Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microvasc Res ; 148: 104498, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36863509

RESUMO

Endothelial progenitor cells (EPCs) are stem cells mainly derived from bone marrow; from where they migrate to repair and regenerate damaged tissues. eEPCs have been classified into two sub-populations, early (eEPC) and late EPCs (lEPC), depending on maturation stages in vitro. In addition, eEPC release endocrine mediators, including small extracellular vesicles (sEVs), which in turn may enhance the eEPC-mediated wound healing properties. Nevertheless, adenosine contributes to angiogenesis by recruiting eEPC at the injury site. However, whether ARs may enhance the secretome of eEPC, including sEVs, is unknown. Therefore, we aimed to investigate whether AR activation increase the release of sEVs in eEPC, which in turn has paracrine effects on recipient endothelial cells. Results shown that 5'-N-ethylcarboxamidoadenosine (NECA), a non-selective agonist, increase both the protein levels of the vascular endothelial growth factor (VEGF), and the number of sEVs released to the conditioned medium (CM) in primary culture of eEPC. Importantly, CM and EVs harvested from NECA-stimulated eEPC promote in vitro angiogenesis, without changes in cell proliferation, in recipient ECV-304 endothelial cells. This constitutes the first evidence showing that adenosine enhances sEVs release from eEPC, which has pro-angiogenic capacity on recipient endothelial cells.


Assuntos
Células Progenitoras Endoteliais , Humanos , Células Progenitoras Endoteliais/metabolismo , Adenosina/farmacologia , Adenosina/metabolismo , Adenosina-5'-(N-etilcarboxamida)/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células-Tronco/metabolismo , Meios de Cultivo Condicionados/metabolismo
2.
BMC Cardiovasc Disord ; 23(1): 154, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964482

RESUMO

PURPOSE: This study aimed to determine the effect and mechanism of action of adenosine 2 receptor (A2R) activation on myocardial ischemia reperfusion injury (MIRI) under diabetic conditions. METHODS: MIRI type 2 diabetic rats and H9C2 cardiomyocytes were treated with A2R agonist and then subjected to hypoxia for 6 h and reoxygenation for 18 h. Myocardial damage, and infarct size were determined by cardiac ultrasound. Indicators of cardiomyocyte injury, creatine kinase-MB and cardiac troponin I were detected by Enzyme Linked Immunosorbent Assay. Endoplasmic reticulum stress (ERS) was determined through measuring the expression levels of ERS related genes GRP78, p-IRE1/IRE1, and p-JNKJNK. The mechanism of A2R cardio protection in MIRI through regulating ERS induced autophagy was determined by investigating the ER resident protein IRE-1. The ER-stress inducer Tunicamycin, and the IRE-1 inhibitor STF in combination with the A2R agonist NECA were used, and the cellular responses were assessed through autophagy proteins expression Beclin-1, p62, LC3 and apoptosis. RESULTS: NECA improved left ventricular function post MIRI, limited myocardial infarct size, reduced myocardial damage, decreased cardiomyocytes apoptosis, and attenuated ERS induced autophagy through regulating the IRE-XBP1s-CHOP pathway. These actions resulted into overall protection of the myocardium against MIRI. CONCLUSION: In summary, A2R activation by NECA prior to ischemia attenuates apoptosis, reduces ERS induced autophagy and restores left ventricular function. This protective effect occurs through regulating the IRE1-XBPs-CHOP related mechanisms. NECA is thus a potential target for the treatment of MIRI in patient with type 2 diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Traumatismo por Reperfusão Miocárdica , Ratos , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Adenosina-5'-(N-etilcarboxamida)/metabolismo , Adenosina-5'-(N-etilcarboxamida)/farmacologia , Ratos Sprague-Dawley , Miócitos Cardíacos/metabolismo , Apoptose , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/farmacologia , Autofagia
3.
Immunology ; 169(1): 42-56, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36373432

RESUMO

Evidence suggests that the anti-inflammatory nucleoside adenosine can shape immune responses by shifting the regulatory (Treg )/helper (Th17) T-cell balance in favour of Treg . Since this observation is based on in vivo and in vitro studies mostly confined to murine models, we comprehensively analysed effects of adenosine on human T-cells. Proliferation, phenotype and cytokine production of stimulated T-cells were assessed by flow cytometry, multiplex assay and ELISA, gene expression profiling was determined by microarray. We found that the pan-adenosine agonist 5'-N-ethylcarboxamidoadenosine (NECA) skews human CD3+ T-cell responses towards non-inflammatory Th17 cells. Addition of NECA during T-cell activation increased the development of IL-17+ cells with a CD4+ RORγt+ phenotype and enhanced CD161 and CD196 surface expression. Remarkably, these Th17 cells displayed non-inflammatory cytokine and gene expression profiles including reduced Th1/Th17 transdifferentiation, a stem cell-like molecular signature and induced surface expression of the adenosine-producing ectoenzymes CD39 and CD73. Thus, T-cells cultured under Th17-inducing conditions together with NECA were capable of suppressing responder T-cells. Finally, genome-wide gene expression profiling revealed metabolic quiescence previously associated with non-pathogenic Th17 cells in response to adenosine signalling. Our data suggest that adenosine induces non-inflammatory Th17 cells in human T-cell differentiation, potentially through regulation of metabolic pathways.


Assuntos
Adenosina , Interleucina-17 , Humanos , Animais , Camundongos , Adenosina/metabolismo , Adenosina/farmacologia , Adenosina-5'-(N-etilcarboxamida)/metabolismo , Adenosina-5'-(N-etilcarboxamida)/farmacologia , Diferenciação Celular , Células Th17 , Citocinas/metabolismo , Linfócitos T Reguladores
4.
Structure ; 27(4): 703-712.e3, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30713025

RESUMO

Agonist binding in the extracellular region of the G protein-coupled adenosine A2A receptor increases its affinity to the G proteins in the intracellular region, and vice versa. The structural basis for this effect is not evident from the crystal structures of A2AR in various conformational states since it stems from the receptor dynamics. Using atomistic molecular dynamics simulations on four different conformational states of the adenosine A2A receptor, we observed that the agonists show decreased ligand mobility, lower entropy of the extracellular loops in the active-intermediate state compared with the inactive state. In contrast, the entropy of the intracellular region increases to prime the receptor for coupling the G protein. Coupling of the G protein to A2AR shrinks the agonist binding site, making tighter receptor agonist contacts with an increase in the strength of allosteric communication compared with the active-intermediate state. These insights provide a strong basis for structure-based ligand design studies.


Assuntos
Agonistas do Receptor A2 de Adenosina/química , Adenosina-5'-(N-etilcarboxamida)/química , Adenosina/química , Proteínas de Ligação ao GTP/química , Receptor A2A de Adenosina/química , Adenosina/metabolismo , Agonistas do Receptor A2 de Adenosina/metabolismo , Adenosina-5'-(N-etilcarboxamida)/metabolismo , Regulação Alostérica , Sítio Alostérico , Domínio Catalítico , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Humanos , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Termodinâmica
5.
Elife ; 72018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29726815

RESUMO

The adenosine A2A receptor (A2AR) is a prototypical G protein-coupled receptor (GPCR) that couples to the heterotrimeric G protein GS. Here, we determine the structure by electron cryo-microscopy (cryo-EM) of A2AR at pH 7.5 bound to the small molecule agonist NECA and coupled to an engineered heterotrimeric G protein, which contains mini-GS, the ßγ subunits and nanobody Nb35. Most regions of the complex have a resolution of ~3.8 Å or better. Comparison with the 3.4 Å resolution crystal structure shows that the receptor and mini-GS are virtually identical and that the density of the side chains and ligand are of comparable quality. However, the cryo-EM density map also indicates regions that are flexible in comparison to the crystal structures, which unexpectedly includes regions in the ligand binding pocket. In addition, an interaction between intracellular loop 1 of the receptor and the ß subunit of the G protein was observed.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/ultraestrutura , Receptor A2A de Adenosina/metabolismo , Receptor A2A de Adenosina/ultraestrutura , Adenosina-5'-(N-etilcarboxamida)/metabolismo , Microscopia Crioeletrônica , Proteínas Heterotriméricas de Ligação ao GTP/química , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Receptor A2A de Adenosina/química
6.
Nat Commun ; 9(1): 1372, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29636462

RESUMO

Cations play key roles in regulating G-protein-coupled receptors (GPCRs), although their mechanisms are poorly understood. Here, 19F NMR is used to delineate the effects of cations on functional states of the adenosine A2A GPCR. While Na+ reinforces an inactive ensemble and a partial-agonist stabilized state, Ca2+ and Mg2+ shift the equilibrium toward active states. Positive allosteric effects of divalent cations are more pronounced with agonist and a G-protein-derived peptide. In cell membranes, divalent cations enhance both the affinity and fraction of the high affinity agonist-bound state. Molecular dynamics simulations suggest high concentrations of divalent cations bridge specific extracellular acidic residues, bringing TM5 and TM6 together at the extracellular surface and allosterically driving open the G-protein-binding cleft as shown by rigidity-transmission allostery theory. An understanding of cation allostery should enable the design of allosteric agents and enhance our understanding of GPCR regulation in the cellular milieu.


Assuntos
Adenosina-5'-(N-etilcarboxamida)/química , Adenosina/química , Cálcio/química , Magnésio/química , Receptor A2A de Adenosina/química , Triazinas/química , Triazóis/química , Adenosina/metabolismo , Adenosina-5'-(N-etilcarboxamida)/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cálcio/metabolismo , Cátions Bivalentes , Cristalografia por Raios X , Expressão Gênica , Humanos , Cinética , Magnésio/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera , Termodinâmica , Triazinas/metabolismo , Triazóis/metabolismo
7.
Elife ; 62017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28984574

RESUMO

GPCRs regulate all aspects of human physiology, and biophysical studies have deepened our understanding of GPCR conformational regulation by different ligands. Yet there is no experimental evidence for how sidechain dynamics control allosteric transitions between GPCR conformations. To address this deficit, we generated samples of a wild-type GPCR (A2AR) that are deuterated apart from 1H/13C NMR probes at isoleucine δ1 methyl groups, which facilitated 1H/13C methyl TROSY NMR measurements with opposing ligands. Our data indicate that low [Na+] is required to allow large agonist-induced structural changes in A2AR, and that patterns of sidechain dynamics substantially differ between agonist (NECA) and inverse agonist (ZM241385) bound receptors, with the inverse agonist suppressing fast ps-ns timescale motions at the G protein binding site. Our approach to GPCR NMR creates a framework for exploring how different regions of a receptor respond to different ligands or signaling proteins through modulation of fast ps-ns sidechain dynamics.


Assuntos
Adenosina-5'-(N-etilcarboxamida)/metabolismo , Receptor A2A de Adenosina/química , Receptor A2A de Adenosina/metabolismo , Triazinas/metabolismo , Triazóis/metabolismo , Cristalografia por Raios X , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Ligação Proteica , Conformação Proteica
8.
Purinergic Signal ; 11(4): 595-606, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26521170

RESUMO

This study was designed to investigate whether reduced adenosine formation linked to deficits in extracellular ATP hydrolysis by NTPDases contributes to detrusor neuromodulatory changes associated with bladder outlet obstruction in men with benign prostatic hyperplasia (BPH). The kinetics of ATP catabolism and adenosine formation as well as the role of P1 receptor agonists on muscle tension and nerve-evoked [(3)H]ACh release were evaluated in mucosal-denuded detrusor strips from BPH patients (n = 31) and control organ donors (n = 23). The neurogenic release of ATP and [(3)H]ACh was higher (P < 0.05) in detrusor strips from BPH patients. The extracellular hydrolysis of ATP and, subsequent, adenosine formation was slower (t (1/2) 73 vs. 36 min, P < 0.05) in BPH detrusor strips. The A(1) receptor-mediated inhibition of evoked [(3)H]ACh release by adenosine (100 µM), NECA (1 µM), and R-PIA (0.3 µM) was enhanced in BPH bladders. Relaxation of detrusor contractions induced by acetylcholine required 30-fold higher concentrations of adenosine. Despite VAChT-positive cholinergic nerves exhibiting higher A(1) immunoreactivity in BPH bladders, the endogenous adenosine tonus revealed by adenosine deaminase is missing. Restoration of A1 inhibition was achieved by favoring (1) ATP hydrolysis with apyrase (2 U mL(-1)) or (2) extracellular adenosine accumulation with dipyridamole or EHNA, as these drugs inhibit adenosine uptake and deamination, respectively. In conclusion, reduced ATP hydrolysis leads to deficient adenosine formation and A(1) receptor-mediated inhibition of cholinergic nerve activity in the obstructed human bladder. Thus, we propose that pharmacological manipulation of endogenous adenosine levels and/or A(1) receptor activation might be useful to control bladder overactivity in BPH patients.


Assuntos
Trifosfato de Adenosina/metabolismo , Sistema Nervoso Parassimpático/efeitos dos fármacos , Receptor A1 de Adenosina/efeitos dos fármacos , Obstrução do Colo da Bexiga Urinária/fisiopatologia , Acetilcolina/metabolismo , Nucleotídeos de Adenina/metabolismo , Adenosina/metabolismo , Adenosina Desaminase/metabolismo , Adenosina-5'-(N-etilcarboxamida)/metabolismo , Antígenos CD/metabolismo , Apirase/metabolismo , Eletromiografia , Feminino , Humanos , Hidrólise , Técnicas In Vitro , Pessoa de Meia-Idade , Contração Muscular/efeitos dos fármacos
9.
PLoS One ; 9(10): e108492, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25285959

RESUMO

To predict structural and energetic effects of point mutations on ligand binding is of considerable interest in biochemistry and pharmacology. This is not only useful in connection with site-directed mutagenesis experiments, but could also allow interpretation and prediction of individual responses to drug treatment. For G-protein coupled receptors systematic mutagenesis has provided the major part of functional data as structural information until recently has been very limited. For the pharmacologically important A(2A) adenosine receptor, extensive site-directed mutagenesis data on agonist and antagonist binding is available and crystal structures of both types of complexes have been determined. Here, we employ a computational strategy, based on molecular dynamics free energy simulations, to rationalize and interpret available alanine-scanning experiments for both agonist and antagonist binding to this receptor. These computer simulations show excellent agreement with the experimental data and, most importantly, reveal the molecular details behind the observed effects which are often not immediately evident from the crystal structures. The work further provides a distinct validation of the computational strategy used to assess effects of point-mutations on ligand binding. It also highlights the importance of considering not only protein-ligand interactions but also those mediated by solvent water molecules, in ligand design projects.


Assuntos
Agonistas do Receptor A2 de Adenosina/química , Agonistas do Receptor A2 de Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/metabolismo , Mutação/genética , Receptor A2A de Adenosina/química , Receptor A2A de Adenosina/metabolismo , Adenosina-5'-(N-etilcarboxamida)/química , Adenosina-5'-(N-etilcarboxamida)/metabolismo , Sítios de Ligação , Humanos , Ligantes , Proteínas Mutantes/química , Termodinâmica , Triazinas/química , Triazinas/metabolismo , Triazóis/química , Triazóis/metabolismo
10.
Biochemistry (Mosc) ; 79(1): 8-15, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24512658

RESUMO

GRP94 is a member of the heat shock protein family normally confined to the endoplasmic reticulum that sometimes escapes the KDEL-mediated retention system. It is overexpressed in some gastric and other gastrointestinal carcinomas, but little is known about the physiological role of GRP94 in gastric mucosa. We investigated the membrane presence of GRP94 in parietal cells, which secrete acid into the gastric lumen, using subcellular fractionation, selective solubilization of membrane proteins, Western blotting, and radio-ligand binding and provided evidence of functional GRP94 expression at the surface of gastric mucosa parietal cells anchored to the basolateral domain. Our results show that GRP94 is not an integral membrane protein since 50 mM Na2CO3 treatment dissociates part of it from the membrane. However, 100 mM Na2CO3 treatment did not extract all GRP94 from the membrane, which indicates that it is strongly associated with it. The presence of GRP94 in isolated plasma membrane was demonstrated by Western blotting and its functionality by radio-ligand binding experiments. Both the K(D) value obtained in saturation experiments with N-ethylcarboxamido-[3H]adenosine at 4°C, at the nanomolar range, and the inhibition constant of its binding by radicicol, the most specific GRP94 inhibitor, indicate that active receptor regions are exposed at the membrane surface. Western blotting of plasma membrane subfractions showed that GRP94 is mainly expressed in the basolateral membrane of gastric parietal cells, while its presence in the apical domain is negligible, thereby inferring a role for GRP94 in processes operating in this membrane domain.


Assuntos
Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Células Parietais Gástricas/metabolismo , Adenosina-5'-(N-etilcarboxamida)/química , Adenosina-5'-(N-etilcarboxamida)/metabolismo , Animais , Carbonatos/química , Membrana Celular/metabolismo , Feminino , Mucosa Gástrica/citologia , Mucosa Gástrica/metabolismo , Proteínas de Choque Térmico HSP70/química , Cinética , Macrolídeos/química , Macrolídeos/metabolismo , Masculino , Proteínas de Membrana/química , Células Parietais Gástricas/citologia , Ligação Proteica , Coelhos
11.
Am J Physiol Lung Cell Mol Physiol ; 306(6): L497-507, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24414256

RESUMO

Acute lung injury and acute respiratory distress syndrome (ALI/ARDS) affect 200,000 people a year in the USA. Pulmonary vascular and specifically endothelial cell (EC) barrier compromise is a hallmark of these diseases. We have recently shown that extracellular adenosine enhances human pulmonary (EC) barrier via activation of adenosine receptors (ARs) in cell cultures. On the basis of these data, we hypothesized that activation of ARs might exert barrier-protective effects in a model of ALI/ARDS in mice. To test this hypothesis, we examined the effects of pre- and posttreatment of adenosine and 5'-N-ethylcarboxamidoadenosine (NECA), a nonselective stable AR agonist, on LPS-induced lung injury. Mice were given vehicle or LPS intratracheally followed by adenosine, NECA, or vehicle instilled via the internal jugular vein. Postexperiment cell counts, Evans Blue Dye albumin (EBDA) extravasation, levels of proteins, and inflammatory cytokines were analyzed. Harvested lungs were used for histology and myeloperoxidase studies. Mice challenged with LPS alone demonstrated an inflammatory response typical of ALI. Cell counts, EBDA extravasation, as well as levels of proteins and inflammatory cytokines were decreased in adenosine-treated mice. Histology displayed reduced infiltration of neutrophils. NECA had a similar effect on LPS-induced vascular barrier compromise. Importantly, posttreatment with adenosine or NECA recovers lung vascular barrier and reduces inflammation induced by LPS challenge. Furthermore, adenosine significantly attenuated protein degradation of A2A and A3 receptors induced by LPS. Collectively, our results demonstrate that activation of ARs protects and restores vascular barrier functions and reduces inflammation in LPS-induced ALI.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Adenosina/metabolismo , Endotélio/metabolismo , Receptores Purinérgicos P1/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Adenosina-5'-(N-etilcarboxamida)/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/citologia , Permeabilidade Capilar/efeitos dos fármacos , Contagem de Células , Citocinas/metabolismo , Células Endoteliais/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos , Pulmão/metabolismo , Pulmão/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Agonistas do Receptor Purinérgico P1/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
12.
J Chem Inf Model ; 54(1): 169-83, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24359090

RESUMO

G protein-coupled receptors (GPCRs) represent the largest family of cell-surface receptors and about one-third of the actual targets of clinically used drugs. Following the progress made in the field of GPCRs structural determination, docking-based screening for novel potent and selective ligands is becoming an increasingly adopted strategy in the drug discovery process. However, this methodology is not yet able to anticipate the "bioactive" binding mode and discern it among other conformations. In the present work, we present a novel approach consisting in the integration of molecular docking and membrane MD simulations with the aim to merge the rapid sampling of ligand poses into in the binding site, typical of docking algorithms, with the thermodynamic accuracy of MD simulations in describing, at the molecular level, the stability a GPCR-ligand complex embedded into explicit lipid-water environment. To validate our approach, we have chosen as a key study the human A(2A) adenosine receptor (hA(2A) AR) and selected four receptor-antagonist complexes and one receptor-agonist complex that have been recently crystallized. In light of the obtained results, we believe that our novel strategy can be extended to other GPCRs and might represent a valuable tool to anticipate the "bioactive" conformation of high-affinity ligands.


Assuntos
Receptor A2A de Adenosina/química , Receptor A2A de Adenosina/metabolismo , Agonistas do Receptor A2 de Adenosina/química , Agonistas do Receptor A2 de Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/metabolismo , Adenosina-5'-(N-etilcarboxamida)/química , Adenosina-5'-(N-etilcarboxamida)/metabolismo , Algoritmos , Sítios de Ligação , Cafeína/química , Cafeína/metabolismo , Biologia Computacional , Simulação por Computador , Cristalografia por Raios X , Humanos , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Eletricidade Estática , Homologia Estrutural de Proteína
13.
Nature ; 474(7352): 521-5, 2011 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-21593763

RESUMO

Adenosine receptors and ß-adrenoceptors are G-protein-coupled receptors (GPCRs) that activate intracellular G proteins on binding the agonists adenosine or noradrenaline, respectively. GPCRs have similar structures consisting of seven transmembrane helices that contain well-conserved sequence motifs, indicating that they are probably activated by a common mechanism. Recent structures of ß-adrenoceptors highlight residues in transmembrane region 5 that initially bind specifically to agonists rather than to antagonists, indicating that these residues have an important role in agonist-induced activation of receptors. Here we present two crystal structures of the thermostabilized human adenosine A(2A) receptor (A(2A)R-GL31) bound to its endogenous agonist adenosine and the synthetic agonist NECA. The structures represent an intermediate conformation between the inactive and active states, because they share all the features of GPCRs that are thought to be in a fully activated state, except that the cytoplasmic end of transmembrane helix 6 partially occludes the G-protein-binding site. The adenine substituent of the agonists binds in a similar fashion to the chemically related region of the inverse agonist ZM241385 (ref. 8). Both agonists contain a ribose group, not found in ZM241385, which extends deep into the ligand-binding pocket where it makes polar interactions with conserved residues in H7 (Ser 277(7.42) and His 278(7.43); superscripts refer to Ballesteros-Weinstein numbering) and non-polar interactions with residues in H3. In contrast, the inverse agonist ZM241385 does not interact with any of these residues and comparison with the agonist-bound structures indicates that ZM241385 sterically prevents the conformational change in H5 and therefore it acts as an inverse agonist. Comparison of the agonist-bound structures of A(2A)R with the agonist-bound structures of ß-adrenoceptors indicates that the contraction of the ligand-binding pocket caused by the inward motion of helices 3, 5 and 7 may be a common feature in the activation of all GPCRs.


Assuntos
Agonistas do Receptor A2 de Adenosina/metabolismo , Receptor A2A de Adenosina/química , Receptor A2A de Adenosina/metabolismo , Adenosina/química , Adenosina/metabolismo , Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Adenosina-5'-(N-etilcarboxamida)/química , Adenosina-5'-(N-etilcarboxamida)/metabolismo , Adenosina-5'-(N-etilcarboxamida)/farmacologia , Animais , Sítios de Ligação , Células CHO , Cricetinae , Cricetulus , Cristalografia por Raios X , Agonismo Inverso de Drogas , Humanos , Ligantes , Modelos Moleculares , Conformação Molecular , Triazinas/metabolismo , Triazinas/farmacologia , Triazóis/metabolismo , Triazóis/farmacologia
14.
J Mol Cell Cardiol ; 49(1): 41-7, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20144616

RESUMO

Exogenous zinc can protect cardiac cells from reperfusion injury, but the exact roles of endogenous zinc in the pathogenesis of reperfusion injury and in adenosine A(2) receptor activation-induced cardioprotection against reperfusion injury remain unknown. Adenosine A(1)/A(2) receptor agonist 5'-(N-ethylcarboxamido) adenosine (NECA) given at reperfusion reduced infarct size in isolated rat hearts subjected to 30min ischemia followed by 2h of reperfusion. This effect of NECA was partially but significantly blocked by the zinc chelator N,N,N',N'-tetrakis-(2-pyridylmethyl) ethylenediamine (TPEN), and ZnCl(2) given at reperfusion mimicked the effect of NECA by reducing infarct size. Total tissue zinc concentrations measured with inductively coupled plasma optical emission spectroscopy (ICPOES) were decreased upon reperfusion in rat hearts and this was reversed by NECA. NECA increased intracellular free zinc during reperfusion in the heart. Confocal imaging study showed a rapid increase in intracellular free zinc in isolated rat cardiomyocytes treated with NECA. Further experiments revealed that NECA increased total zinc levels upon reperfusion in mitochondria isolated from isolated hearts. NECA attenuated mitochondrial swelling upon reperfusion in isolated hearts and this was inhibited by TPEN. Similarly, NECA prevented the loss of mitochondrial membrane potential (DeltaPsim) caused by oxidant stress in cardiomyocytes. Finally, both NECA and ZnCl(2) inhibited the mitochondrial metabolic activity. NECA-induced cardioprotection against reperfusion injury is mediated by intracellular zinc. NECA prevents reperfusion-induced zinc loss and relocates zinc to mitochondria. The inhibitory effects of zinc on both the mPTP opening and the mitochondrial metabolic activity may account for the cardioprotective effect of NECA.


Assuntos
Traumatismo por Reperfusão/prevenção & controle , Zinco/metabolismo , Zinco/farmacologia , Adenosina/metabolismo , Adenosina/farmacologia , Adenosina-5'-(N-etilcarboxamida)/metabolismo , Adenosina-5'-(N-etilcarboxamida)/farmacologia , Animais , Citoplasma/metabolismo , Etilenodiaminas/metabolismo , Etilenodiaminas/farmacologia , Coração , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ratos , Ratos Wistar , Traumatismo por Reperfusão/metabolismo
15.
Br J Pharmacol ; 159(4): 772-86, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20105183

RESUMO

BACKGROUND AND PURPOSE: The introduction of fluorescence-based techniques, and in particular the development of fluorescent ligands, has allowed the study of G protein-coupled receptor pharmacology at the single cell and single molecule level. This study evaluated how the physicochemical nature of the linker and the fluorophore affected the pharmacological properties of fluorescent agonists and antagonists. EXPERIMENTAL APPROACH: Chinese hamster ovary cells stably expressing the human adenosine A(1) receptor and a cyclic 3',5' adenosine monophosphate response element-secreted placental alkaline phosphatase (CRE-SPAP) reporter gene, together with whole cell [(3)H]-8-cyclopentyl-1,3-dipropylxanthine (DPCPX) radioligand binding, were used to evaluate the pharmacological properties of a range of fluorescent ligands based on the antagonist xanthine amine congener (XAC) and the agonist 5' (N-ethylcarboxamido) adenosine (NECA). KEY RESULTS: Derivatives of NECA and XAC with different fluorophores, but equivalent linker length, showed significant differences in their binding properties to the adenosine A(1) receptor. The BODIPY 630/650 derivatives had the highest affinity. Linker length also affected the pharmacological properties, depending on the fluorophore used. Particularly in fluorescent agonists, higher agonist potency could be achieved with large or small linkers for dansyl and BODIPY 630/650 derivatives, respectively. CONCLUSIONS AND IMPLICATIONS: The pharmacology of a fluorescent ligand was critically influenced by both the fluorophore and the associated linker. Furthermore, our data strongly suggest that the physicochemical properties of the fluorophore/linker pairing determine where in the environment of the target receptor the fluorophore is placed, and this, together with the environmental sensitivity of the resulting fluorescence, may finally decide its utility as a fluorescent probe.


Assuntos
Corantes Fluorescentes/metabolismo , Ligantes , Microscopia Confocal , Imagem Molecular , Técnicas de Sonda Molecular , Receptor A1 de Adenosina/metabolismo , Adenosina-5'-(N-etilcarboxamida)/química , Adenosina-5'-(N-etilcarboxamida)/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Compostos de Boro/metabolismo , Células CHO , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Compostos de Dansil/metabolismo , Proteínas Ligadas por GPI , Genes Reporter , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Estrutura Molecular , Ensaio Radioligante , Receptor A1 de Adenosina/genética , Elementos de Resposta , Transfecção , Xantinas/química , Xantinas/metabolismo
16.
BMC Pharmacol ; 8: 20, 2008 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-19077268

RESUMO

BACKGROUND: A series of 1H-imidazo- [4,5-c]quinolin-4-amine derivatives, represented by LUF6000 (N-(3,4-dichloro-phenyl)-2-cyclohexyl-1H-imidazo [4,5-c]quinolin-4-amine), are allosteric modulators of the human A3 adenosine receptor (AR). Here we studied the modulation by LUF6000 of the maximum effect (Emax) of structurally diverse agonists at the A3 AR stably expressed in CHO cells. RESULTS: In an assay of [35S]GTPgammaS binding, the Emax of the A3 AR agonist Cl-IB-MECA at the A3 AR was lower than that of the non-selective AR agonist NECA. LUF6000 exerted an Emax-enhancing effect at a concentration of 0.1 microM or higher, and was shown to increase the Emax of Cl-IB-MECA and other low-efficacy agonists to a larger extent than that of the high-efficacy agonist NECA. Interestingly, LUF6000 converted a nucleoside A3 AR antagonist MRS542, but not a non-nucleoside antagonist MRS1220, into an agonist. LUF6000 alone did not show any effect. Mathematical modeling was performed to explain the differential effects of LUF6000 on agonists with various Emax. A simple explanation for the observation that LUF6000 has a much stronger effect on Cl-IB-MECA than on NECA derived from the mathematical modeling is that NECA has relatively strong intrinsic efficacy, such that the response is already close to the maximum response. Therefore, LUF6000 cannot enhance Emax much further. CONCLUSION: LUF6000 was found to be an allosteric enhancer of Emax of structurally diverse agonists at the A3 AR, being more effective for low-Emax agonists than for high-Emax agonists. LUF6000 was demonstrated to convert an antagonist into an agonist, which represents the first example in G protein-coupled receptors. The observations from the present study are consistent with that predicted by mathematical modeling.


Assuntos
Agonistas do Receptor A3 de Adenosina , Antagonistas do Receptor A3 de Adenosina , Adenosina-5'-(N-etilcarboxamida)/metabolismo , Adenosina/análogos & derivados , Aminoquinolinas/farmacologia , Imidazóis/farmacologia , Adenosina/metabolismo , Regulação Alostérica , Animais , Ligação Competitiva/efeitos dos fármacos , Células CHO , Cricetinae , Cricetulus , Guanosina 5'-O-(3-Tiotrifosfato) , Humanos , Modelos Teóricos , Ensaio Radioligante , Receptor A3 de Adenosina/metabolismo
17.
Biochem Pharmacol ; 71(6): 865-71, 2006 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-16414025

RESUMO

Initial mutagenesis studies exploring the ligand recognition model of A1 adenosine receptor (A1R) mainly focused on the residues in the 5th-7th transmembrane domains (TMs5-7). Little is known about the role of residues in TM2. To explore the importance of reserved hydrophobic region in TM2 of A1R, we mutated the hydrophobic residues at positions 65 and 69 to hydrophilic residues (L65T, Leu-65 to Thr-65; I69T, Ile-69 to Thr-69; I69S, Ile-69 to Ser-69) to change the hydrophobicity at the outer end of TM2. Binding assays showed that the affinities of mutant receptors were significantly decreased for ribose group-containing agonists (2-chloro-N6-cyclopentyladenosine (CCPA) and 5'-N-ethyl-carboxamidoadenosine (NECA)) but not for antagonists, N6-cyclopentyl-9-methyladenine (N-0840), an adenine derivative lacking ribose group, and 8-cyclopentyl-1, 3-dipropylxanthine (DPCPX), a xanthine derivative. This observation suggests that the hydrophobic region at the outer end of TM2 may mediate the recognition of the ribose group of CCPA and NECA.


Assuntos
Ligantes , Estrutura Terciária de Proteína , Receptor A1 de Adenosina/química , Adenina/análogos & derivados , Adenina/química , Adenina/metabolismo , Adenosina/análogos & derivados , Adenosina/química , Adenosina/metabolismo , Agonistas do Receptor A1 de Adenosina , Antagonistas do Receptor A1 de Adenosina , Adenosina-5'-(N-etilcarboxamida)/química , Adenosina-5'-(N-etilcarboxamida)/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Membrana Celular , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Ratos , Xantinas/química , Xantinas/metabolismo
18.
J Med Chem ; 48(26): 8253-60, 2005 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-16366607

RESUMO

The Cambridge Structural Database (CSD) was searched through two 3D queries based on substructures shared by well-known antagonists at the A(1) and A(3) adenosine receptors (ARs). Among the resulting 557 hits found in the CSD, we selected five compounds to purchase, synthesize, or translate synthetically into analogues better tailored to interact with the biological targets. Binding experiments using human ARs showed that four out of five tested compounds turned out to be antagonists at the A(1)AR or A(3)AR with K(i) values between 50 and 440 nM. Lead optimizations of 2-(benzimidazol-2-yl)quinoxalines (BIQs, 3) gave the best results in terms of potency and selectivity at the A(1) and A(3) ARs. Particularly, 2-(4-ethylthiobenzimidazol-2-yl)quinoxaline (3e) exhibited K(i) values at the A(1)AR, A(2A)AR, and A(3)AR of 0.5, 3440, and 955 nM, respectively, whereas 2-(4-methylbenzimidazol-2-yl)quinoxaline (3b) displayed at the same ARs K(i) values of 8000, 833, and 26 nM, respectively.


Assuntos
Antagonistas do Receptor A1 de Adenosina , Antagonistas do Receptor A3 de Adenosina , Benzimidazóis/síntese química , Bases de Dados Factuais , Quinoxalinas/síntese química , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina-5'-(N-etilcarboxamida)/metabolismo , Animais , Benzimidazóis/química , Ligação Competitiva , Células CHO , Cricetinae , Desenho de Fármacos , Humanos , Quinoxalinas/química , Receptor A1 de Adenosina/química , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptor A3 de Adenosina/química , Receptor A3 de Adenosina/metabolismo , Xantinas/metabolismo
19.
Br J Pharmacol ; 146(4): 604-11, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16086036

RESUMO

The effects of paeoniflorin (PF), a compound isolated from Paeony radix, on neurological impairment and histologically measured infarction volume following transient and permanent focal ischemia were examined in Sprague-Dawley rats. In transient ischemia model, rats were subjected to a 1.5-h occlusion of the middle cerebral artery (MCA). The administration of PF (2.5 and 5 mg kg(-1), s.c.) produced a dose-dependent decrease in both neurological impairment and the histologically measured infarction volume. Similar results were also obtained when PF (2.5, 5, and 10 mg kg(-1), s.c.) was given in permanent ischemia model. The neuroprotective effect of PF (10 mg kg(-1), s.c.) was abolished by pretreatment of DPCPX (0.25 mg kg(-1), s.c.), a selective adenosine A1 receptor (A1R) antagonist. PF (10, 40, and 160 mg kg(-1), i.v.) had no effect on mean arterial pressure (MAP) and heart rates (HR) in the conscious rat. Additionally, PF (10(-3) mol l(-1)) had no effect on noradrenaline- (NA-) or high K+ concentration-induced contractions of isolated rabbit primary artery. In competitive binding experiments, PF did not compete with the binding of [3H]DPCPX, but displaced the binding of [3H]NECA to the membrane preparation of rat cerebral cortex. This binding manner was distinguished from the classical A1R agonists. The results demonstrated that activation of A1R might be involved in PF-induced neuroprotection in cerebral ischemia in rat. However, PF had no 'well-known' cardiovascular side effects of classical A1R agonists. The results suggest that PF might have the potential therapeutic value as an anti-stroke drug.


Assuntos
Benzoatos/farmacologia , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Glucosídeos/farmacologia , Infarto da Artéria Cerebral Média/prevenção & controle , Ataque Isquêmico Transitório/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Paeonia , Receptor A1 de Adenosina/efeitos dos fármacos , Adenosina-5'-(N-etilcarboxamida)/metabolismo , Animais , Benzoatos/administração & dosagem , Benzoatos/metabolismo , Ligação Competitiva , Hidrocarbonetos Aromáticos com Pontes/administração & dosagem , Hidrocarbonetos Aromáticos com Pontes/metabolismo , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Glucosídeos/administração & dosagem , Glucosídeos/metabolismo , Infarto da Artéria Cerebral Média/patologia , Concentração Inibidora 50 , Ataque Isquêmico Transitório/patologia , Masculino , Monoterpenos , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/metabolismo , Raízes de Plantas , Ratos , Ratos Sprague-Dawley , Receptor A1 de Adenosina/metabolismo , Fatores de Tempo , Xantinas/administração & dosagem , Xantinas/farmacologia
20.
Arthritis Res Ther ; 7(2): R189-95, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15743465

RESUMO

We conducted the present study to investigate protein expression and functioning of A2A and A2B adenosine receptors (ARs) in neutrophils of patients affected by systemic sclerosis (SSc). The presence of A2A and A2B ARs was assessed by immunoblotting using specific antibodies. Equilibrium A2A and A2B ARs binding parameters were evaluated by radioligand binding assay. Functional studies were conducted to investigate coupling of the A2B AR to the adenylyl cyclase pathway. This is the first report of the use of Western blot analysis to confirm the presence of A2A and A2B ARs in human neutrophils. No significant changes in A2A AR binding parameters or expression levels were detected between SSc patients and healthy control individuals. A significant decrease (65%) in the maximum density of A2B AR binding sites occurred in SSc neutrophils, whereas no changes in the affinity constant values were found. Moreover, a decrease in A2B AR mediated adenylyl cyclase activity was observed in patients with SSc. Our findings demonstrate the occurrence of selective alterations in A2B AR density and signalling in SSc.


Assuntos
Doenças Autoimunes/sangue , Neutrófilos/química , Receptor A2B de Adenosina/sangue , Escleroderma Sistêmico/sangue , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/fisiologia , Adenosina-5'-(N-etilcarboxamida)/metabolismo , Adenilil Ciclases/sangue , Adulto , Idoso , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Western Blotting , AMP Cíclico/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neutrófilos/patologia , Fenetilaminas/metabolismo , Ensaio Radioligante , Receptor A2A de Adenosina/sangue , Receptor A2B de Adenosina/deficiência , Receptor A2B de Adenosina/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Escleroderma Sistêmico/imunologia , Escleroderma Sistêmico/patologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA