Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geobiology ; 19(1): 48-62, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32902110

RESUMO

All life requires energy to drive metabolic reactions such as growth and cell maintenance; therefore, fluctuations in energy availability can alter microbial activity. There is a gap in our knowledge concerning how energy availability affects the growth of extreme chemolithoautotrophs. Toward this end, we investigated the growth of thermoacidophile Acidianus ambivalens during sulfur oxidation under aerobic to microaerophilic conditions. Calorimetry was used to measure enthalpy (ΔHinc ) of microbial activity, and chemical changes in growth media were measured to calculate Gibbs energy change (ΔGinc ) during incubation. In all experiments, Gibbs energy was primarily dissipated through the release of heat, which suggests enthalpy-driven growth. In microaerophilic conditions, growth was significantly more efficient in terms of biomass yield (defined as C-mol biomass per mole sulfur consumed) and resulted in lower ΔGinc and ΔHinc . ΔGinc in oxygen-limited (OL) and oxygen- and CO2 -limited (OCL) microaerophilic growth conditions resulted in averages of -1.44 × 103  kJ/C-mol and -7.56 × 102  kJ/C-mol, respectively, and average ΔHinc values of -1.11 × 105  kJ/C-mol and -4.43 × 104  kJ/C-mol, respectively. High-oxygen experiments resulted in lower biomass yield values, an increase in ΔGinc to -1.71 × 104  kJ/C-mol, and more exothermic ΔHinc values of -4.71 × 105  kJ/C-mol. The observed inefficiency in high-oxygen conditions may suggest larger maintenance energy demands due to oxidative stresses and a preference for growth in microaerophilic environments.


Assuntos
Acidianus , Oxigênio , Acidianus/crescimento & desenvolvimento , Calorimetria , Oxirredução , Termodinâmica
2.
Res Microbiol ; 169(10): 590-597, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30179696

RESUMO

For the first time, synchrotron radiation (SR) -based carbon K-edge X-ray absorption near edge structure (XANES) spectroscopy in-situ characterization was conducted to evaluate the evolution of superficial (about 10 nm) organic components of extracellular polymeric substances (EPS) of thermoacidophilic archaeon Acidianus manzaensis YN-25 acclimated with different energy substrates (FeS2, CuFeS2, S0, FeSO4). The atomic force microscopy (AFM) morphology scanning showed that the strain acclimated with different energy substrates varied a lot in EPS amount. XANES results showed clear associations between the energy substrates and the changes in organic composition in terms of typical function groups (CO, CO and CN). The chalcopyrite- and pyrite-acclimated cells contained higher proportion of proteins but less proportion of polysaccharides than the S0-acclimated cells. The FeSO4-acclimated cells contained the highest proportion of proteins, while the S0-acclimated cells contained more lipids and polysaccharides. The results of linear-combination and peak fitting of the K-edge XANES for the extracellular superficial organic component C is consistent with the trend in comparison with the results of FTIR and spectrophotometric determination, but there are significant differences in the values. These differences are caused by the inconsistencies of measurement depth between XANES and the latter two characterization methods.


Assuntos
Acidianus/citologia , Acidianus/metabolismo , Compostos Ferrosos/metabolismo , Acidianus/química , Acidianus/crescimento & desenvolvimento , Biopolímeros/química , Biopolímeros/metabolismo , Compostos Ferrosos/química , Temperatura Alta , Microscopia de Força Atômica , Espectroscopia por Absorção de Raios X
3.
Appl Environ Microbiol ; 84(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29625980

RESUMO

The thermoacidophile Acidianus is widely distributed in Yellowstone National Park hot springs that span large gradients in pH (1.60 to 4.84), temperature (42 to 90°C), and mineralogical composition. To characterize the potential role of flexibility in mineral-dependent energy metabolism in contributing to the widespread ecological distribution of this organism, we characterized the spectrum of minerals capable of supporting metabolism and the mechanisms that it uses to access these minerals. The energy metabolism of Acidianus strain DS80 was supported by elemental sulfur (S0), a variety of iron (hydr)oxides, and arsenic sulfide. Strain DS80 reduced, oxidized, and disproportionated S0 Cells growing via S0 reduction and disproportionation did not require direct access to the mineral to reduce it, whereas cells growing via S0 oxidation did require direct access, observations that are attributable to the role of H2S produced by S0 reduction/disproportionation in solubilizing and increasing the bioavailability of S0 Cells growing via iron (hydr)oxide reduction did not require access to the mineral, suggesting that the cells reduce Fe(III) that is being leached by the acidic growth medium. Cells growing via oxidation of arsenic sulfide with Fe(III) did not require access to the mineral to grow. The stoichiometry of reactants to products indicates that cells oxidize soluble As(III) released from oxidation of arsenic sulfide by aqueous Fe(III). Taken together, these observations underscore the importance of feedbacks between abiotic and biotic reactions in influencing the bioavailability of mineral substrates and defining ecological niches capable of supporting microbial metabolism.IMPORTANCE Mineral sources of electron donor and acceptor that support microbial metabolism are abundant in the natural environment. However, the spectrum of minerals capable of supporting a given microbial strain and the mechanisms that are used to access these minerals in support of microbial energy metabolism are often unknown, in particular among thermoacidophiles. Here, we show that the thermoacidophile Acidianus strain DS80 is adapted to use a variety of iron (hydro)oxide minerals, elemental sulfur, and arsenic sulfide to support growth. Cells rely on a complex interplay of abiologically and biologically catalyzed reactions that increase the solubility or bioavailability of minerals, thereby enabling their use in microbial metabolism.


Assuntos
Acidianus/metabolismo , Fontes Termais/microbiologia , Minerais/metabolismo , Acidianus/crescimento & desenvolvimento , Arsenicais/metabolismo , Metabolismo Energético , Ferro/metabolismo , Oxirredução , Sulfetos/metabolismo , Enxofre/metabolismo
4.
Microb Ecol ; 65(2): 336-46, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23052926

RESUMO

A novel thermoacidophilic archaeal strain has been isolated from three geothermal acidic hot springs in Copahue, Argentina. One of the most striking characteristic of ALE1 isolate is its metabolic versatility. It grows on sulphur, tetrathionate, iron (II) and sucrose under aerobic conditions, but it can also develop under anaerobic conditions using iron (III) or sulphur as electron acceptors and sulphur or hydrogen as electron donors autotrophically. A temperature of 75 °C and a pH between 2.5 and 3.0 are strain ALE1 optimal growth conditions, but it is able to oxidise iron (II) even at pH 1.0. Cells are irregular cocci surrounded by a regularly arrayed glycoprotein layer (S-layer). Phylogenetic analysis shows that strain ALE1 belongs to the family Sulfolobaceae in the class Thermoprotei, within the phylum Crenarchaeota. Based on 16S rRNA gene sequence similarity on NCBI database, ALE1 does not have closely related relatives, neither in culture nor uncultured, which is more surprising. Its closest related species are strains of Acidianus hospitalis (91 % of sequence similarity), Acidianus infernus (90 %), Acidianus ambivalens (90 %) and Acidianus manzanensis (90 %). Its DNA base composition of 34.5 % mol C + G is higher than that reported for other Acidianus species. Considering physiological and phylogenetic characteristics of strain ALE1, we considered it to represent a novel species of the genus Acidianus (candidatus "Acidianus copahuensis"). The aim of this study is to physiologically characterise this novel archaea in order to understand its role in iron and sulphur geochemical cycles in the Copahue geothermal area and to evaluate its potential applications in bioleaching and biooxidation.


Assuntos
Acidianus/crescimento & desenvolvimento , Acidianus/fisiologia , Fontes Termais/microbiologia , Filogenia , Acidianus/classificação , Acidianus/genética , Acidianus/isolamento & purificação , Aerobiose , Anaerobiose , Argentina , Composição de Bases , DNA Arqueal/genética , Ferro/metabolismo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Enxofre/metabolismo
5.
Curr Microbiol ; 53(5): 406-11, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17066338

RESUMO

A novel thermoacidophilic iron-reducing Archaeon, strain NA-1, was isolated from a hot fumarole in Manza, Japan. Strain NA-1 could grow autotrophically using H2 or S0 as an electron donor and Fe3+ as an electron acceptor, and also could grow heterotrophically using some organic compounds. Fe3+ and O2 served as electron acceptors for growth. However, S0, NO3-, NO2-, SO4(2-), Mn4+, fumarate, and Fe2O3 did not serve as electron acceptors. The ranges of growth temperature and pH were 60-90 degrees C (optimum: 80 degrees C) and pH 1.0-5.0 (optimum: pH 1.2-1.5), respectively. Cells were nearly regular cocci with an envelope comprised of the cytoplasmic membrane and a single outer S-layer. The crenarchaeal-specific quinone (cardariellaquinone) was detected, and the genomic DNA G + C content was 29.9 mol%. From 16S rDNA analysis, it was determined that strain NA-1 is closely related to Acidianus ambivalens (93.1%) and Acidianus infernus (93.0%). However, differences revealed by phylogenetic and phenotypic analyses clearly show that strain NA-1 represents a new species, Acidianus manzaensis, sp. nov., making it the first identified thermoacidophilic iron-reducing microorganism (strain NA-1T = NBRC 100595 = ATCC BAA 1057).


Assuntos
Acidianus/isolamento & purificação , Hidrogênio/metabolismo , Ferro/metabolismo , Acidianus/classificação , Acidianus/crescimento & desenvolvimento , Acidianus/metabolismo , Anaerobiose , Sequência de Bases , DNA Arqueal/análise , Microscopia Eletrônica , Dados de Sequência Molecular , Oxirredução , Filogenia
6.
Virology ; 315(1): 68-79, 2003 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-14592760

RESUMO

We describe a novel virus, AFV1, of the hyperthermophilic archaeal genus Acidianus. Filamentous virions are covered with a lipid envelope and contain at least five different proteins with molecular masses in the range of 23-130 kDa and a 20.8-kb-long linear double-stranded DNA. The virus has been assigned to the family Lipothrixviridae on the basis of morphotypic characteristics. Host range is confined to several strains of Acidianus and the virus persists in its hosts in a stable carrier state. The latent period of virus infection is about 4 h. Viral DNA was sequenced and sequence similarities were found to the lipothrixvirus SIFV, the rudiviruses SIRV1 and SIRV2, as well as to conjugative plasmids and chromosomes of the genus Sulfolobus. Exceptionally for the linear genomes of archaeal viruses, many short direct repeats, with the sequence TTGTT or close variants thereof, are closely clustered over 300 bp at each end of the genome. They are reminiscent of the telomeric ends of linear eukaryal chromosomes.


Assuntos
Acidianus/virologia , Temperatura Alta , Lipothrixviridae/classificação , Lipothrixviridae/isolamento & purificação , Acidianus/crescimento & desenvolvimento , Sequência de Bases , Genoma Viral , Lipothrixviridae/genética , Lipothrixviridae/ultraestrutura , Microscopia Eletrônica , Dados de Sequência Molecular , Fases de Leitura Aberta , Análise de Sequência de DNA , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...