Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 980
Filtrar
1.
Int J Nanomedicine ; 19: 5793-5812, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882535

RESUMO

This review article discusses the potential of nanomaterials in targeted therapy and immunomodulation for stroke-induced immunosuppression. Although nanomaterials have been extensively studied in various biomedical applications, their specific use in studying and addressing immunosuppression after stroke remains limited. Stroke-induced neuroinflammation is characterized by T-cell-mediated immunodepression, which leads to increased morbidity and mortality. Key observations related to immunodepression after stroke, including lymphopenia, T-cell dysfunction, regulatory T-cell imbalance, and cytokine dysregulation, are discussed. Nanomaterials, such as liposomes, micelles, polymeric nanoparticles, and dendrimers, offer advantages in the precise delivery of drugs to T cells, enabling enhanced targeting and controlled release of immunomodulatory agents. These nanomaterials have the potential to modulate T-cell function, promote neuroregeneration, and restore immune responses, providing new avenues for stroke treatment. However, challenges related to biocompatibility, stability, scalability, and clinical translation need to be addressed. Future research efforts should focus on comprehensive studies to validate the efficacy and safety of nanomaterial-based interventions targeting T cells in stroke-induced immunosuppression. Collaborative interdisciplinary approaches are necessary to advance the field and translate these innovative strategies into clinical practice, ultimately improving stroke outcomes and patient care.


Assuntos
Nanoestruturas , Acidente Vascular Cerebral , Linfócitos T , Animais , Humanos , Citocinas/metabolismo , Citocinas/imunologia , Nanomedicina , Nanopartículas/química , Nanoestruturas/química , Acidente Vascular Cerebral/imunologia , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos
3.
Aging (Albany NY) ; 15(24): 14803-14829, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38112574

RESUMO

BACKGROUND: Ischemic stroke (IS) is a fearful disease that can cause a variety of immune events. Nevertheless, precise immune-related mechanisms have yet to be systematically elucidated. This study aimed to identify immune-related signatures using machine learning and to validate them with animal experiments and single cell analysis. METHODS: In this study, we screened 24 differentially expressed genes (DEGs) while identifying immune-related signatures that may play a key role in IS development through a comprehensive strategy between least absolute shrinkage and selection operation (LASSO) regression, support vector machine (SVM) and immune-related genes. In addition, we explored immune infiltration using the CIBERSORT algorithm. Finally, we performed validation in mouse brain tissue and single cell analysis. RESULTS: We identified 24 DEGs for follow-up analysis. ID3 and SLC22A4 were finally identified as the better immune-related signatures through a comprehensive strategy among DEGs, LASSO, SVM and immune-related genes. RT-qPCR, western blot, and immunofluorescence revealed a significant decrease in ID3 and a significant increase in SLC22A4 in the middle cerebral artery occlusion group. Single cell analysis revealed that ID3 was mainly concentrated in endothelial_2 cells and SLC22A4 in astrocytes in the MCAO group. A CIBERSORT finds significantly altered levels of immune infiltration in IS patients. CONCLUSIONS: This study focused on immune-related signatures after stroke and ID3 and SLC22A4 may be new therapeutic targets to promote functional recovery after stroke. Furthermore, the association of ID3 and SLC22A4 with immune cells may be a new direction for post-stroke immunotherapy.


Assuntos
Proteínas Inibidoras de Diferenciação , AVC Isquêmico , Proteínas de Transporte de Cátions Orgânicos , Acidente Vascular Cerebral , Simportadores , Animais , Humanos , Camundongos , Algoritmos , Astrócitos , Western Blotting , Proteínas Inibidoras de Diferenciação/imunologia , Proteínas Inibidoras de Diferenciação/metabolismo , AVC Isquêmico/genética , Proteínas de Neoplasias , Proteínas de Transporte de Cátions Orgânicos/imunologia , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/metabolismo , Simportadores/imunologia , Simportadores/metabolismo
4.
Ann Clin Transl Neurol ; 10(2): 276-291, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36579400

RESUMO

OBJECTIVE: Despite successful endovascular therapy, a proportion of stroke patients exhibit long-term functional decline, regardless of the cortical reperfusion. Our objective was to evaluate the early activation of the adaptive immune response and its impact on neurological recovery in patients with large vessel occlusion (LVO). METHODS: Nineteen (13 females, 6 males) patients with acute LVO were enrolled in a single-arm prospective cohort study. During endovascular therapy (EVT), blood samples were collected from pre and post-occlusion, distal femoral artery, and median cubital vein (controls). Cytokines, chemokines, cellular and functional profiles were evaluated with immediate and follow-up clinical and radiographic parameters, including cognitive performance and functional recovery. RESULTS: In the hyperacute phase (within hours), adaptive immune activation was observed in the post-occlusion intra-arterial environment (post). Ischemic vascular tissue had a significant increase in T-cell-related cytokines, including IFN-γ and MMP-9, while GM-CSF, IL-17, TNF-α, IL-6, MIP-1a, and MIP-1b were decreased. Cellularity analysis revealed an increase in inflammatory IL-17+ and GM-CSF+ helper T-cells, while natural killer (NK), monocytes and B-cells were decreased. A correlation was observed between hypoperfused tissue, infarct volume, inflammatory helper, and cytotoxic T-cells. Moreover, helper and cytotoxic T-cells were also significantly increased in patients with improved motor function at 3 months. INTERPRETATION: We provide evidence of the activation of the inflammatory adaptive immune response during the hyperacute phase and the association of pro-inflammatory cytokines with greater ischemic tissue and worsening recovery after successful reperfusion. Further characterization of these immune pathways is warranted to test selective immunomodulators during the early stages of stroke rehabilitation.


