Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
2.
PLoS Genet ; 18(2): e1010019, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35120121

RESUMO

Accurate prediction of vectors dispersal, as well as identification of adaptations that allow blood-feeding vectors to thrive in built environments, are a basis for effective disease control. Here we adopted a landscape genomics approach to assay gene flow, possible local adaptation, and drivers of population structure in Rhodnius ecuadoriensis, an important vector of Chagas disease. We used a reduced-representation sequencing technique (2b-RADseq) to obtain 2,552 SNP markers across 272 R. ecuadoriensis samples from 25 collection sites in southern Ecuador. Evidence of high and directional gene flow between seven wild and domestic population pairs across our study site indicates insecticide-based control will be hindered by repeated re-infestation of houses from the forest. Preliminary genome scans across multiple population pairs revealed shared outlier loci potentially consistent with local adaptation to the domestic setting, which we mapped to genes involved with embryogenesis and saliva production. Landscape genomic models showed elevation is a key barrier to R. ecuadoriensis dispersal. Together our results shed early light on the genomic adaptation in triatomine vectors and facilitate vector control by predicting that spatially-targeted, proactive interventions would be more efficacious than current, reactive approaches.


Assuntos
Doença de Chagas/epidemiologia , Doença de Chagas/genética , Rhodnius/genética , Adaptação Biológica/genética , Animais , Vetores de Doenças , Ecossistema , Equador/epidemiologia , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Fluxo Gênico , Insetos Vetores/genética , Metagenômica/métodos , Polimorfismo de Nucleotídeo Único/genética , Densidade Demográfica , Rhodnius/patogenicidade , Transcriptoma/genética , Trypanosoma cruzi/genética
3.
Arq. bras. med. vet. zootec. (Online) ; 74(1): 176-184, Jan.-Feb. 2022. tab, ilus
Artigo em Inglês | VETINDEX | ID: biblio-1374395

RESUMO

Tibetan pigs are characterized by significant phenotypic differences relative to lowland pigs. Our previous study demonstrated that the genes CRYAB and CTGF were differentially expressed in heart tissues between Tibetan (highland breed) and Yorkshire (lowland breed) pigs, indicating that they might participate in hypoxia adaptation. CRYAB (ɑB-crystallin) and CTGF (connective tissue growth factor) have also been reported to be associated with lung development. However, the expression patterns of CRYAB and CTGF in lung tissues at different altitudes and their genetic characterization are not well understood. In this study, qRT-PCR and western blot of lung tissue revealed higher CRYAB expression levels in highland and middle-highland Tibetan and Yorkshire pigs than in their lowland counterparts. With an increase in altitude, the expression level of CTGF increased in Tibetan pigs, whereas it decreased in Yorkshire pigs. Furthermore, two novel single-nucleotide polymorphism were identified in the 5' flanking region of CRYAB (g.39644482C>T and g.39644132T>C) and CTGF (g.31671748A>G and g.31671773T>G). The polymorphism may partially contribute to the differences in expression levels between groups at the same altitude. These findings provide novel insights into the high-altitude hypoxia adaptations of Tibetan pigs.


Porcos tibetanos são caracterizados por diferenças fenotípicas significativas em relação aos porcos de planície. Nosso estudo anterior demonstrou que os genes CRYAB e CTGF eram expressos diferentemente nos tecidos do coração entre os porcos tibetanos (raça das terras altas) e Yorkshire (raça das terras baixas), indicando que eles poderiam participar da adaptação à hipoxia. CRYAB (ɑB-crystallin) e CTGF (fator de crescimento do tecido conjuntivo) também foram relatados como estando associados ao desenvolvimento pulmonar. Entretanto, os padrões de expressão do CRYAB e CTGF nos tecidos pulmonares em diferentes altitudes e sua caracterização genética não são bem compreendidos. Neste estudo, o qRT-PCR e a mancha ocidental de tecido pulmonar revelou níveis de expressão de CRYAB mais elevados em porcos tibetanos e Yorkshire de altitude e média altitude do que em seus pares de planície. Com um aumento na altitude, o nível de expressão do CTGF aumentou nos porcos tibetanos, enquanto diminuiu nos porcos Yorkshire. Além disso, foram identificados dois novos polimorfismos de um único nucleotídeo na região flanqueadora de CRYAB (g.39644482C>T e g.39644132T>C) e CTGF (g.31671748A>G e g.31671773T>G). O polimorfismo pode contribuir parcialmente com as diferenças nos níveis de expressão entre grupos a uma mesma altitude. Estas descobertas proporcionam novos conhecimentos sobre as adaptações de hipoxia a alta altitude dos porcos tibetanos.


Assuntos
Animais , Polimorfismo Genético , Adaptação Biológica/genética , Expressão Gênica , Sus scrofa , Doença da Altitude/veterinária , Hipóxia/veterinária , Tibet
4.
Sci. agric ; 79(6): e20210082, 2022. tab, graf
Artigo em Inglês | VETINDEX | ID: biblio-1347912

RESUMO

The average yield of sweet potato (Ipomoea batatas (L.) Lam.) in Brazil is below the crop potential, and appropriate cultural practices and more productive cultivars are needed to improve crop yield. The Beauregard sweet potato cultivar, originally from the United States, has shown high productive potential. This study evaluated the performance of features of agronomic importance of the Beauregard cultivar in comparison to local cultivars and eight sweet-potato clones in Brazilian regions. For that purpose, two sets of experiments were carried out. The first set evaluated eight sweet potato clones and cultivars Beauregard, Olho Roxo and Ourinhos in Brasília-DF and Itabaiana-SE using as criteria two foliage and six root traits. In the second set, two sweet potato clones (9 and 75), and Beauregard, Brazlândia Branca and Canadense cultivars were evaluated in Piacatú-SP, Brasília-DF, PAD-DF, Canoinhas-SC and Altamira-PA, for the traits: commercial, non-commercial, and total yield. Beauregard presented little foliage production but great root yield across the different environments. Since it has low dry matter content, acceptance of this cultivar may be limited in some regions. None of the sweet potato clones showed stable yield to justify a commercial launch.


Assuntos
Adaptação Biológica/genética , Ipomoea batatas/crescimento & desenvolvimento , Ipomoea batatas/genética
5.
Infect Genet Evol ; 90: 104771, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33592318

RESUMO

Salmonella enterica is a pathogenic bacterium responsible for intestinal illness and systemic diseases such as typhoid and paratyphoid fevers. Among clinical manifestation classification, non-typhoidal Salmonella is mainly known as foodborne pathogen associated with the consumption of fecal contaminated food and water. Even though Salmonella hosts include humans and warm-blooded animals, it has been found in non-host environments as river water where the bacteria use different strategies to fitness the environment persisting and establishment. Now with the availability of WGS and bioinformatics tools, we can explore bacterial genomes with higher resolution to increase our understanding of specific genetic signatures among environmental and clinical isolates, being the goal of this work. Pangenome construction allowed the detection of specific environmental and clinical gene clusters related to metabolism and secretion systems as the main signature respectively. Specifically, D-galactonate degradation pathway was observed mainly in environmental genomes while T3SS and flagellum genes were detected for all clinical but not for all environmental isolates. Gene duplication and pseudogenes accumulation were detected as the main adaptation strategy for environmental isolates; thus, isolation source may play an important role in genome plasticity, conferring a selective advantage to survive and persist for environmental Salmonella isolates. Intact prophage sequences with cargo genes were observable for both isolation sources playing an important role in virulence contribution.


Assuntos
Adaptação Biológica/genética , Biologia Computacional , Genes Bacterianos , Genoma Bacteriano , Família Multigênica , Salmonella enterica/genética , Sequenciamento Completo do Genoma
6.
Commun Biol ; 4(1): 160, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547394

RESUMO

Extant conifer species may be susceptible to rapid environmental change owing to their long generation times, but could also be resilient due to high levels of standing genetic diversity. Hybridisation between closely related species can increase genetic diversity and generate novel allelic combinations capable of fuelling adaptive evolution. Our study unravelled the genetic architecture of adaptive evolution in a conifer hybrid zone formed between Pinus strobiformis and P. flexilis. Using a multifaceted approach emphasising the spatial and environmental patterns of linkage disequilibrium and ancestry enrichment, we identified recently introgressed and background genetic variants to be driving adaptive evolution along different environmental gradients. Specifically, recently introgressed variants from P. flexilis were favoured along freeze-related environmental gradients, while background variants were favoured along water availability-related gradients. We posit that such mosaics of allelic variants within conifer hybrid zones will confer upon them greater resilience to ongoing and future environmental change and can be a key resource for conservation efforts.


Assuntos
Adaptação Biológica/genética , Introgressão Genética/fisiologia , Especiação Genética , Traqueófitas/genética , Alelos , Arizona , Evolução Biológica , Variação Genética/fisiologia , Geografia , Hibridização Genética/fisiologia , México , Mosaicismo , Pinus/genética , Polimorfismo de Nucleotídeo Único , Traqueófitas/classificação
7.
Mol Biol Evol ; 38(5): 2076-2087, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33481002

RESUMO

Rhodopsin, the light-sensitive visual pigment expressed in rod photoreceptors, is specialized for vision in dim-light environments. Aquatic environments are particularly challenging for vision due to the spectrally dependent attenuation of light, which can differ greatly in marine and freshwater systems. Among fish lineages that have successfully colonized freshwater habitats from ancestrally marine environments, croakers are known as highly visual benthic predators. In this study, we isolate rhodopsins from a diversity of freshwater and marine croakers and find that strong positive selection in rhodopsin is associated with a marine to freshwater transition in South American croakers. In order to determine if this is accompanied by significant shifts in visual abilities, we resurrected ancestral rhodopsin sequences and tested the experimental properties of ancestral pigments bracketing this transition using in vitro spectroscopic assays. We found the ancestral freshwater croaker rhodopsin is redshifted relative to its marine ancestor, with mutations that recapitulate ancestral amino acid changes along this transitional branch resulting in faster kinetics that are likely to be associated with more rapid dark adaptation. This could be advantageous in freshwater due to the redshifted spectrum and relatively narrow interface and frequent transitions between bright and dim-light environments. This study is the first to experimentally demonstrate that positively selected substitutions in ancestral visual pigments alter protein function to freshwater visual environments following a transition from an ancestrally marine state and provides insight into the molecular mechanisms underlying some of the physiological changes associated with this major habitat transition.


Assuntos
Adaptação Biológica/genética , Perciformes/genética , Rodopsina/genética , Seleção Genética , Visão Ocular/genética , Animais , Água Doce , Perciformes/metabolismo , Rodopsina/metabolismo , América do Sul
8.
Genes (Basel) ; 12(2)2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33514061

RESUMO

Here, we present the draft genome sequence of Pseudomonas sp. GC01, a cadmium-resistant Antarctic bacterium capable of biosynthesizing CdS fluorescent nanoparticles (quantum dots, QDs) employing a unique mechanism involving the production of methanethiol (MeSH) from methionine (Met). To explore the molecular/metabolic components involved in QDs biosynthesis, we conducted a comparative genomic analysis, searching for the genes related to cadmium resistance and sulfur metabolic pathways. The genome of Pseudomonas sp. GC01 has a 4,706,645 bp size with a 58.61% G+C content. Pseudomonas sp. GC01 possesses five genes related to cadmium transport/resistance, with three P-type ATPases (cadA, zntA, and pbrA) involved in Cd-secretion that could contribute to the extracellular biosynthesis of CdS QDs. Furthermore, it exhibits genes involved in sulfate assimilation, cysteine/methionine synthesis, and volatile sulfur compounds catabolic pathways. Regarding MeSH production from Met, Pseudomonas sp. GC01 lacks the genes E4.4.1.11 and megL for MeSH generation. Interestingly, despite the absence of these genes, Pseudomonas sp. GC01 produces high levels of MeSH. This is probably associated with the metC gene that also produces MeSH from Met in bacteria. This work is the first report of the potential genes involved in Cd resistance, sulfur metabolism, and the process of MeSH-dependent CdS QDs bioproduction in Pseudomonas spp. strains.


