unidentified aminolipid and two unidentified phospholipids as major polar lipids. The DNA G+C content of strain HR-AST was 67.2 mol%. Based on the genotypic, chemotaxonomic and phenotypic analyses, strain HR-AST represents a novel species of the genus Zavarzinia, for which the name Zavarziniaaquatilis sp. nov. is proposed. The type strain is HR-AST (=KACC 19412T=JCM 32263T).


Assuntos
Acetobacteraceae/classificação , Filogenia , Rios/microbiologia , Acetobacteraceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Putrescina/química , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Espermidina/química , Ubiquinona/química
20.
Prep Biochem Biotechnol ; 48(9): 842-852, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30303756

RESUMO

Bacterial cellulose (BC) is one of the prominent biopolymers that has been acquiring attention currently due to its distinctive properties and applications in various fields. The current work presents the isolation of Komagataeibacter saccharivorans strain BC1 isolated from rotten green grapes, followed by biochemical and genotypic characterization, which confirmed that the strain is capable of synthesizing cellulose. Further, production media was designed and certain variables such as carbon, nitrogen sources, pH, and temperature were optimized in order to obtain the maximum concentration of cellulose production. We found mannitol to be the ideal carbon source and yeast extract as the ideal nitrogen source with a highest BC dry yield of 1.81 ± 0.25 g/100 mL at pH 5.76 for a week at 30 °C.The charcterization of pellicles by FTIR spectrum depicted similar functional groups present in synthesized BC as that of the commercial cellulose. X-ray diffraction revealed that BC showed 82% crystallinity. Surface morphology of the dried pellicle was studied by SEM image which showed that the BC surface was tightly packed with thin fibers with less porosity. Hence the study demonstrates that the isolates of K.saccharivorans could be used to produce a biopolymer in a short period of time using a modified production medium.


Assuntos
Acetobacteraceae/metabolismo , Celulose/biossíntese , Polissacarídeos Bacterianos/biossíntese , Vitis/microbiologia , Acetobacteraceae/isolamento & purificação , Técnicas de Cultura de Células/métodos , Celulose/química , Meios de Cultura , Concentração de Íons de Hidrogênio , Manitol/metabolismo , Polissacarídeos Bacterianos/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...