Assuntos
Isquemia Encefálica , Disfunção Cognitiva , Transtornos das Habilidades Motoras , Feminino , Humanos , Masculino , Citocinas , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Imunidade , Interleucina-17 , Estudos Prospectivos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/terapia , Isquemia Encefálica/complicações , Isquemia Encefálica/imunologia , Isquemia Encefálica/terapia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/imunologia , Transtornos das Habilidades Motoras/etiologia , Transtornos das Habilidades Motoras/imunologia , Doenças Neuroinflamatórias/imunologia
5.
Immunol Cell Biol ; 100(7): 482-496, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35706327

RESUMO

Previous studies investigating innate leukocyte recruitment into the brain after cerebral ischemia have shown conflicting results. Using distinct cell surface and intracellular markers, the current study evaluated the contributions of innate immune cells to the poststroke brain following 1-h middle cerebral artery occlusion (tMCAO) or permanent MCAO (pMCAO), and assessed whether these cells ascribed to an inflammatory state. Moreover, we examined whether there is evidence for leukocyte infiltration into the contralateral (CL) hemisphere despite the absence of stroke infarct. We observed the recruitment of peripheral neutrophils, monocytes and macrophages into the hemisphere ipsilateral (IL) to the ischemic brain infarct at 24 and 96 h following both tMCAO and pMCAO. In addition, we found evidence of increased leukocyte recruitment to the CL hemisphere but to a lesser extent than the IL hemisphere after stroke. Robust production of intracellular cytokines in the innate immune cell types examined was most evident at 24 h after pMCAO. Specifically, brain-associated neutrophils, monocytes and macrophages demonstrated stroke-induced production of tumor necrosis factor-α (TNF-α) and interleukin (IL)-1ß, while only monocytes and macrophages exhibit a significant expression of arginase 1 (Arg1) after stroke. At 96 h after stroke, brain-resident microglia demonstrated production of TNF-α and IL-1ß following both tMCAO and pMCAO. At this later timepoint, neutrophils displayed TNF-α production and brain-associated macrophages exhibited elevation of IL-1ß and Arg1 after tMCAO. Further, pMCAO induced significant expression of Arg1 and IL-1ß in monocytes and macrophages at 96 h, respectively. These results revealed that brain-associated innate immune cells display various stroke-induced inflammatory states that are dependent on the experimental stroke setting.


Assuntos
Encéfalo , Imunidade Inata , Inflamação , AVC Isquêmico , Leucócitos , Encéfalo/imunologia , Encéfalo/patologia , Isquemia Encefálica/imunologia , Isquemia Encefálica/patologia , Imunidade Inata/imunologia , Inflamação/imunologia , Inflamação/patologia , AVC Isquêmico/imunologia , AVC Isquêmico/patologia , Leucócitos/imunologia , Leucócitos/patologia , Microglia/imunologia , Microglia/patologia , Monócitos/imunologia , Monócitos/patologia , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/patologia , Fator de Necrose Tumoral alfa/imunologia
6.
Atherosclerosis ; 351: 18-25, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35605368

RESUMO

BACKGROUND AND AIMS: Despite mechanistic data implicating unresolving inflammation in stroke pathogenesis, data regarding circulating immune cell phenotypes - key determinants of inflammation propagation versus resolution - and incident stroke are lacking. Therefore, we aimed to comprehensively define associations of circulating immune phenotypes and activation profiles with incident stroke. METHODS: We investigated circulating leukocyte phenotypes and activation profiles with incident adjudicated stroke in 2104 diverse adults from the Multi-Ethnic Study of Atherosclerosis (MESA) followed over a median of 16.6 years. Cryopreserved cells from the MESA baseline examination were thawed and myeloid and lymphoid lineage cell subsets were measured using polychromatic flow cytometry and intracellular cytokine activation staining. We analyzed multivariable-adjusted associations of cell phenotypes, as a proportion of parent cell subsets, with incident stroke (overall) and ischemic stroke using Cox regression models. RESULTS: We observed associations of intermediate monocytes, early-activated CD4+ T cells, and both CD4+ and CD8+ T cells producing interleukin-4 after cytokine stimulation (Th2 and Tc2, respectively) with higher risk for incident stroke; effect sizes ranged from 35% to 62% relative increases in risk for stroke. Meanwhile, differentiated and memory T cell phenotypes were associated with lower risk for incident stroke. In sex-stratified analyses, positive and negative associations were especially strong among men but null among women. CONCLUSIONS: Circulating IL-4 producing T cells and intermediate monocytes were significantly associated with incident stroke over nearly two decades of follow-up. These associations were stronger among men and not among women. Further translational studies are warranted to define more precise targets for prognosis and intervention.