Assuntos
Genoma Bacteriano , Genômica , Pseudomonas/genética , Pseudomonas/metabolismo , Adaptação Biológica/genética , Cádmio/metabolismo , Cádmio/toxicidade , Compostos de Cádmio/química , Biologia Computacional/métodos , Genômica/métodos , Redes e Vias Metabólicas , Metionina/metabolismo , Modelos Biológicos , Nanopartículas , Filogenia , Pseudomonas/classificação , Sulfetos/química
9.
Evolution ; 74(12): 2629-2643, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32935854

RESUMO

Because most species are collections of genetically variable populations distributed to habitats differing in their abiotic/biotic environmental factors and community composition, the pattern and strength of natural selection imposed by species on each other's traits are also expected to be highly spatially variable. Here, we used genomic and quantitative genetic approaches to understand how spatially variable selection operates on the genetic basis of plant defenses to herbivores. To this end, an F2 progeny was generated by crossing Datura stramonium (Solanaceae) parents from two populations differing in their level of chemical defense. This F2 progeny was reciprocally transplanted into the parental plants' habitats and by measuring the identity by descent (IBD) relationship of each F2 plant to each parent, we were able to elucidate how spatially variable selection imposed by herbivores operated on the genetic background (IBD) of resistance to herbivory, promoting local adaptation. The results highlight that plants possessing the highest total alkaloid concentrations (sum of all alkaloid classes) were not the most well-defended or fit. Instead, specific alkaloids and their linked loci/alleles were favored by selection imposed by different herbivores. This has led to population differentiation in plant defenses and thus, to local adaptation driven by plant-herbivore interactions.


Assuntos
Adaptação Biológica/genética , Alcaloides/farmacologia , Datura stramonium/genética , Herbivoria/efeitos dos fármacos , Defesa das Plantas contra Herbivoria/genética , Alcaloides/análise , Alcaloides/genética , Animais , Besouros , Datura stramonium/química , Ecossistema , Aptidão Genética , México , Seleção Genética
10.
BMC Res Notes ; 13(1): 398, 2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32854762

RESUMO

OBJECTIVE: In December 2019 a novel coronavirus (SARS-CoV-2) that is causing the current COVID-19 pandemic was identified in Wuhan, China. Many questions have been raised about its origin and adaptation to humans. In the present work we performed a genetic analysis of the Spike glycoprotein (S) of SARS-CoV-2 and other related coronaviruses (CoVs) isolated from different hosts in order to trace the evolutionary history of this protein and the adaptation of SARS-CoV-2 to humans. RESULTS: Based on the sequence analysis of the S gene, we suggest that the origin of SARS-CoV-2 is the result of recombination events between bat and pangolin CoVs. The hybrid SARS-CoV-2 ancestor jumped to humans and has been maintained by natural selection. Although the S protein of RaTG13 bat CoV has a high nucleotide identity with the S protein of SARS-CoV-2, the phylogenetic tree and the haplotype network suggest a non-direct parental relationship between these CoVs. Moreover, it is likely that the basic function of the receptor-binding domain (RBD) of S protein was acquired by the SARS-CoV-2 from the MP789 pangolin CoV by recombination and it has been highly conserved.


Assuntos
Betacoronavirus/genética , Coronaviridae/genética , Recombinação Genética , Glicoproteína da Espícula de Coronavírus/genética , Adaptação Biológica/genética , Enzima de Conversão de Angiotensina 2 , Animais , Sítios de Ligação/genética , Quirópteros/virologia , Eutérios/virologia , Evolução Molecular , Furina/metabolismo , Especificidade de Hospedeiro , Humanos , Peptidil Dipeptidase A/metabolismo , Filogenia , SARS-CoV-2 , Seleção Genética , Glicoproteína da Espícula de Coronavírus/metabolismo
11.
Genome Biol Evol ; 12(8): 1459-1470, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32614437

RESUMO

Detection of positive selection signatures in populations around the world is helping to uncover recent human evolutionary history as well as the genetic basis of diseases. Most human evolutionary genomic studies have been performed in European, African, and Asian populations. However, populations with Native American ancestry have been largely underrepresented. Here, we used a genome-wide local ancestry enrichment approach complemented with neutral simulations to identify postadmixture adaptations underwent by admixed Chileans through gene flow from Europeans into local Native Americans. The top significant hits (P = 2.4×10-7) are variants in a region on chromosome 12 comprising multiple regulatory elements. This region includes rs12821256, which regulates the expression of KITLG, a well-known gene involved in lighter hair and skin pigmentation in Europeans as well as in thermogenesis. Another variant from that region is associated with the long noncoding RNA RP11-13A1.1, which has been specifically involved in the innate immune response against infectious pathogens. Our results suggest that these genes were relevant for adaptation in Chileans following the Columbian exchange.


Assuntos
Adaptação Biológica/genética , Cromossomos Humanos Par 12 , Genoma Humano , Pigmentação/genética , Seleção Genética , Chile , Feminino , Fluxo Gênico , Haplótipos , Humanos , Hibridização Genética , Indígenas Sul-Americanos/genética , Masculino , Termogênese/genética , População Branca/genética
12.
Mol Ecol ; 29(12): 2218-2233, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32428327

RESUMO

Elucidating demographic history during the settlement of ecological communities is crucial for properly inferring the mechanisms that shape patterns of species diversity and their persistence through time. Here, we used genomic data and coalescent-based approaches to elucidate for the first time the demographic dynamics associated with the settlement by endemic reef fish fauna of one of the most remote peripheral islands of the Pacific Ocean, Rapa Nui (Easter Island). We compared the demographic history of nine endemic species in order to explore their demographic responses to Pleistocene climatic fluctuations. We found that species endemic to Rapa Nui share a common demographic history, as signatures of population expansions were retrieved for almost all of the species studied here, and synchronous demographic expansions initiated during the last glacial period were recovered for more than half of the studied species. These results suggest that eustatic fluctuations associated with Milankovitch cycles have played a central role in species demographic histories and in the final stage of the community assembly of many Rapa Nui reef fishes. Specifically, sea level lowstands resulted in the maximum reef habitat extension for Rapa Nui endemic species; we discuss the potential role of seamounts in allowing endemic species to cope with Pleistocene climatic fluctuations, and we highlight the importance of local historical processes over regional ones. Overall, our results shed light on the mechanisms by which endemism arises and is maintained in peripheral reef fish fauna.


Assuntos
Adaptação Biológica/genética , Evolução Biológica , Mudança Climática , Peixes , Animais , Recifes de Corais , Peixes/classificação , Peixes/genética , Ilhas , Oceano Pacífico , Polinésia
13.
Microbiol Res ; 236: 126451, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32146294

RESUMO

Burkholderia species have different lifestyles establishing mutualist or pathogenic associations with plants and animals. Changes in the ecological behavior of these bacteria may depend on genetic variations in response to niche adaptation. Here, we studied 15 Burkholderia strains isolated from different environments with respect to genetic and phenotypic traits. By Multilocus Sequence Analysis (MLSA) these isolates fell into 6 distinct groups. MLSA clusters did not correlate with strain antibiotic sensitivity, but with the bacterial ability to produce antimicrobial compounds and control orchid necrosis. Further, the B. seminalis strain TC3.4.2R3, a mutualistic bacterium, was inoculated into orchid plants and the interaction with the host was evaluated by analyzing the plant response and the bacterial oxidative stress response in planta. TC3.4.2R3 responded to plant colonization by increasing its own growth rate and by differential gene regulation upon oxidative stress caused by the plant, while reducing the plant's membrane lipid peroxidation. The bacterial responses to oxidative stress were recapitulated by bacterial exposure to the herbicide paraquat. We suggest that the ability of Burkholderia species to successfully establish in the rhizosphere correlates with genetic variation, whereas traits associated with antibiotic resistance are more likely to be categorized as strain specific.


Assuntos
Adaptação Biológica/genética , Infecções por Burkholderia , Burkholderia , Interações entre Hospedeiro e Microrganismos , Orchidaceae/microbiologia , Aclimatação/genética , Anti-Infecciosos/farmacologia , Agentes de Controle Biológico/farmacologia , Burkholderia/genética , Burkholderia/crescimento & desenvolvimento , Burkholderia/isolamento & purificação , Burkholderia/metabolismo , Resistência Microbiana a Medicamentos/genética , Endófitos/genética , Endófitos/crescimento & desenvolvimento , Endófitos/isolamento & purificação , Endófitos/metabolismo , Genes Bacterianos , Ilhas Genômicas , Genótipo , Peroxidação de Lipídeos , Tipagem de Sequências Multilocus , Orchidaceae/fisiologia , Estresse Oxidativo/genética , Fenótipo , Filogenia , Doenças das Plantas/microbiologia , Doenças das Plantas/terapia , RNA Ribossômico 16S/genética , Simbiose , Transcriptoma
14.
Mol Biol Evol ; 37(4): 994-1006, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31848607

RESUMO

Native American genetic variation remains underrepresented in most catalogs of human genome sequencing data. Previous genotyping efforts have revealed that Mexico's Indigenous population is highly differentiated and substructured, thus potentially harboring higher proportions of private genetic variants of functional and biomedical relevance. Here we have targeted the coding fraction of the genome and characterized its full site frequency spectrum by sequencing 76 exomes from five Indigenous populations across Mexico. Using diffusion approximations, we modeled the demographic history of Indigenous populations from Mexico with northern and southern ethnic groups splitting 7.2 KYA and subsequently diverging locally 6.5 and 5.7 KYA, respectively. Selection scans for positive selection revealed BCL2L13 and KBTBD8 genes as potential candidates for adaptive evolution in Rarámuris and Triquis, respectively. BCL2L13 is highly expressed in skeletal muscle and could be related to physical endurance, a well-known phenotype of the northern Mexico Rarámuri. The KBTBD8 gene has been associated with idiopathic short stature and we found it to be highly differentiated in Triqui, a southern Indigenous group from Oaxaca whose height is extremely low compared to other Native populations.


Assuntos
Adaptação Biológica/genética , Indígena Americano ou Nativo do Alasca/genética , Evolução Molecular , Variação Genética , Exoma , Humanos , México , Filogeografia
15.
Sci Rep ; 9(1): 19936, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882752

RESUMO

Local adaptation is often a product of environmental variations in geographical space and has implications for biodiversity conservation. We investigated the role of latitudinal heterogeneity in climate on the organization of genetic and phenotypic variation in the dominant coastal tree Avicennia schaueriana. In a common garden experiment, samples from an equatorial region, with pronounced seasonality in precipitation, accumulated less biomass, and showed lower stomatal conductance and transpiration, narrower xylem vessels, smaller leaves and higher reflectance of long wavelengths by the stem epidermis than samples from a subtropical region, with seasonality in temperature and no dry season. Transcriptomic differences identified between trees sampled under field conditions at equatorial and subtropical sites, were enriched in functional categories such as responses to temperature, solar radiation, water deficit, photosynthesis and cell wall biosynthesis. Remarkably, the diversity based on genome-wide SNPs revealed a north-south genetic structure and signatures of selection were identified for loci associated with photosynthesis, anthocyanin accumulation and the responses to osmotic and hypoxia stresses. Our results suggest the existence of divergence in key resource-use characteristics, likely driven by seasonality in water deficit and solar radiation. These findings provide a basis for conservation plans and for predicting coastal plants responses to climate change.


Assuntos
Adaptação Biológica/genética , Adaptação Fisiológica/genética , Árvores/genética , Árvores/fisiologia , Aclimatação , Adaptação Fisiológica/fisiologia , Biodiversidade , Mudança Climática , Ecossistema , Água Doce , Fotossíntese , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Transpiração Vegetal/fisiologia , Estações do Ano , Energia Solar , Temperatura , Água , Xilema/fisiologia
16.
Genes (Basel) ; 10(5)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31096658

RESUMO

Carnivorous piranhas are distributed in four serrasalmid genera including Pygocentrus, which inhabit major river basins of South America. While P. cariba and P. piraya are endemics of the Orinoco and São Francisco basins, respectively, P. nattereri is widely distributed across the Amazonas, Essequibo, lower Paraná, Paraguay, and coastal rivers of northeastern Brazil, with recent records of introductions in Asia. Few studies have focused on the genetic diversity and systematics of Pygocentrus and the putative presence of additional species within P. nattereri has never been the subject of a detailed molecular study. Here we aimed to delimit species of Pygocentrus, test the phylogeographic structure of P. nattereri, and access the origin of introduced specimens of P. nattereri in Asia. Phylogenetic analyses based on a mitochondrial dataset involving maximum-likelihood tree reconstruction, genetic distances, Bayesian analysis, three delimitation approaches, and haplotype analysis corroborate the morphological hypothesis of the occurrence of three species of Pygocentrus. However, we provide here strong evidence that P. nattereri contains at least five phylogeographically-structured lineages in the Amazonas, Guaporé (type locality), Itapecuru, Paraná/Paraguay, and Tocantins/Araguaia river basins. We finally found that the introduced specimens in Asia consistently descend from the lineage of P. nattereri from the main Rio Amazonas. These results contribute to future research aimed to detect morphological variation that may occur in those genetic lineages of Pygocentrus.


Assuntos
Caraciformes/classificação , Caraciformes/genética , Adaptação Biológica/genética , Animais , Ásia , Teorema de Bayes , Evolução Biológica , Brasil , Evolução Molecular , Haplótipos/genética , Filogenia , Filogeografia/métodos
17.
Dev Dyn ; 248(2): 153-161, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30450697

RESUMO

A small fresh water fish, the Mexican tetra (Astyanax mexicanus) is a novel animal model in evolutionary developmental biology. The existence of morphologically distinct surface and cave morphs of this species allows simultaneous comparative analysis of phenotypic changes at different life stages. The cavefish harbors many favorable constructive traits (i.e., large jaws with an increased number of teeth, neuromast cells, enlarged olfactory pits and excess storage of adipose tissues) and regressive traits (i.e., reduced eye structures and pigmentation) which are essential for cave adaptation. A wide spectrum of natural craniofacial morphologies can be observed among the different cave populations. Recently, the Mexican tetra has been identified as a human disease model. The fully sequenced genome along with modern genome editing tools has allowed researchers to generate transgenic and targeted gene knockouts with phenotypes that resemble human pathological conditions. This review will discuss the anatomy of the craniofacial skeleton of A. mexicanus with a focus on morphologically variable facial bones, jaws that house continuously replacing teeth and pharyngeal skeleton. Furthermore, the possible applications of this model animal in identifying human congenital and metabolic skeletal disorders is addressed. Developmental Dynamics 248:153-161, 2019. © 2018 Wiley Periodicals, Inc.


Assuntos
Doenças Ósseas , Osso e Ossos/anatomia & histologia , Characidae/anatomia & histologia , Modelos Animais de Doenças , Adaptação Biológica/genética , Animais , Cavernas , Characidae/genética , Peixes , Humanos , Esqueleto/anatomia & histologia , Crânio/anatomia & histologia , Dente
18.
Anim Genet ; 50(1): 15-26, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30565712

RESUMO

Enhancing climate resilience and sustainable production for animals in harsh environments are important goals for the livestock industry given the predicted impacts of climate change. Rapid adaptation to extreme climatic conditions has already been imposed on livestock species, including those exported after Columbus's arrival in the Americas. We compared the methylomes of two Creole cattle breeds living in tropical environments with their putative Spanish ancestors to understand the epigenetic mechanisms underlying rapid adaptation of a domestic species to a new and more physiologically challenging environment. Reduced representation bisulfite sequencing was used to assess differences in methylation in Creole and Spanish samples and revealed 334 differentially methylated regions using high stringency parameters (P-value <0.01, ≥4 CpGs within a distance of 200 bp, mean methylation difference >25%) annotated to 263 unique features. Gene ontology analysis revealed candidate genes involved in tropical adaptation processes, including genes differentially hyper- or hypomethylated above 80% in Creole samples displaying biological functions related to immune response (IRF6, PTGDR, FAM19A5, PGLYRP1), nervous system (GBX2, NKX2-8, RPGR), energy management (BTD), heat resistance (CYB561) and skin and coat attributes (LGR6). Our results entail that major environmental changes imposed on Creole cattle have had an impact on their methylomes measurable today, which affects genes implicated in important pathways for adaptation. Although further work is needed, this first characterization of methylation patterns driven by profound environmental change provides a valuable pointer for the identification of biomarkers of resilience for improved cattle performance and welfare under predicted climatic change models.


Assuntos
Adaptação Biológica/genética , Bovinos/genética , Metilação de DNA , Clima Tropical , Animais , Cruzamento , Colômbia , Ilhas de CpG , Genoma , Espanha
19.
PLoS One ; 13(11): e0208013, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30496246

RESUMO

Chronic lung infection by Pseudomonas aeruginosa is the leading cause of morbidity and mortality in cystic fibrosis (CF) patients. This is associated with the conversion of the non-mucoid to the mucoid phenotype. However, there is little information about the occurrence of alginate-producing P. aeruginosa in CF patients outside Europe and North America. The aim of the present study was to investigate mutations in the algTmucABD operon in mucoid and non-mucoid isolates from Brazilian CF patients. Twenty-seven mucoid and 37 non-mucoid isolates from 40 CF patients chronically infected by P. aeruginosa attending a CF reference center in Brazil were evaluated by sequence analysis. Mutations in mucA were observed in 93% of the mucoid isolates and 54% of the non-mucoid isolates. Among these non-mucoid isolates, 55% were considered revertants, since they also had mutations in algT (algU). Most isolates associated with moderate alginate production presented point mutations in mucB and/or mucD. We identified 30 mutations not previously described in the operon. In conclusion, mutations in mucA were the main mechanism of conversion to mucoidy, and most of the non-mucoid isolates were revertants, but the mechanism of revertance is not fully explained by changes in algT.


Assuntos
Fibrose Cística/microbiologia , Infecções por Pseudomonas/genética , Pseudomonas aeruginosa/genética , Aclimatação , Adaptação Biológica/genética , Adolescente , Adulto , Alginatos , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Brasil , Criança , Pré-Escolar , Fibrose Cística/genética , Feminino , Regulação Bacteriana da Expressão Gênica/genética , Humanos , Lactente , Masculino , Mutação , Óperon/genética , Fenótipo , Serina Endopeptidases/genética , Fator sigma/genética
20.
Mech Dev ; 154: 82-90, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29800619

RESUMO

Tp53 is a central regulator of cellular responses to stress and one of the most frequently mutated genes in human cancers. P53 is activated by a myriad of stress signals and drives specific cellular responses depending on stress nature, cell type and cellular context. Additionally to its classical functions in regulating cell cycle arrest, apoptosis and senescence, newly described non-canonical functions of p53 are increasingly coming under the spotlight as important functions not only for its role as a tumour suppressor but also for its non-cancer associated activities. Drosophila melanogaster is a valuable model to study multiple aspects of normal animal physiology, stress response and disease. In this review, we discuss the contribution of Drosophila studies to the current knowledge on p53 and highlight recent evidences pointing to p53 novel roles in promoting tissue homeostasis and metabolic adaptation.


Assuntos
Drosophila/genética , Drosophila/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Adaptação Biológica/genética , Animais , Apoptose/genética , Pontos de Checagem do Ciclo Celular/genética , Homeostase/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA