Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 12: 657873, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177802

RESUMO

Aim: Despite the enormous efforts to understand Congenital hyperinsulinism (CHI), up to 50% of the patients are genetically unexplained. We aimed to functionally characterize a novel candidate gene in CHI. Patient: A 4-month-old boy presented severe hyperinsulinemic hypoglycemia. A routine CHI genetic panel was negative. Methods: A trio-based whole-exome sequencing (WES) was performed. Gene knockout in the RIN-m cell line was established by CRISPR/Cas9. Gene expression was performed using real-time PCR. Results: Hyperinsulinemic hypoglycemia with diffuse beta-cell involvement was demonstrated in the patient, who was diazoxide-responsive. By WES, compound heterozygous variants were identified in the adenylyl cyclase 7, ADCY7 gene p.(Asp439Glu) and p.(Gly1045Arg). ADCY7 is calcium-sensitive, expressed in beta-cells and converts ATP to cAMP. The variants located in the cytoplasmic domains C1 and C2 in a highly conserved and functional amino acid region. RIN-m(-/-Adcy7) cells showed a significant increase in insulin secretion reaching 54% at low, and 49% at high glucose concentrations, compared to wild-type. In genetic expression analysis Adcy7 loss of function led to a 34.1-fold to 362.8-fold increase in mRNA levels of the insulin regulator genes Ins1 and Ins2 (p ≤ 0.0002), as well as increased glucose uptake and sensing indicated by higher mRNA levels of Scl2a2 and Gck via upregulation of Pdx1, and Foxa2 leading to the activation of the glucose stimulated-insulin secretion (GSIS) pathway. Conclusion: This study identified a novel candidate gene, ADCY7, to cause CHI via activation of the GSIS pathway.


Assuntos
Adenilil Ciclases/genética , Hiperinsulinismo Congênito/enzimologia , Hiperinsulinismo Congênito/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Adenilil Ciclases/deficiência , Sequência de Aminoácidos , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Pré-Escolar , Hiperinsulinismo Congênito/genética , Técnicas de Inativação de Genes , Glucose/metabolismo , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Insulina/genética , Secreção de Insulina , Masculino , Ratos , Alinhamento de Sequência , Transativadores/genética , Transativadores/metabolismo
2.
Biochem Biophys Res Commun ; 550: 49-55, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33684620

RESUMO

To investigate the influence of miR-18a-3p and ADCY5 on OP and osteogenic differentiation of human Mesenchymal stem cell (hBMSCs) and its possible mechanism. Samples were collected from osteoporotic patients with or without vertebral compression fracture, and without OP volunteers. MiR-18a-3p and ADCY5 mRNA expression levels in the tissue samples and hBMSCs during osteogenic differentiation were detected。MiR-18a-3p mimic and OE-ADCY5 were introduced into hBMSCs to research the effects of miR-18a-3p and ADCY5 on osteogenesis differentiation of hBMSCs. Dual luciferase reporter system and RNA pull-down were applied to determine whether ADCY5 was a target gene of miR-18a-3p. Compared with the control group, ADCY5 expression level was down-regulated in patients with OP-no-Frx and OP-Frx, but that of miR-18a-3p was up-regulated. In addition, ADCY5 increased during osteogenesis differentiation of hBMSCs, whereas miR-18a-3p did not. OE-ADCY5 significantly facilitated calcium deposition, ALP activity, osteoblast protein expression (OSX, ALP and EUNX2), miR-18a-3p mimic inhibited osteogenic differentiation, and partially reversed the effect of OE-ADCY5 on osteogenic differentiation. In general, miR-18a-3p targets ADCY5 to promote OP and may be involved in spinal fracturs.


Assuntos
Adenilil Ciclases/deficiência , Adenilil Ciclases/genética , MicroRNAs/genética , Osteogênese/genética , Osteoporose/genética , Osteoporose/patologia , Fraturas da Coluna Vertebral/genética , Sequência de Bases , Cálcio/metabolismo , Genes Reporter , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Fraturas da Coluna Vertebral/patologia
3.
J Biol Chem ; 295(42): 14250-14259, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32683324

RESUMO

Motile cilia are hairlike structures that line the respiratory and reproductive tracts and the middle ear and generate fluid flow in these organs via synchronized beating. Cilium growth is a highly regulated process that is assumed to be important for flow generation. Recently, Kif19a, a kinesin residing at the cilia tip, was identified to be essential for ciliary length control through its microtubule depolymerization function. However, there is a lack of information on the nature of proteins and the integrated signaling mechanism regulating growth of motile cilia. Here, we report that adenylate cyclase 6 (AC6), a highly abundant AC isoform in airway epithelial cells, inhibits degradation of Kif19a by inhibiting autophagy, a cellular recycling mechanism for damaged proteins and organelles. Using epithelium-specific knockout mice of AC6, we demonstrated that AC6 knockout airway epithelial cells have longer cilia compared with the WT cells because of decreased Kif19a protein levels in the cilia. We demonstrated in vitro that AC6 inhibits AMP-activated kinase (AMPK), an important modulator of cellular energy-conserving mechanisms, and uncouples its binding with ciliary kinesin Kif19a. In the absence of AC6, activation of AMPK mobilizes Kif19a into autophagosomes for degradation in airway epithelial cells. Lower Kif19a levels upon pharmacological activation of AMPK in airway epithelial cells correlated with elongated cilia and vice versa. In all, the AC6-AMPK pathway, which is tunable to cellular cues, could potentially serve as one of the crucial ciliary growth checkpoints and could be channeled to develop therapeutic interventions for cilia-associated disorders.


Assuntos
Adenilil Ciclases/metabolismo , Cílios/fisiologia , Cinesinas/metabolismo , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/metabolismo , Adenilil Ciclases/química , Adenilil Ciclases/deficiência , Adenilil Ciclases/genética , Animais , Autofagossomos/metabolismo , Autofagia/efeitos dos fármacos , Proteína 5 Relacionada à Autofagia/antagonistas & inibidores , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Cloroquina/farmacologia , Cílios/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Cinesinas/antagonistas & inibidores , Cinesinas/genética , Masculino , Camundongos , Camundongos Knockout , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Traqueia/citologia , Traqueia/metabolismo
4.
Rev Neurol ; 71(2): 69-73, 2020 Jul 16.
Artigo em Espanhol | MEDLINE | ID: mdl-32627162

RESUMO

INTRODUCTION: Dyskinesia of the ADCY5 mutation is a rare movement-onset disorder in childhood. It is characterized by isolated chorea movements or associated with myoclonus and dystonia affecting the limbs, neck and face. The low number of patients and families still does not allow an adequate genotype-phenotype relationship. AIMS: The case of a child with movement disorders of early onset is presented in a family with three generations of affected members. An updated review of the casuistry and management of this rare disease is made. CASE REPORT: A 6-year-old boy referred for language delay and hyperactivity. After six months of follow-up he begins to show chorea movements of predominantly facial and limb roots, especially when waking up. At one year of follow-up, generalized chorea at rest with orofacial involvement and awkward gait begins to show. His family history includes his mother, grandfather, maternal uncle and cousin, who were diagnosed with Meige's syndrome (oromandibular dystonia and periorbital muscles) with choreiform-like movement disorders without affiliation since childhood. The brain study by MRI showed no alterations. A clinical exome targeting movement disorders was performed that discovered the pathogenic mutation in the ADCY5 gene causing autosomal familial dyskinesia. CONCLUSION: The c.1126G>A p.A376T mutation shows a natural history with a non-progressive clinical phenotype in three generations of affected members, with childhood debut and response to guanfacine treatment.


TITLE: Discinesia asociada a ADCY5 en la infancia: a propósito de una familia y revisión actualizada.Introducción. La discinesia de la mutación ADCY5 es un raro trastorno del movimiento de inicio en la infancia. Se caracteriza por movimientos coreicos aislados o asociados a mioclonías y distonías que afectan a las extremidades, el cuello y la cara. El escaso número de pacientes y familias no permite aún una adecuada relación genotipo-fenotipo. Objetivos. Presentar el caso de un niño con trastornos del movimiento de inicio precoz en el seno de una familia con tres generaciones de afectados, y realizar una revisión actualizada de la casuística y el tratamiento de esta rara enfermedad. Caso clínico. Varón de 6 años, remitido por retraso del lenguaje e hiperactividad. Tras seis meses de seguimiento, comenzó a presentar movimientos coreicos de predominio facial y de la raíz de los miembros, especialmente al despertar. Al año de seguimiento, se evidenció corea generalizado en reposo con afectación orofacial y torpeza en la marcha. Como antecedentes familiares destacaban su madre, abuelo, tío y prima maternos, que fueron diagnosticados de síndrome de Meige (distonía oromandibular y músculos periorbitarios) con trastornos del movimiento de tipo coreiforme sin filiar desde la infancia. El estudio cerebral por resonancia magnética no presentó alteraciones. Se realizó un exoma clínico dirigido a trastornos del movimiento que descubrió la mutación patógena en el gen ADCY5 causante de la discinesia familiar autosómica. Conclusión. La mutación c.1126G>A p.A376T muestra una historia natural con un fenotipo clínico no progresivo en tres generaciones de afectados, con inicio en la infancia y respuesta al tratamiento con guanfacina.


Assuntos
Adenilil Ciclases/deficiência , Transtornos dos Movimentos/genética , Adenilil Ciclases/genética , Adenilil Ciclases/fisiologia , Substituição de Aminoácidos , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Transtorno do Deficit de Atenção com Hiperatividade/genética , Criança , Deficiências do Desenvolvimento/genética , Resistência a Medicamentos , Feminino , Guanfacina/uso terapêutico , Humanos , Transtornos do Desenvolvimento da Linguagem/genética , Levetiracetam/efeitos adversos , Masculino , Síndrome de Meige/genética , Mutação de Sentido Incorreto , Linhagem , Mutação Puntual
5.
Cells ; 8(9)2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31461851

RESUMO

The subunits KCNQ1 and KCNE1 generate the slowly activating, delayed rectifier potassium current, IKs, that responds to sympathetic stimulation and is critical for human cardiac repolarization. The A-kinase anchoring protein Yotiao facilitates macromolecular complex formation between IKs and protein kinase A (PKA) to regulate phosphorylation of KCNQ1 and IKs currents following beta-adrenergic stimulation. We have previously shown that adenylyl cyclase Type 9 (AC9) is associated with a KCNQ1-Yotiao-PKA complex and facilitates isoproterenol-stimulated phosphorylation of KCNQ1 in an immortalized cell line. However, requirement for AC9 in sympathetic control of IKs in the heart was unknown. Using a transgenic mouse strain expressing the KCNQ1-KCNE1 subunits of IKs, we show that AC9 is the only adenylyl cyclase (AC) isoform associated with the KCNQ1-KCNE1-Yotiao complex in the heart. Deletion of AC9 resulted in the loss of isoproterenol-stimulated KCNQ1 phosphorylation in vivo, even though AC9 represents less than 3% of total cardiac AC activity. Importantly, a significant reduction of isoproterenol-stimulated IKs currents was also observed in adult cardiomyocytes from IKs-expressing AC9KO mice. AC9 and Yotiao co-localize with N-cadherin, a marker of intercalated disks and cell-cell junctions, in neonatal and adult cardiomyocytes, respectively. In conclusion, AC9 is necessary for sympathetic regulation of PKA phosphorylation of KCNQ1 in vivo and for functional regulation of IKs in adult cardiomyocytes.


Assuntos
Adenilil Ciclases/metabolismo , Isoproterenol/farmacologia , Canal de Potássio KCNQ1/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Adenilil Ciclases/deficiência , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Fosforilação/efeitos dos fármacos
6.
Mol Pain ; 15: 1744806919832718, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30717631

RESUMO

The neuropeptide of calcitonin gene-related peptide (CGRP) plays critical roles in chronic pain, especially in migraine. Immunohistochemistry and in situ hybridization studies have shown that CGRP and its receptors are expressed in cortical areas including pain perception-related prefrontal anterior cingulate cortex. However, less information is available for the functional roles of CGRP in cortical regions such as the anterior cingulate cortex (ACC). Recent studies have consistently demonstrated that long-term potentiation is a key cellular mechanism for chronic pain in the ACC. In the present study, we used 64-electrode array field recording system to investigate the effect of CGRP on excitatory transmission in the ACC. We found that CGRP induced potentiation of synaptic transmission in a dose-dependently manner (1, 10, 50, and 100 nM). CGRP also recruited inactive circuit in the ACC. An application of the calcitonin receptor-like receptor antagonist CGRP8-37 blocked CGRP-induced chemical long-term potentiation and the recruitment of inactive channels. CGRP-induced long-term potentiation was also blocked by N-methyl-D-aspartate (NMDA) receptor antagonist AP-5. Consistently, the application of CGRP increased NMDA receptor-mediated excitatory postsynaptic currents. Finally, we found that CGRP-induced long-term potentiation required the activation of calcium-stimulated adenylyl cyclase subtype 1 (AC1) and protein kinase A. Genetic deletion of AC1 using AC1-/- mice, an AC1 inhibitor NB001 or a protein kinase A inhibitor KT5720, all reduced or blocked CGRP-induced potentiation. Our results provide direct evidence that CGRP may contribute to synaptic potentiation in important physiological and pathological conditions in the ACC, an AC1 inhibitor NB001 may be beneficial for the treatment of chronic headache.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Giro do Cíngulo/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , 2-Amino-5-fosfonovalerato/farmacologia , Adenilil Ciclases/deficiência , Adenilil Ciclases/genética , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Carbazóis/farmacologia , Estimulação Elétrica , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Giro do Cíngulo/metabolismo , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Patch-Clamp , Pirróis/farmacologia , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
J Infect Dis ; 220(11): 1719-1728, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30624615

RESUMO

BACKGROUND: Cholera toxin (CT)-induced diarrhea is mediated by cyclic adenosine monophosphate (cAMP)-mediated active Cl- secretion via the cystic fibrosis transmembrane conductance regulator (CFTR). Although the constitutive activation of adenylyl cyclase (AC) in response to CT is due to adenosine diphosphate ribosylation of the small G protein α-subunit activating CFTR with consequent secretory diarrhea, the AC isoform(s) involved remain unknown. METHODS: We generated intestinal epithelial cell-specific adenylyl cyclase 6 (AC6) knockout mice to study its role in CT-induced diarrhea. RESULTS: AC6 messenger RNA levels were the highest of all 9 membrane-bound AC isoforms in mouse intestinal epithelial cells. Intestinal epithelial-specific AC6 knockout mice (AC6loxloxVillinCre) had undetectable AC6 levels in small intestinal and colonic epithelial cells. No significant differences in fluid and food intake, plasma electrolytes, intestinal/colon anatomy and morphology, or fecal water content were observed between genotypes. Nevertheless, CT-induced fluid accumulation in vivo was completely absent in AC6loxloxVillinCre mice, associated with a lack of forskolin- and CT-induced changes in the short-circuit current (ISC) of the intestinal mucosa, impaired cAMP generation in acutely isolated small intestinal epithelial cells, and significantly impaired apical CFTR levels in response to forskolin. CONCLUSIONS: AC6 is a novel target for the treatment of CT-induced diarrhea.


Assuntos
Adenilil Ciclases/metabolismo , Toxina da Cólera/toxicidade , Cólera/fisiopatologia , Diarreia/fisiopatologia , Células Epiteliais/enzimologia , Células Epiteliais/metabolismo , Adenilil Ciclases/deficiência , Animais , Colforsina/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout
8.
Circulation ; 138(16): 1677-1692, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-29674325

RESUMO

BACKGROUND: Pharmacogenomic studies have shown that ADCY9 genotype determines the effects of the CETP (cholesteryl ester transfer protein) inhibitor dalcetrapib on cardiovascular events and atherosclerosis imaging. The underlying mechanisms responsible for the interactions between ADCY9 and CETP activity have not yet been determined. METHODS: Adcy9-inactivated ( Adcy9Gt/Gt) and wild-type (WT) mice, that were or not transgenic for the CETP gene (CETPtg Adcy9Gt/Gt and CETPtg Adcy9WT), were submitted to an atherogenic protocol (injection of an AAV8 [adeno-associated virus serotype 8] expressing a PCSK9 [proprotein convertase subtilisin/kexin type 9] gain-of-function variant and 0.75% cholesterol diet for 16 weeks). Atherosclerosis, vasorelaxation, telemetry, and adipose tissue magnetic resonance imaging were evaluated. RESULTS: Adcy9Gt/Gt mice had a 65% reduction in aortic atherosclerosis compared to WT ( P<0.01). CD68 (cluster of differentiation 68)-positive macrophage accumulation and proliferation in plaques were reduced in Adcy9Gt/Gt mice compared to WT animals ( P<0.05 for both). Femoral artery endothelial-dependent vasorelaxation was improved in Adcy9Gt/Gt mice (versus WT, P<0.01). Selective pharmacological blockade showed that the nitric oxide, cyclooxygenase, and endothelial-dependent hyperpolarization pathways were all responsible for the improvement of vasodilatation in Adcy9Gt/Gt ( P<0.01 for all). Aortic endothelium from Adcy9Gt/Gt mice allowed significantly less adhesion of splenocytes compared to WT ( P<0.05). Adcy9Gt/Gt mice gained more weight than WT with the atherogenic diet; this was associated with an increase in whole body adipose tissue volume ( P<0.01 for both). Feed efficiency was increased in Adcy9Gt/Gt compared to WT mice ( P<0.01), which was accompanied by prolonged cardiac RR interval ( P<0.05) and improved nocturnal heart rate variability ( P=0.0572). Adcy9 inactivation-induced effects on atherosclerosis, endothelial function, weight gain, adipose tissue volume, and feed efficiency were lost in CETPtg Adcy9Gt/Gt mice ( P>0.05 versus CETPtg Adcy9WT). CONCLUSIONS: Adcy9 inactivation protects against atherosclerosis, but only in the absence of CETP activity. This atheroprotection may be explained by decreased macrophage accumulation and proliferation in the arterial wall, and improved endothelial function and autonomic tone.


Assuntos
Adenilil Ciclases/deficiência , Aorta/enzimologia , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Proteínas de Transferência de Ésteres de Colesterol/deficiência , Placa Aterosclerótica , Adenilil Ciclases/genética , Adiposidade , Animais , Aorta/patologia , Aorta/fisiopatologia , Doenças da Aorta/enzimologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Aterosclerose/enzimologia , Aterosclerose/genética , Aterosclerose/patologia , Sistema Nervoso Autônomo/fisiopatologia , Fatores Biológicos/metabolismo , Proliferação de Células , Proteínas de Transferência de Ésteres de Colesterol/genética , Dieta Hiperlipídica , Modelos Animais de Doenças , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Lipídeos/sangue , Lipólise , Macrófagos/enzimologia , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/metabolismo , Pró-Proteína Convertase 9/genética , Prostaglandina-Endoperóxido Sintases/metabolismo , Transdução de Sinais , Vasodilatação , Aumento de Peso
9.
Kidney Int ; 93(2): 403-415, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29042084

RESUMO

Cyclic AMP promotes cyst growth in polycystic kidney disease (PKD) by stimulating cell proliferation and fluid secretion. Previously, we showed that the primary cilium of renal epithelial cells contains a cAMP regulatory complex comprising adenylyl cyclases 5 and 6 (AC5/6), polycystin-2, A-kinase anchoring protein 150, protein kinase A, and phosphodiesterase 4C. In Kif3a mutant cells that lack primary cilia, the formation of this regulatory complex is disrupted and cAMP levels are increased. Inhibition of AC5 reduces cAMP levels in Kif3a mutant cells, suggesting that AC5 may mediate the increase in cAMP in PKD. Here, we examined the role of AC5 in an orthologous mouse model of PKD caused by kidney-specific ablation of Pkd2. Knockdown of AC5 with siRNA attenuated the increase in cAMP levels in Pkd2-deficient renal epithelial cells. Levels of cAMP and AC5 mRNA transcripts were elevated in the kidneys of mice with collecting duct-specific ablation of Pkd2. Compared with Pkd2 single mutant mice, AC5/Pkd2 double mutant mice had less kidney enlargement, lower cyst index, reduced kidney injury, and improved kidney function. Importantly, cAMP levels and cAMP-dependent signaling were reduced in the kidneys of AC5/Pkd2 double mutant compared to the kidneys of Pkd2 single mutant mice. Additionally, we localized endogenous AC5 in the primary cilium of renal epithelial cells and showed that ablation of AC5 reduced ciliary elongation in the kidneys of Pkd2 mutant mice. Thus, AC5 contributes importantly to increased renal cAMP levels and cyst growth in Pkd2 mutant mice, and inhibition of AC5 may be beneficial in the treatment of PKD.


Assuntos
Adenilil Ciclases/deficiência , Adenilil Ciclases/metabolismo , AMP Cíclico/metabolismo , Células Epiteliais/enzimologia , Rim/enzimologia , Rim Policístico Autossômico Dominante/enzimologia , Animais , Cílios/enzimologia , Cílios/patologia , Modelos Animais de Doenças , Progressão da Doença , Regulação para Baixo , Células Epiteliais/patologia , Feminino , Rim/patologia , Rim/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Rim Policístico Autossômico Dominante/prevenção & controle , Interferência de RNA , Sistemas do Segundo Mensageiro , Canais de Cátion TRPP/deficiência , Canais de Cátion TRPP/genética
10.
J Pharmacol Exp Ther ; 363(2): 148-155, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28838956

RESUMO

Neuroadaptive responses to chronic ethanol, such as behavioral sensitization, are associated with N-methyl-D-aspartate receptor (NMDAR) recruitment. Ethanol enhances GluN2B-containing NMDAR function and phosphorylation (Tyr-1472) of the GluN2B-NMDAR subunit in the dorsal medial striatum (DMS) through a protein kinase A (PKA)-dependent pathway. Ethanol-induced phosphorylation of PKA substrates is partially mediated by calcium-stimulated adenylyl cyclase 1 (AC1), which is enriched in the dorsal striatum. As such, AC1 is poised as an upstream modulator of ethanol-induced DMS neuroadaptations that promote drug responding, and thus represents a therapeutic target. Our hypothesis is that loss of AC1 activity will prevent ethanol-induced locomotor sensitization and associated DMS GluN2B-NMDAR adaptations. We evaluated AC1's contribution to ethanol-evoked locomotor responses and DMS GluN2B-NMDAR phosphorylation and function using AC1 knockout (AC1KO) mice. Results were mechanistically validated with the AC1 inhibitor, NB001. Acute ethanol (2.0 g/kg) locomotor responses in AC1KO and wild-type (WT) mice pretreated with NB001 (10 mg/kg) were comparable to WT ethanol controls. However, repeated ethanol treatment (10 days, 2.5 g/kg) failed to produce sensitization in AC1KO or NB001 pretreated mice, as observed in WT ethanol controls, following challenge exposure (2.0 g/kg). Repeated exposure to ethanol in the sensitization procedure significantly increased pTyr-1472 GluN2B levels and GluN2B-containing NMDAR transmission in the DMS of WT mice. Loss of AC1 signaling impaired ethanol-induced increases in DMS pGluN2B levels and NMDAR-mediated transmission. Together, these data support a critical and specific role for AC1 in striatal signaling that mediates ethanol-induced behavioral sensitization, and identify GluN2B-containing NMDARs as an important AC1 target.


Assuntos
Adenilil Ciclases/deficiência , Corpo Estriado/metabolismo , Etanol/administração & dosagem , Locomoção/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia
11.
J Hepatol ; 66(3): 571-580, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27826057

RESUMO

BACKGROUND & AIMS: Genetic defects in polycystin-1 or -2 (PC1 or PC2) cause polycystic liver disease associated with autosomal dominant polycystic kidney disease (PLD-ADPKD). Progressive cyst growth is sustained by a cAMP-dependent Ras/ERK/HIFα pathway, leading to increased vascular endothelial growth factor A (VEGF-A) signaling. In PC2-defective cholangiocytes, cAMP production in response to [Ca2+]ER depletion is increased, while store-operated Ca2+ entry (SOCE), intracellular and endoplasmic reticulum [Ca2+]ER levels are reduced. We investigated whether the adenylyl cyclases, AC5 and AC6, which can be inhibited by Ca2+, are activated by the ER chaperone STIM1. This would result in cAMP/PKA-dependent Ras/ERK/HIFα pathway activation in PC2-defective cells, in response to [Ca2+]ER depletion. METHODS: PC2/AC6 double conditional knockout (KO) mice were generated (Pkd2/AC6 KO) and compared to Pkd2 KO mice. The AC5 inhibitor SQ22,536 or AC5 siRNA were used in isolated cholangiocytes while the inhibitor was used in biliary organoid and animals; liver tissues were harvested for histochemical analysis. RESULTS: When comparing Pkd2/AC6 KO to Pkd2 KO mice, no decrease in liver cyst size was found, and cellular cAMP after [Ca2+]ER depletion only decreased by 12%. Conversely, in PC2-defective cells, inhibition of AC5 significantly reduced cAMP production, pERK1/2 expression and VEGF-A secretion. AC5 inhibitors significantly reduced growth of biliary organoids derived from Pkd2 KO and Pkd2/AC6 KO mice. In vivo treatment with SQ22,536 significantly reduced liver cystic area and cell proliferation in PC2-defective mice. After [Ca2+]ER depletion in PC2-defective cells, STIM1 interacts with AC5 but not with Orai1, the Ca2+ channel that mediates SOCE. CONCLUSION: [Ca2+]ER depletion in PC2-defective cells activates AC5 and results in stimulation of cAMP/ERK1-2 signaling, VEGF production and cyst growth. This mechanism may represent a novel therapeutic target. LAY SUMMARY: Polycystic liver diseases are characterized by progressive cyst growth until their complications mandate surgery or liver transplantation. In this manuscript, we demonstrate that inhibiting cell proliferation, which is induced by increased levels of cAMP, may represent a novel therapeutic target to slow the progression of the disease.


Assuntos
Adenilil Ciclases/metabolismo , Cálcio/metabolismo , AMP Cíclico/metabolismo , Cistos/genética , Cistos/metabolismo , Hepatopatias/genética , Hepatopatias/metabolismo , Inibidores de Adenilil Ciclases/farmacologia , Adenilil Ciclases/deficiência , Adenilil Ciclases/genética , Animais , Proliferação de Células , Cistos/patologia , Modelos Animais de Doenças , Homeostase , Humanos , Hepatopatias/patologia , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Knockout , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/patologia , Interferência de RNA , Transdução de Sinais , Molécula 1 de Interação Estromal/metabolismo , Canais de Cátion TRPP/deficiência , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Mol Microbiol ; 103(5): 764-779, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27888610

RESUMO

The fungal pathogen Candida albicans can transition from budding to hyphal growth, which promotes biofilm formation and invasive growth into tissues. Stimulation of adenylyl cyclase to form cAMP induces hyphal morphogenesis. The failure of cells lacking adenylyl cyclase (cyr1Δ) to form hyphae has suggested that cAMP signaling is essential for hyphal growth. However, cyr1Δ mutants also grow slowly and have defects in morphogenesis, making it unclear whether hyphal inducers must stimulate cAMP, or if normal basal levels of cAMP are required to maintain cellular health needed for hyphal growth. Interestingly, supplementation of cyr1Δ cells with low levels of cAMP enabled them to form hyphae in response to the inducer N-acetylglucosamine (GlcNAc), suggesting that a basal level of cAMP is sufficient for stimulation. Furthermore, we isolated faster-growing cyr1Δ pseudorevertant strains that can be induced to form hyphae even though they lack cAMP. The pseudorevertant strains were not induced by CO2 , consistent with reports that CO2 directly stimulates adenylyl cyclase. Mutational analysis showed that induction of hyphae in a pseudorevertant strain was independent of RAS1, but was dependent on the EFG1 transcription factor that acts downstream of protein kinase A. Thus, cAMP-independent signals contribute to the induction of hyphal responses.


Assuntos
Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , AMP Cíclico/metabolismo , Hifas/crescimento & desenvolvimento , Transdução de Sinais , Acetilglucosamina/farmacologia , Adenilil Ciclases/deficiência , Adenilil Ciclases/genética , Candida albicans/efeitos dos fármacos , Candida albicans/genética , AMP Cíclico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Hifas/efeitos dos fármacos , Hifas/genética , Hifas/fisiologia , Transdução de Sinais/genética , Fatores de Transcrição/genética
13.
Gene ; 602: 33-42, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-27864010

RESUMO

Adenylate cyclase 3 (AC3) is an important component of the cyclic adenosine 3',5'-monophosphate (cAMP) signaling pathway and converts adenosine triphosphate into cAMP. Male mice with AC3 deletion (AC3-/-) are sterile. However, the mechanical mechanism remains unclear. By TUNEL staining, we found that cell apoptosis in the testicular tissues of AC3-/- mice increased significantly compared with that in the wild-type (AC3+/+) mice. Differentially expressed genes regulated by AC3 in the testicular tissues were identified by gene chip hybridization. We observed that the expression of 693 genes was altered in the testicular tissues of AC3-/- mice, including 330 up-regulated and 363 down-regulated gene expression with fold changes higher than 2 (≥2) as the standards. Furthermore, part of these differentially expressed genes was verified by the real-time fluorescence quantification PCR and immunofluorescent staining. The expression levels of the genes related to olfactory receptors, cell apoptosis, transcriptional activity, defensive reaction, cell adhesion, cell death, and immunoreactions were significantly altered in the testicular tissues of AC3-/- mice compared with AC3+/+ mice. In addition, the corresponding Ca2+, cAMP, and cell adhesion signaling pathways, as well as the signaling pathways related to axon guidance and cell interaction, were altered significantly in the AC3-/- mice. These data would help elucidate the general understanding of the mechanisms underlying the sterility in AC3-/- male mice.


Assuntos
Adenilil Ciclases/deficiência , Testículo/metabolismo , Adenilil Ciclases/genética , Animais , Apoptose/genética , Apoptose/fisiologia , Epigênese Genética , Expressão Gênica , Perfilação da Expressão Gênica , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Masculino , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais/genética , Testículo/patologia
14.
Environ Microbiol ; 18(11): 3612-3619, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27376962

RESUMO

An emerging secondary messenger c-di-AMP plays an important role in bacterial physiology. It was reported by Cheng et al. that inactivation of a gene coding for diadenylate cyclase (DAC), a c-di-AMP producing enzyme, resulted in enhanced synthesis of extracellular polysaccharides (EPS) by a cariogenic bacterium, Streptococcus mutans (Cheng et al., 2016). We constructed a similar mutant and observed a completely different effect, the DAC deficiency resulted in a decrease in the production of EPS. Our studies provided the following compelling evidence, (1) the DAC mutant we constructed can be readily complemented for the production of EPS, while the mutant from the Cheng group cannot; (2) Our mutant exhibits the regular pattern of key enzymes that produce EPS, glucosyltransferases (Gtfs), while Cheng et al. reported an irregular pattern, which was inconsistent with their earlier studies. (3) We demonstrated that the response of the DAC mutant to oxidative stress is independent of GtfB, the key enzyme producing EPS, while the Cheng report suggests that overproduction of EPS is a responsive mechanism for the DAC mutant to adapt to the oxidative stress. Therefore, the validity of the relationship between DAC and EPS reported by Cheng et al. warrants further investigation and clarification.


Assuntos
Adenilil Ciclases/deficiência , Proteínas de Bactérias/genética , Matriz Extracelular/metabolismo , Polissacarídeos/biossíntese , Streptococcus mutans/enzimologia , Adenilil Ciclases/genética , Proteínas de Bactérias/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Matriz Extracelular/genética , Mutação , Streptococcus mutans/genética , Streptococcus mutans/metabolismo
15.
Alcohol ; 51: 25-35, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26992697

RESUMO

Brain-derived neurotrophic factor (BDNF) mediates neuron growth and is regulated by adenylyl cyclases (ACs). Mice lacking AC1/8 (DKO) have a basal reduction in the dendritic complexity of medium spiny neurons in the caudate putamen and demonstrate increased neurotoxicity in the striatum following acute neonatal ethanol exposure compared to wild type (WT) controls, suggesting a compromise in BDNF regulation under varying conditions. Although neonatal ethanol exposure can negatively impact BDNF expression, little is known about the effect on BDNF receptor activation and its downstream signaling, including Akt activation, an established neuroprotective pathway. Therefore, here we determined the effects of AC1/8 deletion and neonatal ethanol administration on BDNF and proBDNF protein expression, and activation of tropomyosin-related kinase B (TrkB), Akt, ERK1/2, and PLCγ. WT and DKO mice were treated with a single dose of 2.5 g/kg ethanol or saline at postnatal days 5-7 to model late-gestational alcohol exposure. Striatal and cortical tissues were analyzed using a BDNF enzyme-linked immunosorbent assay or immunoblotting for proBDNF, phosphorylated and total TrkB, Akt, ERK1/2, and PLCÉ£1. Neither postnatal ethanol exposure nor AC1/8 deletion affected total BDNF protein expression at any time point in either region examined. Neonatal ethanol increased the expression of proBDNF protein in the striatum of WT mice 6, 24, and 48 h after exposure, with DKO mice demonstrating a reduction in proBDNF expression 6 h after exposure. Six and 24 h after ethanol administration, phosphorylation of full-length TrkB in the striatum was significantly reduced in WT mice, but was significantly increased in DKO mice only at 24 h. Interestingly, 48 h after ethanol, both WT and DKO mice demonstrated a reduction in phosphorylated full-length TrkB. In addition, Akt and PLCÉ£1 phosphorylation was also decreased in ethanol-treated DKO mice 48 h after injection. These data demonstrate dysregulation of a potential survival pathway in the AC1/8 knockout mice following early-life ethanol exposure.


Assuntos
Adenilil Ciclases/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transtornos do Espectro Alcoólico Fetal/metabolismo , Glicoproteínas de Membrana/metabolismo , Precursores de Proteínas/metabolismo , Proteínas Tirosina Quinases/metabolismo , Adenilil Ciclases/deficiência , Animais , Etanol/toxicidade , Transtornos do Espectro Alcoólico Fetal/etiologia , Transtornos do Espectro Alcoólico Fetal/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Receptor trkB , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
16.
PLoS One ; 11(3): e0150638, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26942602

RESUMO

We recently reported that olfactory sensory neurons in the dorsal zone of the mouse olfactory epithelium exhibit drastic location-dependent differences in cilia length. Furthermore, genetic ablation of type III adenylyl cyclase (ACIII), a key olfactory signaling protein and ubiquitous marker for primary cilia, disrupts the cilia length pattern and results in considerably shorter cilia, independent of odor-induced activity. Given the significant impact of ACIII on cilia length in the dorsal zone, we sought to further investigate the relationship between cilia length and ACIII level in various regions throughout the mouse olfactory epithelium. We employed whole-mount immunohistochemical staining to examine olfactory cilia morphology in phosphodiesterase (PDE) 1C-/-;PDE4A-/- (simplified as PDEs-/- hereafter) and ACIII-/- mice in which ACIII levels are reduced and ablated, respectively. As expected, PDEs-/- animals exhibit dramatically shorter cilia in the dorsal zone (i.e., where the cilia pattern is found), similar to our previous observation in ACIII-/- mice. Remarkably, in a region not included in our previous study, ACIII-/- animals (but not PDEs-/- mice) have dramatically elongated, comet-shaped cilia, as opposed to characteristic star-shaped olfactory cilia. Here, we reveal that genetic ablation of ACIII has drastic, location-dependent effects on cilia architecture in the mouse nose. These results add a new dimension to our current understanding of olfactory cilia structure and regional organization of the olfactory epithelium. Together, these findings have significant implications for both cilia and sensory biology.


Assuntos
Adenilil Ciclases/deficiência , Adenilil Ciclases/genética , Cílios/metabolismo , Deleção de Genes , Nariz/citologia , Animais , Cílios/enzimologia , Camundongos , Nariz/enzimologia , Especificidade de Órgãos , Diester Fosfórico Hidrolases/metabolismo
17.
Biol Psychiatry ; 80(11): 836-848, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-26868444

RESUMO

BACKGROUND: Although major depressive disorder (MDD) has low heritability, a genome-wide association study in humans has recently implicated type 3 adenylyl cyclase (AC3; ADCY3) in MDD. Moreover, the expression level of AC3 in blood has been considered as a MDD biomarker in humans. Nevertheless, there is a lack of supporting evidence from animal studies. METHODS: We employed multiple approaches to experimentally evaluate if AC3 is a contributing factor for major depression using mouse models lacking the Adcy3 gene. RESULTS: We found that conventional AC3 knockout (KO) mice exhibited phenotypes associated with MDD in behavioral assays. Electroencephalography/electromyography recordings indicated that AC3 KO mice have altered sleep patterns characterized by increased percentage of rapid eye movement sleep. AC3 KO mice also exhibit neuronal atrophy. Furthermore, synaptic activity at cornu ammonis 3-cornu ammonis 1 synapses was significantly lower in AC3 KO mice, and they also exhibited attenuated long-term potentiation as well as deficits in spatial navigation. To confirm that these defects are not secondary responses to anosmia or developmental defects, we generated a conditional AC3 floxed mouse strain. This enabled us to inactivate AC3 function selectively in the forebrain and to inducibly ablate it in adult mice. Both AC3 forebrain-specific and AC3 inducible knockout mice exhibited prodepression phenotypes without anosmia. CONCLUSIONS: This study demonstrates that loss of AC3 in mice leads to decreased neuronal activity, altered sleep pattern, and depression-like behaviors, providing strong evidence supporting AC3 as a contributing factor for MDD.


Assuntos
Adenilil Ciclases/fisiologia , Comportamento Animal/fisiologia , Transtorno Depressivo Maior/enzimologia , Transtorno Depressivo Maior/fisiopatologia , Adenilil Ciclases/deficiência , Animais , Modelos Animais de Doenças , Potenciação de Longa Duração/fisiologia , Camundongos , Camundongos Knockout , Fenótipo , Transtornos do Sono-Vigília/fisiopatologia , Navegação Espacial/fisiologia
18.
Epilepsy Res ; 119: 24-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26656781

RESUMO

OBJECTIVE: Adenylyl cyclases (ACs) catalyze the synthesis of cAMP from ATP, and cAMP signaling affects a large number of neuronal processes. Ca(2+)-stimulated adenylyl cyclase 8 (AC8) expressed in the CNS plays a role in synaptic plasticity, drug addiction and ethanol sensitivity, and chronic pain. This study was to aim at examining the contributions of AC8 to epileptogenesis. METHODS: In this study, we observed the seizure behavior induced by kainic acid (20 mg/kg or 30 mg/kg) or pilocarpine (350 mg/kg) in AC8 KO and wild-type mice. Next we injected kainic acid or pilocarpine to induce status epilepticus (SE), and examined neuronal degeneration (by Fluoro-Jade B staining) and mossy fiber sprouting (by Timm staining) 24h and 2 weeks after SE termination in the hippocampus, respectively. Finally, 15 min after intraperitoneal injection of kainic acid (30 mg/kg), we examined phosphor-ERK1/2 in the hippocampus by Western blot and immunochemistry staining. RESULTS: We first observed that AC8 KO mutants display reduced susceptibility (including seizure latency and episodes) to two chemoconvulsants, kainic acid and pilocarpine. Moreover, we found that degenerative neurons and mossy fiber sprouting induced by chemoconvulsants were significant decreased in the hippocampus. Further, Western blot and immunochemistry analysis revealed that the MAPK signaling in the hippocampus was attenuated in kainic acid-injected AC8 KO mice. CONCLUSION: AC8 is involved in epileptogenesis, and may serve as a potential target for the treatment of epilepsy.


Assuntos
Adenilil Ciclases/deficiência , Convulsivantes/toxicidade , Convulsões/induzido quimicamente , Convulsões/fisiopatologia , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/fisiopatologia , Adenilil Ciclases/genética , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Hipocampo/fisiopatologia , Ácido Caínico/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Degeneração Neural/induzido quimicamente , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/fisiologia , Pilocarpina/toxicidade , Convulsões/patologia , Estado Epiléptico/patologia
19.
Int J Mol Sci ; 16(12): 28320-33, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-26633363

RESUMO

Adenylyl Cyclase 3 (AC3) plays an important role in the olfactory sensation-signaling pathway in mice. AC3 deficiency leads to defects in olfaction. However, it is still unknown whether AC3 deficiency affects gene expression or olfactory signal transduction pathways within the main olfactory epithelium (MOE). In this study, gene microarrays were used to screen differentially expressed genes in MOE from AC3 knockout (AC3(-/-)) and wild-type (AC3(+/+)) mice. The differentially expressed genes identified were subjected to bioinformatic analysis and verified by qRT-PCR. Gene expression in the MOE from AC3(-/-) mice was significantly altered, compared to AC3(+/+) mice. Of the 41266 gene probes, 3379 had greater than 2-fold fold change in expression levels between AC3(-/-) and AC3(+/+) mice, accounting for 8% of the total gene probes. Of these genes, 1391 were up regulated, and 1988 were down regulated, including 425 olfactory receptor genes, 99 genes that are specifically expressed in the immature olfactory neurons, 305 genes that are specifically expressed in the mature olfactory neurons, and 155 genes that are involved in epigenetic regulation. Quantitative RT-PCR verification of the differentially expressed epigenetic regulation related genes, olfactory receptors, ion transporter related genes, neuron development and differentiation related genes, lipid metabolism and membrane protein transport etc. related genes showed that P75NTR, Hinfp, Gadd45b, and Tet3 were significantly up-regulated, while Olfr370, Olfr1414, Olfr1208, Golf, Faim2, Tsg101, Mapk10, Actl6b, H2BE, ATF5, Kirrrel2, OMP, Drd2 etc. were significantly down-regulated. In summary, AC3 may play a role in proximal olfactory signaling and play a role in the regulation of differentially expressed genes in mouse MOE.


Assuntos
Adenilil Ciclases/deficiência , Mucosa Olfatória/metabolismo , Transcriptoma , Animais , Apoptose/genética , Proliferação de Células , Biologia Computacional/métodos , AMP Cíclico/metabolismo , Epigênese Genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Camundongos , Camundongos Knockout , Anotação de Sequência Molecular , Neurônios Receptores Olfatórios/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais
20.
J Neurochem ; 135(6): 1218-31, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26146906

RESUMO

The cAMP/protein kinase A pathway regulates methamphetamine (METH)-induced neuroplasticity underlying behavioral sensitization. We hypothesize that adenylyl cyclases (AC) 1/8 mediate these neuroplastic events and associated striatal dopamine regulation. Locomotor responses to METH (1 and 5 mg/kg) and striatal dopamine function were evaluated in mice lacking AC 1/8 (DKO) and wild-type (WT) mice. Only 5 mg/kg METH induced an acute locomotor response in DKO mice, which was significantly attenuated versus WT controls. DKO mice showed a marked attenuation in the development and expression of METH-induced behavioral sensitization across doses relative to WT controls. While basal and acute METH (5 mg/kg)-evoked accumbal dialysate dopamine levels were similar between genotypes, saline-treated DKO mice showed elevated tissue content of dopamine and homovanillic acid in the dorsal striatum (DS), reflecting dysregulated dopamine homeostasis and/or metabolism. Significant reductions in DS dopamine levels were observed in METH-sensitized DKO mice compared to saline-treated controls, an effect not observed in WT mice. Notably, saline-treated DKO mice had significantly increased phosphorylated Dopamine- and cAMP-regulated phosphoprotein levels, which were not further augmented following METH sensitization, as observed in WT mice. These data indicate that AC 1/8 are critical to mechanisms subserving drug-induced behavioral sensitization and mediate nigrostriatal pathway METH sensitivity. Calcium/calmodulin-stimulated adenylyl cyclase (AC) isoforms 1 and 8 were studied for their involvement in the adaptive neurobehavioral responses to methamphetamine. AC 1/8 double knockout (DKO) mice showed heightened basal locomotor activity and dorsal striatal dopamine responsivity. Conversely, methamphetamine-induced locomotor activity was attenuated in DKO mice, accompanied by reductions in dopamine and HVA content and impaired DARPP-32 activation. These findings indicate AC 1/8 signaling regulates the sensitivity of the nigrostriatal pathway subserving stimulant and neuroadaptive sensitizing effects of methamphetamine. 3-MT, 3-methoxytyramine; Ca(2+), calcium; CaM, calmodulin; cdk5; cyclin-dependent kinase 5; DA, dopamine; DARPP-32, dopamine- and cAMP-regulated phosphoprotein; D1R, dopamine D1 receptor; HVA, homovanillic acid; PKA, protein kinase A.


Assuntos
Adenilil Ciclases/metabolismo , Comportamento Animal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Metanfetamina/farmacologia , Adenilil Ciclases/deficiência , Adenilil Ciclases/genética , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Metalotioneína 3 , Camundongos Knockout , Atividade Motora/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...