Assuntos
Aterosclerose , Interleucina-4 , Acidente Vascular Cerebral , Aterosclerose/epidemiologia , Aterosclerose/imunologia , Aterosclerose/patologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos , Citocinas/biossíntese , Citocinas/sangue , Citocinas/imunologia , Feminino , Seguimentos , Humanos , Incidência , Inflamação , Interleucina-4/biossíntese , Interleucina-4/sangue , Interleucina-4/imunologia , AVC Isquêmico/sangue , AVC Isquêmico/epidemiologia , AVC Isquêmico/imunologia , Ativação Linfocitária/imunologia , Masculino , Monócitos/imunologia , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/imunologia , Subpopulações de Linfócitos T/imunologia
7.
Acta Neuropathol Commun ; 10(1): 14, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35105380

RESUMO

Coronavirus disease 2019 (COVID-19) is associated with an increased risk of thrombotic events. Ischemic stroke in COVID-19 patients entails high severity and mortality rates. Here we aimed to analyze cerebral thrombi of COVID-19 patients with large vessel occlusion (LVO) acute ischemic stroke to expose molecular evidence for SARS-CoV-2 in the thrombus and to unravel any peculiar immune-thrombotic features. We conducted a systematic pathological analysis of cerebral thrombi retrieved by endovascular thrombectomy in patients with LVO stroke infected with COVID-19 (n = 7 patients) and non-covid LVO controls (n = 23). In thrombi of COVID-19 patients, the SARS-CoV-2 docking receptor ACE2 was mainly expressed in monocytes/macrophages and showed higher expression levels compared to controls. Using polymerase chain reaction and sequencing, we detected SARS-CoV-2 Clade20A, in the thrombus of one COVID-19 patient. Comparing thrombus composition of COVID-19 and control patients, we noted no overt differences in terms of red blood cells, fibrin, neutrophil extracellular traps (NETs), von Willebrand Factor (vWF), platelets and complement complex C5b-9. However, thrombi of COVID-19 patients showed increased neutrophil density (MPO+ cells) and a three-fold higher Neutrophil-to-Lymphocyte Ratio (tNLR). In the ROC analysis both neutrophils and tNLR had a good discriminative ability to differentiate thrombi of COVID-19 patients from controls. In summary, cerebral thrombi of COVID-19 patients can harbor SARS-CoV2 and are characterized by an increased neutrophil number and tNLR and higher ACE2 expression. These findings suggest neutrophils as the possible culprit in COVID-19-related thrombosis.


Assuntos
Isquemia Encefálica/imunologia , COVID-19/imunologia , Imunidade Celular/fisiologia , Trombose Intracraniana/imunologia , Neutrófilos/imunologia , Acidente Vascular Cerebral/imunologia , Idoso , Idoso de 80 Anos ou mais , Enzima de Conversão de Angiotensina 2/sangue , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , Isquemia Encefálica/sangue , Isquemia Encefálica/genética , COVID-19/sangue , COVID-19/genética , Feminino , Humanos , Trombose Intracraniana/sangue , Trombose Intracraniana/genética , Masculino , Trombólise Mecânica/métodos , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Estudos Prospectivos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/genética
8.
J Neuroinflammation ; 19(1): 1, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34980176

RESUMO

BACKGROUND: Abnormal expression of long noncoding RNAs (lncRNAs) has been reported in the acute stage of acute ischemic stroke (AIS). This study aimed to explore differential lncRNA expression in the subpopulations of peripheral blood mononuclear cells (PBMCs) from AIS patients and further evaluate its underlying mechanisms in stroke-induced immunosuppression. METHODS: We reanalyzed lncRNA microarray data and investigated abnormally expressed lncRNAs in the subpopulations of PBMCs by magnetic cell sorting and real-time quantitative PCR. The potential mechanism of small nucleolar RNA host gene 15 (SNHG15) was explored through in vitro and in vivo approaches. RESULTS: The stroke-induced SNHG15 acted as a checkpoint to inhibit peripheral inflammatory responses. Functional studies showed that SNHG15 promoted M2 macrophage polarization. Mechanistically, SNHG15 expression was dysregulated through the Janus kinase (JAK)-signal transducer and activator of transcription 6 (STAT6) signaling pathway. SNHG15, localized in the cytoplasm, interfered with K63-linked ubiquitination of tumor necrosis factor receptor-associated factor 2 and thereby repressed the activation of mitogen-activated protein kinase and nuclear factor kappa-B signaling pathways and prevented the production of proinflammatory cytokines. Administration of an adenovirus targeting SNHG15 improved stroke-induced immunosuppression in mice. CONCLUSIONS: This study identified SNHG15 as a negative regulator of inflammation in stroke-induced immunosuppression, suggesting it as a novel biomarker and therapeutic target in stroke-associated infection. Trial registration ClinicalTrials.gov NCT04175691. Registered November 25, 2019, https://www.clinicaltrials.gov/ct2/show/NCT04175691 .


Assuntos
Tolerância Imunológica , Inflamação/metabolismo , RNA Longo não Codificante/metabolismo , Acidente Vascular Cerebral/metabolismo , Fator 2 Associado a Receptor de TNF/metabolismo , Citocinas/metabolismo , Humanos , Inflamação/imunologia , Interleucina-4/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , RNA Longo não Codificante/genética , Acidente Vascular Cerebral/imunologia , Fator 2 Associado a Receptor de TNF/genética , Ubiquitinação
9.
Acta Pharmacol Sin ; 43(1): 1-9, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33772140

RESUMO

Recent evidence shows that when ischemic stroke (IS) occurs, the BBB would be destructed, thereby promoting the immune cells to migrate into the brain, suggesting that the immune responses can play a vital role in the pathology of IS. As an essential subpopulation of immunosuppressive T cells, regulatory T (Treg) cells are involved in maintaining immune homeostasis and suppressing immune responses in the pathophysiological conditions of IS. During the past decades, the regulatory role of Treg cells has attracted the interest of numerous researchers. However, whether they are beneficial or detrimental to the outcomes of IS remains controversial. Moreover, Treg cells exert distinctive effects in the different stages of IS. Therefore, it is urgent to elucidate how Treg cells modulate the immune responses induced by IS. In this review, we describe how Treg cells fluctuate and play a role in the regulation of immune responses after IS in both experimental animals and humans, and summarize their biological functions and mechanisms in both CNS and periphery. We also discuss how Treg cells participate in poststroke inflammation and immunodepression and the potential of Treg cells as a novel therapeutic approach.


Assuntos
Isquemia Encefálica/imunologia , Acidente Vascular Cerebral/imunologia , Linfócitos T Reguladores/imunologia , Animais , Humanos
10.
Exp Neurol ; 347: 113901, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34688600

RESUMO

BACKGROUND AND PURPOSE: Stroke therapy still lacks successful measures to improve post stroke recovery. Neurotrophin-3 (NT-3) is one promising candidate which has proven therapeutic benefit in motor recovery in acute experimental stroke. Post stroke, the immune system has opposing pathophysiological roles: pro-inflammatory cascades and immune cell infiltration into the brain exacerbate cell death while the peripheral immune response has only limited capabilities to fight infections during the acute and subacute phase. With time, anti-inflammatory mechanisms are supposed to support recovery of the ischemic damage within the brain parenchyma. However, interestingly, NT-3 can improve recovery in chronic neurological injury when combined with the pro-inflammatory stimulus lipopolysaccharide (LPS). AIM: We elucidated the impact of NT-3 on human monocyte and T cell activation as well as cytokine production ex vivo after stroke. In addition, we investigated the age-dependent availability of the high affinity NT-3 receptor TrkC upon LPS stimulation. METHODS: Peripheral blood mononuclear cells (PBMCs) were isolated from acute stroke patients and controls and incubated with different dosages of NT-3 (10 and 100 ng/mL) and with or without LPS or anti-CD3/CD28 for 48 h. Total TrkC expression and cell activation (CD25, CD69 and HLA-DR) were assessed by FACS staining. IFN-γ, TNF-α, IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, IL-17A, IL-17F, IL-21 and IL-22 were quantified by cytometric bead array. RESULTS: Most monocytes and only a small proportion of T cells expressed TrkC in blood from humans without stroke. Activation of cells from young humans (without strokes) using anti-CD3/CD28 or LPS partially reduced the proportion of monocytes expressing TrkC whilst they increased the proportion of T cells expressing TrkC. In contrast, activation of cells from elderly humans (without strokes) did not affect the proportion of monocytes expressing TrkC and only anti-CD3/CD28 led to an increase in the proportion of CD4+ T cells expressing TrkC. In blood from stroke patients or controls, NT-3 treatment reduced the percentage of monocytes and CD4+ and CD8+ T cells that were activated and reduced all cytokines investigated besides IL-21. CONCLUSIONS: NT-3 attenuated immune responses in cells from stroke patients and controls. The mechanism whereby human immune cells respond to NT-3 may be via TrkC receptors whose levels are regulated by stimulation. Further work is required to determine whether the induction of sensorimotor recovery in rodents by NT-3 after CNS injury is caused by this attenuation of the immune response.


Assuntos
Citocinas/imunologia , Imunidade Celular/imunologia , Monócitos/imunologia , Neurotrofina 3/farmacologia , Acidente Vascular Cerebral/imunologia , Linfócitos T/imunologia , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Citocinas/sangue , Feminino , Humanos , Imunidade Celular/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Neurotrofina 3/uso terapêutico , Método Simples-Cego , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/tratamento farmacológico , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Adulto Jovem
11.
Cells ; 10(12)2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34944064

RESUMO

Stroke remains the number one cause of morbidity in the United States. Within weeks to months after an ischemic event, there is a resolution of inflammation and evidence of neurogenesis; however, years following a stroke, there is evidence of chronic inflammation in the central nervous system, possibly by the persistence of an autoimmune response to brain antigens as a result of ischemia. The mechanisms underlying the involvement of macrophage and microglial activation after stroke are widely acknowledged as having a role in ischemic stroke pathology; thus, modulating inflammation and neurological recovery is a hopeful strategy for treating the long-term outcomes after ischemic injury. Current treatments fail to provide neuroprotective or neurorestorative benefits after stroke; therefore, to ameliorate brain injury-induced deficits, therapies must alter both the initial response to injury and the subsequent inflammatory process. This review will address differences in macrophage and microglia nomenclature and summarize recent work in elucidating the mechanisms of macrophage and microglial participation in antigen presentation, neuroprotection, angiogenesis, neurogenesis, synaptic remodeling, and immune modulating strategies for treating the long-term outcomes after ischemic injury.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Inflamação/tratamento farmacológico , Acidente Vascular Cerebral/tratamento farmacológico , Autoimunidade/genética , Autoimunidade/imunologia , Lesões Encefálicas/imunologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Isquemia Encefálica/imunologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Microglia/imunologia , Microglia/metabolismo , Microglia/patologia , Neurogênese/efeitos dos fármacos , Neurogênese/imunologia , Fármacos Neuroprotetores/uso terapêutico , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/metabolismo
12.
Front Immunol ; 12: 787307, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950148

RESUMO

Immunomodulatory therapies have fueled interest in targeting microglial cells as part of the innate immune response after infection or injury. In this context, the colony-stimulating factor 1 (CSF-1) and its receptor (CSF-1R) have gained attention in various neurological conditions to deplete and reprogram the microglia/macrophages compartment. Published data in physiological conditions support the use of small-molecule inhibitors to study microglia/macrophages dynamics under inflammatory conditions and as a therapeutic strategy in pathologies where those cells support disease progression. However, preclinical and clinical data highlighted that the complexity of the spatiotemporal inflammatory response could limit their efficiency due to compensatory mechanisms, ultimately leading to therapy resistance. We review the current state-of-art in the field of CSF-1R inhibition in glioma and stroke and provide an overview of the fundamentals, ongoing research, potential developments of this promising therapeutic strategy and further application toward molecular imaging.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Doenças Neuroinflamatórias/tratamento farmacológico , Receptor de Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Modelos Animais de Doenças , Progressão da Doença , Glioma/imunologia , Glioma/patologia , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Microglia/efeitos dos fármacos , Microglia/imunologia , Microglia/patologia , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Literatura de Revisão como Assunto , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/patologia
13.
J Neuroinflammation ; 18(1): 252, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34727934

RESUMO

OBJECTIVE: Astrocytes participate in the local innate immune response of the central nervous system. In response to stress such as ischemia, activated cells release endogenous factors known as damage-associated molecular patterns (DAMPs). Self-extracellular RNA (eRNA) is such a ubiquitous alarm signal. However, it is unclear whether eRNA is involved in the early acute phase of cerebral ischemia and is sufficient to sensitize astrocytes towards a DAMP or PAMP (pathogen-associated molecular pattern) reaction. METHODS: Pro-inflammatory activation upon eRNA stimulation was characterized in primary murine astrocyte cultures. In vivo, an experimental stroke model was used to localize and quantify eRNA in murine brain sections. Using primary cortical neurons and the mouse hippocampal neuronal cell line HT-22, neuronal RNA release upon stress conditions related to cerebral hypoxia/ischemia was analyzed. RESULTS: While low-dose eRNA alone did not promote pro-inflammatory activation of astrocytes in culture, it strongly enhanced the expression of pro-inflammatory cytokines in the presence of either Pam2CSK4, a synthetic PAMP molecule that mimics bacterial infection, or high mobility group box 1 (HMGB1), a prominent DAMP. Synergism of eRNA/Pam2CSK4 and eRNA/HMGB1 was prevented by blockage of the astroglial toll-like receptor (TLR)-2. Inhibition of NF-κB- and mitogen-activated protein kinase-dependent signaling pathways hampered eRNA/Pam2CSK4-mediated pro-inflammatory activation of astrocytes. In vivo, the amount of non-nuclear, presumably extracellular ribosomal RNA in close proximity to neurons significantly accumulated across the infarct core and peri-infarct areas that was accompanied by transcriptional up-regulation of various pro-inflammatory factors. Accordingly, the exposure of neurons to hypoxic/ischemic stress in vitro resulted in the release of eRNA, partly mediated by active cellular processes dependent on the cytosolic calcium level. CONCLUSION: The DAMP signal eRNA can sensitize astrocytes as active players in cerebral innate immunity towards exogenous and endogenous activators of inflammation (PAMPs and DAMPs) in a synergistic manner via TLR2-NF-κB-dependent signaling mechanisms. These findings provide new insights into the pathogenesis of ischemic stroke and other inflammatory neurological disorders. Further studies will clarify whether administration of RNase in vivo may serve as an effective treatment for inflammatory brain pathologies.


Assuntos
Alarminas/imunologia , Astrócitos/imunologia , Inflamação/imunologia , RNA/imunologia , Acidente Vascular Cerebral/imunologia , Animais , Camundongos , Acidente Vascular Cerebral/patologia
14.
J Cell Mol Med ; 25(23): 10973-10979, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34729909

RESUMO

Atherosclerotic plaque instability contributes to ischaemic stroke and myocardial infarction. This study is to compare the abundance and difference of immune cell subtypes within unstable atherosclerotic tissues. CIBERSORT was used to speculate the proportions of 22 immune cell types based on a microarray of atherosclerotic carotid artery samples. R software was utilized to illustrate the bar plot, heat map and vioplot. The immune cell landscape in atherosclerosis was diverse, dominated by M2 macrophages, M0 macrophages, resting CD4 memory T cells and CD8 T cells. There was a significant difference in resting CD4 memory T cells (p = 0.032), T cells follicular helper (p = 0.033), M0 (p = 0.047) and M2 macrophages (p = 0.012) between stable and unstable atherosclerotic plaques. Compared with stable atherosclerotic plaques, unstable atherosclerotic plaques had a higher percentage of M2 macrophages. Moreover, correlation analysis indicated that the percentage of naïve CD4 T cells was strongly correlated with that of gamma delta T cells (r = 0.93, p < 0.001), while memory B cells were correlated with plasma cells (r = 0.85, p < 0.001). In summary, our study explored the abundance and difference of specific immune cell subgroups at unstable plaques, which would aid new immunotherapies for atherosclerosis.


Assuntos
Aterosclerose/imunologia , Artérias Carótidas/imunologia , Doenças das Artérias Carótidas/imunologia , Infarto do Miocárdio/imunologia , Plasmócitos/imunologia , Isquemia Encefálica/imunologia , Linfócitos T CD8-Positivos/imunologia , Humanos , Macrófagos/imunologia , Células B de Memória/imunologia , Células T de Memória/imunologia , Placa Aterosclerótica/imunologia , Acidente Vascular Cerebral/imunologia
15.
Pharmacol Res Perspect ; 9(5): e00795, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34609083

RESUMO

Neurodegenerative diseases (NDD) are disorders characterized by the progressive loss of neurons affecting motor, sensory, and/or cognitive functions. The incidence of these diseases is increasing and has a great impact due to their high morbidity and mortality. Unfortunately, current therapeutic strategies only temporarily improve the patients' quality of life but are insufficient for completely alleviating the symptoms. An interaction between the immune system and the central nervous system (CNS) is widely associated with neuronal damage in NDD. Usually, immune cell infiltration has been identified with inflammation and is considered harmful to the injured CNS. However, the immune system has a crucial role in the protection and regeneration of the injured CNS. Nowadays, there is a consensus that deregulation of immune homeostasis may represent one of the key initial steps in NDD. Dr. Michal Schwartz originally conceived the concept of "protective autoimmunity" (PA) as a well-controlled peripheral inflammatory reaction after injury, essential for neuroprotection and regeneration. Several studies suggested that immunizing with a weaker version of the neural self-antigen would generate PA without degenerative autoimmunity. The development of CNS-related peptides with immunomodulatory neuroprotective effect led to important research to evaluate their use in chronic and acute NDD. In this review, we refer to the role of PA and the potential applications of active immunization as a therapeutic option for NDD treatment. In particular, we focus on the experimental and clinical promissory findings for CNS-related peptides with beneficial immunomodulatory effects.


Assuntos
Autoantígenos/uso terapêutico , Autoimunidade/imunologia , Fatores Imunológicos/uso terapêutico , Regeneração Nervosa/imunologia , Doenças Neurodegenerativas/terapia , Neuroproteção/imunologia , Peptídeos/uso terapêutico , Doença de Alzheimer/imunologia , Doença de Alzheimer/terapia , Esclerose Lateral Amiotrófica/imunologia , Esclerose Lateral Amiotrófica/terapia , Animais , Acetato de Glatiramer/uso terapêutico , Humanos , Imunização Passiva , Imunomodulação , Proteína Básica da Mielina/uso terapêutico , Doenças Neurodegenerativas/imunologia , Doença de Parkinson/imunologia , Doença de Parkinson/terapia , Fragmentos de Peptídeos/uso terapêutico , Deficiências na Proteostase , Traumatismos da Medula Espinal/imunologia , Traumatismos da Medula Espinal/terapia , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/terapia
16.
Cells ; 10(9)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34572077

RESUMO

Ischemic stroke is still among the leading causes of mortality and morbidity worldwide. Despite intensive advancements in medical sciences, the clinical options to treat ischemic stroke are limited to thrombectomy and thrombolysis using tissue plasminogen activator within a narrow time window after stroke. Current state of the art knowledge reveals the critical role of local and systemic inflammation after stroke that can be triggered by interactions taking place at the brain and immune system interface. Here, we discuss different cellular and molecular mechanisms through which brain-immune interactions can take place. Moreover, we discuss the evidence how the brain influence immune system through the release of brain derived antigens, damage-associated molecular patterns (DAMPs), cytokines, chemokines, upregulated adhesion molecules, through infiltration, activation and polarization of immune cells in the CNS. Furthermore, the emerging concept of stemness-induced cellular immunity in the context of neurodevelopment and brain disease, focusing on ischemic implications, is discussed. Finally, we discuss current evidence on brain-immune system interaction through the autonomic nervous system after ischemic stroke. All of these mechanisms represent potential pharmacological targets and promising future research directions for clinically relevant discoveries.


Assuntos
Isquemia Encefálica/imunologia , Encéfalo/imunologia , Neuroimunomodulação , Acidente Vascular Cerebral/imunologia , Alarminas/metabolismo , Barreira Hematoencefálica/imunologia , Lesões Encefálicas/imunologia , Isquemia Encefálica/terapia , Quimiocinas/metabolismo , Citocinas/metabolismo , Sistemas de Liberação de Medicamentos , Humanos , Inflamação/imunologia , Sistema Nervoso/imunologia , Células-Tronco/imunologia , Acidente Vascular Cerebral/terapia
17.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502395

RESUMO

Stroke disrupts the homeostatic balance within the brain and is associated with a significant accumulation of necrotic cellular debris, fluid, and peripheral immune cells in the central nervous system (CNS). Additionally, cells, antigens, and other factors exit the brain into the periphery via damaged blood-brain barrier cells, glymphatic transport mechanisms, and lymphatic vessels, which dramatically influence the systemic immune response and lead to complex neuroimmune communication. As a result, the immunological response after stroke is a highly dynamic event that involves communication between multiple organ systems and cell types, with significant consequences on not only the initial stroke tissue injury but long-term recovery in the CNS. In this review, we discuss the complex immunological and physiological interactions that occur after stroke with a focus on how the peripheral immune system and CNS communicate to regulate post-stroke brain homeostasis. First, we discuss the post-stroke immune cascade across different contexts as well as homeostatic regulation within the brain. Then, we focus on the lymphatic vessels surrounding the brain and their ability to coordinate both immune response and fluid homeostasis within the brain after stroke. Finally, we discuss how therapeutic manipulation of peripheral systems may provide new mechanisms to treat stroke injury.


Assuntos
Neuroimunomodulação/imunologia , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/patologia , Animais , Transporte Biológico , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/fisiologia , Homeostase , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/patologia , Imunidade , Leucócitos , Linfangiogênese , Vasos Linfáticos , Neuroimunomodulação/fisiologia
18.
Am J Hematol ; 96(12): 1587-1594, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34460124

RESUMO

Cardiovascular disease is a leading cause of death in survivors of immune-mediated thrombotic thrombocytopenic purpura (iTTP), but the epidemiology of major adverse cardiovascular events (MACE) in iTTP survivors is unknown. We evaluated the prevalence and risk factors for MACE, defined as the composite of non-fatal or fatal myocardial infarction (MI), stroke, and cardiac revascularization, during clinical remission in two large iTTP cohorts (Johns Hopkins University and Ohio State University). Of 181 patients followed for ≥ 3 months after recovery from acute iTTP, 28.6% had a MACE event over a median follow up of 7.6 years. Stroke was the most common type of MACE (18.2%), followed by non-fatal MI (6.6%), cardiac revascularization (4.9%) and fatal MI (0.6%). Compared to the general United States population, iTTP survivors were younger at first stroke in remission (males [56.5 years vs. 68.6 years, p = 0.031], females [49.7 years vs. 72.9 years, p < 0.001]) or MI in remission (males [56.5 years vs. 65.6 years, p < 0.001] and females [53.1 years vs. 72.0 years, p < 0.001]). Age (HR 1.03 [95% CI 1.002-1.054]), race (Black/Other vs. White) (HR 2.32 [95% CI 1.12-4.82]), and diabetes mellitus (HR 2.37 [95% CI 1.09-0.03]) were associated with MACE in a Cox regression model also adjusted for sex, hypertension, obesity, hyperlipidemia, chronic kidney disease, atrial fibrillation, autoimmune disease, and relapsing iTTP. Remission ADAMTS13 activity was not significantly associated with MACE. In conclusion, iTTP survivors experience high rates of MACE and may benefit from aggressively screening for and managing cardiovascular risk factors.


Assuntos
Doenças Cardiovasculares/etiologia , Púrpura Trombocitopênica Trombótica/complicações , Adulto , Idoso , Doenças Cardiovasculares/imunologia , Estudos de Coortes , Feminino , Fatores de Risco de Doenças Cardíacas , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/imunologia , Prevalência , Púrpura Trombocitopênica Trombótica/imunologia , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/imunologia
19.
Front Immunol ; 12: 692061, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335600

RESUMO

Ischemic stroke is one of the main issues threatening human health worldwide, and it is also the main cause of permanent disability in adults. Energy consumption and hypoxia after ischemic stroke leads to the death of nerve cells, activate resident glial cells, and promote the infiltration of peripheral immune cells into the brain, resulting in various immune-mediated effects and even contradictory effects. Immune cell infiltration can mediate neuronal apoptosis and aggravate ischemic injury, but it can also promote neuronal repair, differentiation and regeneration. The central nervous system (CNS), which is one of the most important immune privileged parts of the human body, is separated from the peripheral immune system by the blood-brain barrier (BBB). Under physiological conditions, the infiltration of peripheral immune cells into the CNS is controlled by the BBB and regulated by the interaction between immune cells and vascular endothelial cells. As the immune response plays a key role in regulating the development of ischemic injury, neutrophils have been proven to be involved in many inflammatory diseases, especially acute ischemic stroke (AIS). However, neutrophils may play a dual role in the CNS. Neutrophils are the first group of immune cells to enter the brain from the periphery after ischemic stroke, and their exact role in cerebral ischemia remains to be further explored. Elucidating the characteristics of immune cells and their role in the regulation of the inflammatory response may lead to the identification of new potential therapeutic strategies. Thus, this review will specifically discuss the role of neutrophils in ischemic stroke from production to functional differentiation, emphasizing promising targeted interventions, which may promote the development of ischemic stroke treatments in the future.


Assuntos
Isquemia Encefálica/imunologia , Neutrófilos/imunologia , Animais , Encéfalo/imunologia , Isquemia Encefálica/terapia , Movimento Celular , Humanos , Neutrófilos/fisiologia , Acidente Vascular Cerebral/imunologia
20.
Oxid Med Cell Longev ; 2021: 5633514, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34457116

RESUMO

This study sought to perform integrative analysis of the immune/methylation/autophagy landscape on breast cancer prognosis and single-cell genotypes. Breast Cancer Recurrence Risk Score (BCRRS) and Breast Cancer Prognostic Risk Score (BCPRS) were determined based on 6 prognostic IMAAGs obtained from the TCGA-BRCA cohort. BCRRS and BCPRS, respectively, were used to construct a risk prediction model of overall survival and progression-free survival. Predictive capacity of the model was evaluated using clinical data. Analysis showed that BCRRS is associated with a high risk of stroke. In addition, PPI and drug-ceRNA networks based on differences in BCPRS were constructed. Single cells were genotyped through integrated scRNA-seq of the TNBC samples based on clustering results of BCPRS-related genes. The findings of this study show the potential regulatory effects of IMAAGs on breast cancer tumor microenvironment. High AUCs of 0.856 and 0.842 were obtained for the OS and PFS prognostic models, respectively. scRNA-seq analysis showed high expression levels of adipocytes and adipose tissue macrophages (ATMs) in high BCPRS clusters. Moreover, analysis of ligand-receptor interactions and potential regulatory mechanisms were performed. The LINC00276&MALAT1/miR-206/FZD4-Wnt7b pathway was also identified which may be useful in future research on targets against breast cancer metastasis and recurrence. Neural network-based deep learning models using BCPRS-related genes showed that these genes can be used to map the tumor microenvironment. In summary, analysis of IMAAGs, BCPRS, and BCRRS provides information on the breast cancer microenvironment at both the macro- and microlevels and provides a basis for development of personalized treatment therapy.


Assuntos
Autofagia , Biomarcadores Tumorais/análise , Neoplasias da Mama/patologia , Metilação de DNA , Análise de Célula Única/métodos , Acidente Vascular Cerebral/patologia , Microambiente Tumoral/imunologia , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/terapia , Terapia Combinada , Feminino , Seguimentos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Genótipo , Humanos , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/terapia , Prognóstico , Medição de Risco/métodos , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/terapia , Taxa de Sobrevida , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...