Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(16)2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39201679

RESUMO

The G-protein-coupled estrogen receptor (GPER) has been described to exert several cardioprotective effects. However, the exact mechanism involved in cardiac protection remains unclear. The aim of this study is to investigate the role of GPER activation on excitation-contraction coupling (ECC) and the possibility that such effect participates in cardioprotection. The cardiac myocytes of male Wistar rats were isolated with a digestive buffer and loaded with Fura-2-AM for the measurement of intracellular calcium transient (CaT). Sarcomere shortening (SS) and L-type calcium current (ICaL) were also registered. The confocal technique was used to measure nitric oxide (NO) production in cells loaded with DAF-FM-diacetate. Cardiac myocytes exposed to 17-ß-estradiol (E2, 10 nM) or G-1 (1 µM) for fifteen minutes decreased CaT, SS, and ICaL. These effects were prevented using G-36 (antagonist of GPER, 1 µM), L-Name (NO synthase -NOS- inhibitor, 100 nM), or wortmannin (phosphoinositide-3-kinase -PI3K- inhibitor, 100 nM). Moreover, G1 increased NO production, and this effect was abolished in the presence of wortmannin. We concluded that the selective activation of GPER with E2 or G1 in the isolated cardiac myocytes of male rats induced a negative inotropic effect due to the reduction in ICaL and the decrease in CaT. Finally, the pathway that we proposed to be implicated in these effects is PI3K-NOS-NO.


Assuntos
Acoplamento Excitação-Contração , Miócitos Cardíacos , Óxido Nítrico , Fosfatidilinositol 3-Quinases , Receptores Acoplados a Proteínas G , Animais , Masculino , Ratos , Estradiol/farmacologia , Estradiol/metabolismo , Acoplamento Excitação-Contração/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ratos Wistar , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
Eur J Pharmacol ; 851: 88-98, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30771349

RESUMO

Pomolic acid (PA) isolated from Licania pittieri has hypotensive effects in rats, inhibits human platelet aggregation and elicits endothelium-dependent relaxation in rat aortic rings. The present study was designed to investigate the effects of PA on cardiomyocytes. Trabeculae and enzymatically isolated cardiomyocytes from rats were used to evaluate the concentration-dependent effects of PA on cardiac muscle tension and excitation-contraction coupling (ECC) by recording Ca2+ transients reported with Fluo-3 and Fura-2, as well as L-type Ca2+ currents (LTCC). PA reduced the contractile force in rat cardiac trabeculae with an EC50 = 14.3 ±â€¯2.4 µM. PA also reduced the amplitude of Ca2+ transients in a concentration-dependent manner, with an EC50 = 10.5 ±â€¯1.3 µM, without reducing sarcoplasmic reticulum (SR) Ca2+ loading. PA decreased the half width of the Ca2+ transient by 31.7 ±â€¯3.3% and increased the decay time and decay time constant (τ) by 7.6 ±â€¯2.7% and 75.6 ±â€¯3.7%, respectively, which was associated with increased phospholamban (PLN) phosphorylation. PA also reversibly reduced the macroscopic LTCC in the cardiomyocyte membrane, but did not demonstrate any effects on skeletal muscle ECC. In conclusion, PA reduces LTCC, Ca2+ transients and cardiomyocyte force, which along with its vasorelaxant effects explain its hypotensive properties. Increased PLN phosphorylation protected the SR from Ca2+ depletion. Considering the effects of PA on platelet aggregation and the cardiovascular system, we propose it as a new potential, multitarget cardiovascular agent with a demonstrated safety profile.


Assuntos
Acoplamento Excitação-Contração/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ácido Oleanólico/análogos & derivados , Animais , Canais de Cálcio Tipo L/metabolismo , Masculino , Miócitos Cardíacos/citologia , NG-Nitroarginina Metil Éster/farmacologia , Ácido Oleanólico/farmacologia , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-28966144

RESUMO

Matrinxã (Brycon amazonicus) is a great swimming performance teleost fish from the Amazon basin. However, the possible cardiac adaptations of this ability are still unknown. Therefore, the aim of the present work was to investigate the effects of prolonged exercise (EX group - 60days under 0.4BL·s-1) on ventricular contractility by (i) in-vitro analysis of contractility comparing the relative roles of sodium/calcium exchanger (NCX) and sarcoplasmic reticulum (SR) in the excitation-contraction (E-C) coupling and (ii) molecular analysis of NCX, sarcoplasmic reticulum Ca2+ ATPase (SERCA2) and phospholamban (PLB) expression and quantification. The exercise training significantly improved twitch tension, cardiac pumping capacity and the contraction rate when compared to controls (CT). Inhibition of the NCX function, replacing Na+ by Li+ in the physiological solutions, diminished cardiac contractility in the EX group, reduced all analyzed parameters under both high and low stimulation frequencies. The SR blockage, using 10µM ryanodine, caused ~50% tension reduction in CT at most analyzed frequencies while in EX, reductions (34-54%) were only found at higher frequencies. SR inhibition also decreased contraction and relaxation rates in both groups. Additionally, higher post-rest contraction values were recorded for EX, indicating an increase in SR Ca2+ loading. Higher NCX and PLB expression rates and lower SERCA2 rates were found in EX. Our data indicate that matrinxã presents a modulation in E-C coupling after exercise-training, enhancing the SR function under higher frequencies. This was the first study to functionally analyze the effects of swimming-induced exercise on fish cardiac E-C coupling.


Assuntos
Sinalização do Cálcio , Caraciformes/fisiologia , Acoplamento Excitação-Contração , Regulação da Expressão Gênica no Desenvolvimento , Coração/fisiologia , Miocárdio/metabolismo , Condicionamento Físico Animal , Animais , Aquicultura , Brasil , Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Caraciformes/crescimento & desenvolvimento , Acoplamento Excitação-Contração/efeitos dos fármacos , Tolerância ao Exercício , Proteínas de Peixes/antagonistas & inibidores , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Coração/efeitos dos fármacos , Coração/crescimento & desenvolvimento , Miocárdio/enzimologia , Tamanho do Órgão , Distribuição Aleatória , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/enzimologia , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Trocador de Sódio e Cálcio/antagonistas & inibidores , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismo , Natação , Movimentos da Água
4.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;47(4): 328-333, 8/4/2014. graf
Artigo em Inglês | LILACS | ID: lil-705768

RESUMO

In cardiac and skeletal muscle, eugenol (μM range) blocks excitation-contraction coupling. In skeletal muscle, however, larger doses of eugenol (mM range) induce calcium release from the sarcoplasmic reticulum. The effects of eugenol are therefore dependent on its concentration. In this study, we evaluated the effects of eugenol on the contractility of isolated, quiescent atrial trabeculae from male Wistar rats (250-300 g; n=131) and measured atrial ATP content. Eugenol (1, 3, 5, 7, and 10 mM) increased resting tension in a dose-dependent manner. Ryanodine [100 µM; a specific ryanodine receptor (RyR) blocker] and procaine (30 mM; a nonspecific RyR blocker) did not block the increased resting tension induced by eugenol regardless of whether extracellular calcium was present. The myosin-specific inhibitor 2,3-butanedione monoxime (BDM), however, reversed the increase in resting tension induced by eugenol. In Triton-skinned atrial trabeculae, in which all membranes were solubilized, eugenol did not change resting tension, maximum force produced, or the force vs pCa relationship (pCa=-log [Ca2+]). Given that eugenol reduced ATP concentration, the increase in resting tension observed in this study may have resulted from cooperative activation of cardiac thin filaments by strongly attached cross-bridges (rigor state).


Assuntos
Animais , Masculino , Cálcio/fisiologia , Eugenol/farmacologia , Acoplamento Excitação-Contração/efeitos dos fármacos , Átrios do Coração/efeitos dos fármacos , Força Muscular/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Trifosfato de Adenosina/análise , Anestésicos Locais/farmacologia , Eugenol/administração & dosagem , Técnicas In Vitro , Luciferases , Músculo Esquelético/efeitos dos fármacos , Procaína/farmacologia , Ratos Wistar , Rianodina/farmacologia
5.
Braz J Med Biol Res ; 47(4): 328-33, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24676474

RESUMO

In cardiac and skeletal muscle, eugenol (µM range) blocks excitation-contraction coupling. In skeletal muscle, however, larger doses of eugenol (mM range) induce calcium release from the sarcoplasmic reticulum. The effects of eugenol are therefore dependent on its concentration. In this study, we evaluated the effects of eugenol on the contractility of isolated, quiescent atrial trabeculae from male Wistar rats (250-300 g; n=131) and measured atrial ATP content. Eugenol (1, 3, 5, 7, and 10 mM) increased resting tension in a dose-dependent manner. Ryanodine [100 µM; a specific ryanodine receptor (RyR) blocker] and procaine (30 mM; a nonspecific RyR blocker) did not block the increased resting tension induced by eugenol regardless of whether extracellular calcium was present. The myosin-specific inhibitor 2,3-butanedione monoxime (BDM), however, reversed the increase in resting tension induced by eugenol. In Triton-skinned atrial trabeculae, in which all membranes were solubilized, eugenol did not change resting tension, maximum force produced, or the force vs pCa relationship (pCa=-log [Ca2+]). Given that eugenol reduced ATP concentration, the increase in resting tension observed in this study may have resulted from cooperative activation of cardiac thin filaments by strongly attached cross-bridges (rigor state).


Assuntos
Cálcio/fisiologia , Eugenol/farmacologia , Acoplamento Excitação-Contração/efeitos dos fármacos , Átrios do Coração/efeitos dos fármacos , Força Muscular/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Trifosfato de Adenosina/análise , Anestésicos Locais/farmacologia , Animais , Eugenol/administração & dosagem , Técnicas In Vitro , Luciferases , Masculino , Músculo Esquelético/efeitos dos fármacos , Procaína/farmacologia , Ratos Wistar , Rianodina/farmacologia
6.
J Muscle Res Cell Motil ; 31(2): 127-39, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20596763

RESUMO

Two drugs, 2-APB and SKF-96365, commonly used to block Store Operated Ca(2+) Entry (SOCE) were found to have inhibitory effects at different levels of the Excitation Contraction Coupling (ECC) process in frog skeletal muscle fibers. Treatment with either drug suppressed Ca(2+) release from the Sarcoplasmic Reticulum, but this effect was not due to inhibition of SOCE as it occurred in Ca(2+)-free conditions. 2-APB applied extracellularly at 100 microM, the usual concentration to suppress SOCE, reversibly reduced the charge movement elicited by pulses in the range between -45 and -35 mV from 7.99 +/- 0.73 nC/microF (N = 17) before drug application to 6.27 +/- 0.68 nC/microF in the presence of 2-APB. This effect was mostly on the delayed Q(gamma) component. In fibers treated with the SERCA ATPase inhibitor CPA the Q(gamma) component disappeared, under this condition the application of 2-APB did not suppress the remaining charge movement. Thus the effect of 2-APB on charge movement currents seemed to be secondary to the suppression of Ca(2+) release, likely occurring directly on the release channels. No significant suppression of ECC was observed for concentration below 20 muM. 2-APB also inhibited the L-type Ca(2+) current (20 +/- 4%, N = 8). On the other hand SKF-96365 had a direct effect on the voltage sensor promoting its voltage dependent inactivation. Applied at 20 muM, a typical concentration used for inhibiting SOCE, to fibers held at -80 mV inhibited the charge moved in response to pulses ranging -45 to -30 mV from 7.95 +/- 2.59 nC/microF to 3.48 +/- 0.9 nC/microF (N = 12). A parallel reduction of Ca(2+) release was observed. Wash out was drastically increased by hyperpolarization of the holding potential to -100 mV. SKF-96365 also inhibited the L-type Ca(2+) current (41 +/- 8%, N = 4) and increased its rate of inactivation.


Assuntos
Compostos de Boro/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Acoplamento Excitação-Contração/efeitos dos fármacos , Imidazóis/farmacologia , Músculo Esquelético/fisiologia , Animais , Cálcio/metabolismo , Canais de Cálcio/fisiologia , Músculo Esquelético/efeitos dos fármacos , Ranidae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA