Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Biomolecules ; 10(8)2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752270

RESUMO

Posttranslational modifications of cellular proteins by covalent conjugation of ubiquitin and ubiquitin-like polypeptides regulate numerous cellular processes that are captured by viruses to promote infection, replication, and spreading. The importance of these protein modifications for the viral life cycle is underscored by the discovery that many viruses encode deconjugases that reverse their functions. The structural and functional characterization of these viral enzymes and the identification of their viral and cellular substrates is providing valuable insights into the biology of viral infections and the host's antiviral defense. Given the growing body of evidence demonstrating their key contribution to pathogenesis, the viral deconjugases are now recognized as attractive targets for the design of novel antiviral therapeutics.


Assuntos
Antivirais/farmacologia , Enzimas/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Ubiquitina/metabolismo , Proteínas Virais/metabolismo , Viroses/metabolismo , Adenoviridae/enzimologia , Coronavirus/enzimologia , Enzimas/química , Herpesviridae/enzimologia , Humanos , Processamento de Proteína Pós-Traducional , Proteínas Virais/química , Viroses/tratamento farmacológico
2.
Toxicol Sci ; 168(2): 430-442, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30561685

RESUMO

Deiodinase enzymes play an essential role in converting thyroid hormones between active and inactive forms by deiodinating the pro-hormone thyroxine (T4) to the active hormone triiodothyronine (T3) and modifying T4 and T3 to inactive forms. Chemical inhibition of deiodinase activity has been identified as an important endpoint to include in screening chemicals for thyroid hormone disruption. To address the lack of data regarding chemicals that inhibit the deiodinase enzymes, we developed robust in vitro assays that utilized human deiodinase types 1, 2, and 3 and screened over 1800 unique chemicals from the U.S. EPA's ToxCast phase 1_v2, phase 2, and e1k libraries. Initial testing at a single concentration identified 411 putative deiodinase inhibitors that produced inhibition of 20% or greater in at least 1 of the 3 deiodinase assays, including chemicals that have not previously been shown to inhibit deiodinases. Of these, 228 chemicals produced enzyme inhibition of 50% or greater; these chemicals were further tested in concentration-response to determine relative potency. Comparisons across these deiodinase assays identified 81 chemicals that produced selective inhibition, with 50% inhibition or greater of only 1 of the deiodinases. This set of 3 deiodinase inhibition assays provides a significant contribution toward expanding the limited number of in vitro assays used to identify chemicals with the potential to interfere with thyroid hormone homeostasis. In addition, these results set the groundwork for development and evaluation of structure-activity relationships for deiodinase inhibition, and inform targeted selection of chemicals for further testing to identify adverse outcomes of deiodinase inhibition.


Assuntos
Inibidores Enzimáticos/toxicidade , Iodeto Peroxidase/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/toxicidade , Adenoviridae/enzimologia , Bioensaio , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Concentração Inibidora 50 , Iodeto Peroxidase/genética , Iodetos/análise , Transfecção , Iodotironina Desiodinase Tipo II
3.
Virology ; 497: 251-261, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27498408

RESUMO

Deoxyuridine 5'-triphosphate pyrophosphatase (dUTPase), a ubiquitous enzyme that catalyzes the hydrolysis of dUTP to dUMP and found in many viruses, has yet to be identified in fowl adenovirus 9 (FAdV-9). By a multiple alignment of dUTPase amino acid sequences, FAdV-9 ORF1 contained the five conserved motifs that define the protein family, and encoded a functional dUTPase. Moreover, transcription and protein expression patterns were characterized, indicating that dUTPase was transcribed from 2h post-infection (h.p.i.) and translated from 6h.p.i., and both continued to the late phase of virus infection. An HA-tagged dUTPase recombinant virus was generated, and dUTPase was found to be localized in both the cytoplasm and nucleus in chicken hepatoma cells (CH-SAH). A dUTPase knockout virus was generated and compared with the wild-type virus, showing that dUTPase upregulated the expression of type I interferons, but was not required for viral DNA or virus replication in CH-SAH cells.


Assuntos
Adenoviridae/enzimologia , Adenoviridae/genética , Pirofosfatases/genética , Pirofosfatases/metabolismo , Adenoviridae/classificação , Sequência de Aminoácidos , Animais , Citocinas/genética , Ativação Enzimática , Genoma Viral , Mutação , Fases de Leitura Aberta , Biossíntese de Proteínas , Transporte Proteico , Pirofosfatases/química , RNA Mensageiro/genética , Transcrição Gênica
4.
Mol Ther ; 24(4): 796-804, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26708004

RESUMO

Spread of oncolytic viruses through tumor tissue is essential to effective virotherapy. Interstitial matrix is thought to be a significant barrier to virus particle convection between "islands" of tumor cells. One way to address this is to encode matrix-degrading enzymes within oncolytic viruses, for secretion from infected cells. To test the hypothesis that extracellular DNA provides an important barrier, we assessed the ability of DNase to promote virus spread. Nonreplicating Ad5 vectors expressing actin-resistant DNase (aDNAse I), proteinase K (PK), hyaluronidase (rhPH20), and chondroitinase ABC (CABC) were injected into established DLD human colorectal adenocarcinoma xenografts, transcomplemented with a replicating Ad5 virus. Each enzyme improved oncolysis by the replicating adenovirus, with no evidence of tumor cells being shed into the bloodstream. aDNAse I and rhPH20 hyaluronidase were then cloned into conditionally-replicating group B adenovirus, Enadenotucirev (EnAd). EnAd encoding each enzyme showed significantly better antitumor efficacy than the parental virus, with the aDNAse I-expressing virus showing improved spread. Both DNase and hyaluronidase activity was still measurable 32 days postinfection. This is the first time that extracellular DNA has been implicated as a barrier for interstitial virus spread, and suggests that oncolytic viruses expressing aDNAse I may be promising candidates for clinical translation.


Assuntos
Adenoviridae/fisiologia , Neoplasias Colorretais/terapia , Desoxirribonuclease I/metabolismo , Terapia Viral Oncolítica/métodos , Adenoviridae/enzimologia , Adenoviridae/genética , Animais , Linhagem Celular Tumoral , Desoxirribonuclease I/genética , Vetores Genéticos/administração & dosagem , Humanos , Camundongos , Vírus Oncolíticos/enzimologia , Vírus Oncolíticos/genética , Especificidade de Órgãos , Replicação Viral , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Drug Des Devel Ther ; 9: 3301-12, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26203222

RESUMO

BACKGROUND: Suicide gene therapy in cancer can selectively kill tumors without damaging normal tissues. Drosophila melanogaster multisubstrate deoxyribonucleoside kinase (Dm-dNK), an original suicide kinase, makes use of the carcinomatous suicide gene therapy for broader substrate specificity and a higher catalytic rate. METHODS: To enhance the anti-tumor efficacy of Dm-dNK and maintain its substrate specificity and safety control in the meantime, the conditionally replicative gene-viral system, ZD55-dNK (which contains the selective replication adenovirus, ZD55, encoded with Dm-dNK), was investigated in pushing a deeper development of this strategy. Selective replication, cell killing efficacy, and cytotoxicity, in combination with chemotherapy, were applied to two breast cell lines (MDA231 and MCF7 cells), two normal cell lines (WI38 and MRC5 cells), and the MCF7 xenograft model in vivo. RESULTS: The preclinical study showed that ZD55-dNK, combined with 2',2'-difluorodeoxycytidine (DFDC), synergistically inhibited adenovirus replication in vitro but maintained specifically cancer cell killing efficacy. ZD55-dNK also greatly improved the antineoplastic effect in vitro and in breast cancer xenograft in vivo. CONCLUSION: The concomitant use of ZD55-dNK and DFDC is possibly a novel and promising approach to breast cancer treatment, and further investigation on the safe control of excessive virus replication and the efficacy of this approach in humans is warranted.


Assuntos
Adenoviridae/genética , Antimetabólitos Antineoplásicos/farmacologia , Neoplasias da Mama/terapia , Desoxicitidina/análogos & derivados , Proteínas de Drosophila/genética , Genes Transgênicos Suicidas , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Adenoviridae/enzimologia , Adenoviridae/crescimento & desenvolvimento , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Desoxicitidina/farmacologia , Proteínas de Drosophila/biossíntese , Feminino , Humanos , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Nus , Vírus Oncolíticos/enzimologia , Vírus Oncolíticos/crescimento & desenvolvimento , Fosfotransferases (Aceptor do Grupo Álcool)/biossíntese , Fatores de Tempo , Transdução Genética , Replicação Viral , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
6.
Cell Host Microbe ; 18(1): 75-85, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26159720

RESUMO

During cell entry, non-enveloped viruses undergo partial uncoating to expose membrane lytic proteins for gaining access to the cytoplasm. We report that adenovirus uses membrane piercing to induce and hijack cellular wound removal processes that facilitate further membrane disruption and infection. Incoming adenovirus stimulates calcium influx and lysosomal exocytosis, a membrane repair mechanism resulting in release of acid sphingomyelinase (ASMase) and degradation of sphingomyelin to ceramide lipids in the plasma membrane. Lysosomal exocytosis is triggered by small plasma membrane lesions induced by the viral membrane lytic protein-VI, which is exposed upon mechanical cues from virus receptors, followed by virus endocytosis into leaky endosomes. Chemical inhibition or RNA interference of ASMase slows virus endocytosis, inhibits virus escape to the cytosol, and reduces infection. Ceramide enhances binding of protein-VI to lipid membranes and protein-VI-induced membrane rupture. Thus, adenovirus uses a positive feedback loop between virus uncoating and lipid signaling for efficient membrane penetration.


Assuntos
Adenoviridae/fisiologia , Proteínas do Capsídeo/metabolismo , Membrana Celular/fisiologia , Interações Hospedeiro-Patógeno , Internalização do Vírus , Adenoviridae/enzimologia , Biotransformação , Membrana Celular/metabolismo , Ceramidas/metabolismo , Endocitose , Exocitose , Células HeLa , Humanos , Lisossomos/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielinas/metabolismo
7.
Bioorg Med Chem Lett ; 25(3): 438-43, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25571794

RESUMO

Adenoviral infections are associated with a wide range of acute diseases, among which ocular viral conjunctivitis (EKC) and disseminated disease in immunocompromised patients. To date, no approved specific anti-adenoviral drug is available, but there is a growing need for an effective treatment of such infections. The adenoviral protease, adenain, plays a crucial role for the viral lifecycle and thus represents an attractive therapeutic target. Structure-guided design with the objective to depeptidize tetrapeptide nitrile 1 led to the novel chemotype 2. Optimization of scaffold 2 resulted in picomolar adenain inhibitors 3a and 3b. In addition, a complementary series of irreversible vinyl sulfone containing inhibitors were rationally designed, prepared and evaluated against adenoviral protease. High resolution X-ray co-crystal structures of representatives of each series proves the successful design of these inhibitors and provides an excellent basis for future medicinal chemistry optimization of these compounds.


Assuntos
Adenoviridae/enzimologia , Antivirais/química , Cisteína Endopeptidases/química , Desenho de Fármacos , Inibidores de Proteases/química , Proteínas Virais/antagonistas & inibidores , Adenoviridae/efeitos dos fármacos , Antivirais/metabolismo , Antivirais/toxicidade , Sítios de Ligação , Cristalografia por Raios X , Cisteína Endopeptidases/metabolismo , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Inibidores de Proteases/metabolismo , Inibidores de Proteases/toxicidade , Ligação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Proteínas Virais/metabolismo
8.
Cancer Lett ; 359(2): 206-10, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25596375

RESUMO

PDX1 is overexpressed in pancreatic cancer, and activates the insulin promoter (IP). Adenoviral IP-thymidine kinase and ganciclovir (TK/GCV) suppresses human pancreatic ductal carcinoma (PDAC) in mice, but repeated doses carry significant toxicity. We hypothesized that multiple cycles of liposomal IP-TK/GCV ablate human PDAC in SCID mice with minimal toxicity compared to adenoviral IP-TK/GCV. SCID mice with intraperitoneal human pancreatic cancer PANC-1 tumor implants were given a single cycle of 35 µg iv L-IP-TK, or four cycles of 1, 10, 20, 30, or 35 µg iv L-IP-TK (n = 20 per group), followed by intraperitoneal GCV. Insulin and glucose levels were monitored in mice treated with four cycles of 35 µg iv L-IP-TK. We found that four cycles of 10-35 µg L-IP-TK/GCV ablated more PANC-1 tumor volume compared to a single cycle with 35 µg. Mice that received four cycles of 10 µg L-IP-TK demonstrated the longest survival (P < 0.05), with a median survival of 126 days. In comparison, mice that received a single cycle of 35 µg L-IP-TK/GCV or GCV alone survived a median of 92 days and 68.7 days, respectively. There were no significant changes in glucose or insulin levels following treatment. In conclusion, multiple cycles of liposomal IP-TK/GCV ablate human PDAC in SCID mice with minimal toxicity, suggesting non-viral vectors are superior to adenoviral vectors for IP-gene therapy.


Assuntos
Antivirais/uso terapêutico , Carcinoma Ductal Pancreático/terapia , Ganciclovir/uso terapêutico , Neoplasias Pancreáticas/terapia , Timidina Quinase/genética , Proteínas Virais/genética , Adenoviridae/enzimologia , Animais , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Terapia Genética , Humanos , Insulina/genética , Ilhotas Pancreáticas/patologia , Lipossomos , Masculino , Camundongos SCID , Neoplasias Pancreáticas/patologia , Regiões Promotoras Genéticas , Ratos , Timidina Quinase/biossíntese , Transfecção , Carga Tumoral , Proteínas Virais/biossíntese , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Clin Vaccine Immunol ; 21(11): 1550-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25230938

RESUMO

The bacterial second messenger cyclic di-GMP (c-di-GMP) stimulates inflammation by initiating innate immune cell recruitment and triggering the release of proinflammatory cytokines and chemokines. These properties make c-di-GMP a promising candidate for use as a vaccine adjuvant, and numerous studies have demonstrated that administration of purified c-di-GMP with different antigens increases protection against infection in animal models. Here, we have developed a novel approach to produce c-di-GMP inside host cells as an adjuvant to exploit a host-pathogen interaction and initiate an innate immune response. We have demonstrated that c-di-GMP can be synthesized in vivo by transducing a diguanylate cyclase (DGC) gene into mammalian cells using an adenovirus serotype 5 (Ad5) vector. Expression of DGC led to the production of c-di-GMP in vitro and in vivo, and this was able to alter proinflammatory gene expression in murine tissues and increase the secretion of numerous cytokines and chemokines when administered to animals. Furthermore, coexpression of DGC modestly increased T-cell responses to a Clostridium difficile antigen expressed from an adenovirus vaccine, although no significant differences in antibody titers were observed. This adenovirus c-di-GMP delivery system offers a novel method to administer c-di-GMP as an adjuvant to stimulate innate immunity during vaccination.


Assuntos
Adenoviridae/enzimologia , Adjuvantes Imunológicos/metabolismo , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Imunidade Inata/efeitos dos fármacos , Fósforo-Oxigênio Liases/metabolismo , Adenoviridae/genética , Adenoviridae/imunologia , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Vacinas Bacterianas/imunologia , Clostridioides difficile/genética , Clostridioides difficile/imunologia , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Masculino , Camundongos Endogâmicos BALB C , Fósforo-Oxigênio Liases/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução Genética
10.
Infect Genet Evol ; 25: 117-21, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24788000

RESUMO

Members of the family Adenoviridae are divided into five genera and infect a wide variety of vertebrates with a narrow host range, usually restricted to one species. Due to the high genetic diversity and distinct genomic organization, classification of adenoviruses is difficult to achieve and often performed by phylogenetic analysis. The most commonly used region for phylogenetic inference of adenoviruses is the DNA polymerase (AdPol) gene carried out at amino acid level. In this paper we investigated the suitability of the U exon to discriminate adenoviruses. The tree based on this genus-common feature, obtained with 23 short amino acid sequences, offered a clearest discrimination of the members of the adenovirus family (Adenoviridae) than the trees generated with the complete or partial polymerase protein sequences. Therefore, our results demonstrate that the U exon is an effective tool for a refined phylogenetic inference and genus classification of the Adenoviridae family.


Assuntos
Adenoviridae/classificação , DNA Viral/genética , DNA Polimerase Dirigida por DNA/genética , Proteínas Virais/genética , Adenoviridae/enzimologia , Adenoviridae/genética , Teorema de Bayes , Evolução Molecular , Éxons , Variação Genética , Filogenia
11.
PLoS One ; 9(4): e94050, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24722669

RESUMO

Adenovirus 5 vectors, known respectively as, the first generation, second generation and oncolytic adenovirus, have been studied extensively in preclinical and clinical trials. However, hitherto few systemic evaluations of the efficacy and toxicity of these adenoviral vectors that have reflected the vertical history of adenovirus based cancer gene therapy strategies have been undertaken. This study has chosen Adv-TK, the well-established adjuvant treatment in cancer, and compared its efficacy and safety with those of the two newly synthesized oncolytic adenovirus vectors encoding the HSV-TK gene, namely M7 and M8. The results obtained showed that systemic administration of 1×10(8) pfu M7 had an anti-tumour efficacy similar to that of 3×10(10) pfu Adv-TK whilst M8 performed even better. Furthermore, compared to Adv-TK, M7 and M8 reduced the incidence of metastases and substantially prolonged the survival time of the mice xenografted with human orthotopic gastric carcinomas with disseminated metastasis. Even more exciting, however, were the similar toxic and immune safety results obtained from the administration of high doses of M7 or M8 in comparison with Adv-TK in immunocompetent and permissive syrian hamster. The data here exhibit a comprehensive display of the efficacy and safety of the three mutants and provide evidence for the future preclinical use of the M7 and M8 viruses.


Assuntos
Adenoviridae/enzimologia , Antineoplásicos/uso terapêutico , Terapia Viral Oncolítica/métodos , Neoplasias Ovarianas/terapia , Neoplasias Gástricas/terapia , Timidina Quinase/química , Adenoviridae/genética , Animais , Apoptose , Linhagem Celular Tumoral , Cricetinae , Feminino , Citometria de Fluxo , Vetores Genéticos , Células HEK293 , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Mesocricetus , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Vírus Oncolíticos/genética , Transgenes
12.
FEBS Lett ; 587(15): 2332-9, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23711373

RESUMO

As there are more than 50 adenovirus serotypes, the likelihood of developing an effective vaccine is low. Here we describe inhibitors of the adenovirus proteinase (AVP) with the ultimate objective of developing anti-adenovirus agents. Inhibitors were identified via structure-based drug design using as druggable sites the active site and a conserved cofactor pocket in the crystal structures of AVP. A lead compound was identified that had an IC50 of 18 µM. One of eight structural derivatives of the lead compound had an IC50 of 140 nM against AVP and an IC50 of 490 nM against the AVP with its cofactor bound.


Assuntos
Adenoviridae/enzimologia , Antivirais/farmacologia , Inibidores de Proteases/farmacologia , Antivirais/química , Cristalografia por Raios X , Modelos Moleculares , Inibidores de Proteases/química
13.
Oncol Rep ; 27(4): 1163-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22210010

RESUMO

hTERTC27, a 27-kDa hTERT C-terminal polypeptide has been demonstrated to cause hTERT-positive HeLa cell apoptosis and inhibits the growth of mouse melanoma. hTERTC27 has been associated with telomere dysfunction, regulation of gene-regulated apoptosis, the cell cycle and activation of natural killer (NK) cells, but its mechanism of action is not fully understood. Here, we report that dendritic cells (DCs) transduced with hTERTC27 can increase T-cell proliferation, and augment the concentration of interleukin-2 (IL-2) and interferon-γ (IFN-γ) in the supernatants of T cells. It can also induce antigen-specific cytotoxic T lymphocytes (CTL) against glioma cells in vitro. Moreover, hTERTC27 gene-transduced DCs exhibit a very potent cytotoxicity to glioma cells in vivo. It could prolong the survival time and inhibit the growth of glioma-bearing mice. These data suggest that hTERTC27 gene-transduced DCs can efficiently enhance immunity against gliomas in vitro and in vivo.


Assuntos
Adenoviridae/enzimologia , Neoplasias Encefálicas/terapia , Células Dendríticas/transplante , Terapia Genética/métodos , Vetores Genéticos , Glioma/terapia , Fragmentos de Peptídeos/metabolismo , Telomerase/metabolismo , Transdução Genética , Imunidade Adaptativa , Adenoviridae/genética , Animais , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Células Dendríticas/enzimologia , Células Dendríticas/imunologia , Feminino , Glioma/enzimologia , Glioma/genética , Glioma/imunologia , Glioma/patologia , Humanos , Interferon gama/metabolismo , Interleucina-2/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/genética , Fenótipo , Linfócitos T/imunologia , Linfócitos T Citotóxicos/imunologia , Telomerase/genética , Fatores de Tempo , Carga Tumoral
14.
J Gene Med ; 14(1): 3-19, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22190534

RESUMO

BACKGROUND: Adenoviruses are a frequent cause of life-threatening infections in immunocompromised patients. Available therapeutics still cannot completely prevent fatal outcomes. By contrast, herpes viruses are well treatable with prodrugs such as ganciclovir (GCV), which are selectively activated in virus-infected cells by virus-encoded thymidine kinases. This effective group of prodrugs is not applicable to adenoviruses and other DNA viruses because they lack those kinases. METHODS: To render adenoviruses amenable to GCV treatment, we generated an adenoviral vector-based delivery system for targeted expression of herpes simplex virus thymidine kinase (HSV-TK) in wild-type adenovirus 5 (wt Ad5)-infected cells. HSV-TK expression was largely restricted to wt virus-infected cells by transcription of the gene from the Ad5 E4 promoter. Its activity is dependent on the adenoviral E1A gene product which is not produced by the vector but is only provided in cells infected with wt adenovirus. The anti-adenoviral effect of HSV-TK expression and concomitant treatment with GCV was assessed in vitro in four different cell lines or primary cells. RESULTS: E4 promoter-mediated HSV-TK background expression was sufficiently low to prevent cytotoxicity in the presence of low-levels GCV in cells not infected with wt Ad5. However, expression was several-fold increased in wt Ad5-infected cells and treatment with low levels of GCV efficiently inhibited wt Ad5 DNA replication. Genome copy numbers and output of infectious particles were reduced by up to > 99.99% and cell viability was greatly increased. CONCLUSIONS: We extended the concept of enzyme/prodrug therapy to adenovirus infections by selectively sensitizing adenovirus-infected cells to treatment with GCV.


Assuntos
Infecções por Adenoviridae/virologia , Adenoviridae/fisiologia , Ganciclovir/farmacologia , Terapia Genética/métodos , Simplexvirus/enzimologia , Timidina Quinase/genética , Carga Viral/efeitos dos fármacos , Adenoviridae/enzimologia , Adenoviridae/genética , Proteínas E1 de Adenovirus/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Elementos Isolantes/genética , Regiões Promotoras Genéticas/genética , Deleção de Sequência/genética , Simplexvirus/efeitos dos fármacos , Simplexvirus/fisiologia , Timidina Quinase/uso terapêutico , Replicação Viral/efeitos dos fármacos
15.
Biochemistry ; 51(1): 391-400, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22191393

RESUMO

The assembly of complex double-stranded DNA viruses includes a genome packaging step where viral DNA is translocated into the confines of a preformed procapsid shell. In most cases, the preferred packaging substrate is a linear concatemer of viral genomes linked head-to-tail. Viral terminase enzymes are responsible for both excision of an individual genome from the concatemer (DNA maturation) and translocation of the duplex into the capsid (DNA packaging). Bacteriophage λ terminase site-specifically nicks viral DNA at the cos site in a concatemer and then physically separates the nicked, annealed strands to mature the genome in preparation for packaging. Here we present biochemical studies on the so-called helicase activity of λ terminase. Previous studies reported that ATP is required for strand separation, and it has been presumed that ATP hydrolysis is required to drive the reaction. We show that ADP and nonhydrolyzable ATP analogues also support strand separation at low (micromolar) concentrations. In addition, the Escherichia coli integration host factor protein (IHF) strongly stimulates the reaction in a nucleotide-independent manner. Finally, we show that elevated concentrations of nucleotide inhibit both ATP- and IHF-stimulated strand separation by λ terminase. We present a model where nucleotide and IHF interact with the large terminase subunit and viral DNA, respectively, to engender a site-specifically bound, catalytically competent genome maturation complex. In contrast, binding of nucleotide to the low-affinity ATP binding site in the small terminase subunit mediates a conformational switch that down-regulates maturation activities and activates the DNA packaging activity of the enzyme. This affords a motor complex that binds tightly, but nonspecifically, to DNA as it translocates the duplex into the capsid shell. These studies have yielded mechanistic insight into the assembly of the maturation complex on viral DNA and its transition to a mobile packaging motor that may be common to all of the complex double-stranded DNA viruses.


Assuntos
Bacteriófago lambda/enzimologia , DNA Helicases/química , DNA Viral/química , Genoma Viral , Proteínas Motores Moleculares/química , Montagem de Vírus/genética , Adenoviridae/enzimologia , Adenoviridae/genética , Fagos Bacilares/enzimologia , Fagos Bacilares/genética , Bacteriófago lambda/genética , DNA Helicases/antagonistas & inibidores , DNA Helicases/genética , DNA Viral/genética , Metabolismo Energético/genética , Modelos Moleculares , Proteínas Motores Moleculares/genética
16.
Artigo em Chinês | MEDLINE | ID: mdl-22097603

RESUMO

OBJECTIVE: In an attempt to study the moleculr characterization and epidemiology of simian adenoviruses in nonhuman primate (NHP) populations. METHODS: We examined a colony of captively bred rhesus macaques (Macaca mulatta) in China for the presence of adenoviral DNA in stool samples. This was done by using the PCR method that targeted the adenovirus polymerase gene, and the PCR positive fragments were cloned for sequencing and phylogenetic analyses. RESULTS: Among the 57 animals analyzed, fecal samples from 12 animals were positive for the presence of adenoviral DNA. The results suggested that the viral DNA clones were primarily segregated into two large groups: SAdV-6 (2 non-redundant sequences) and SAdV-7 (9 non-redundant sequences). In addition, there were three clones with more similarity to SAdV-1, SAdV-3 and HAdV-52 respectively. CONCLUSION: Our data confirmed the prevalence of adenoviral DNA in the feces of NHPs and revealed the adenoviruses in the gastrointestinal tract of the study animals. heterogeneity and phylogenetics of the adenoviruses in the gastrointestinal tract of the study animals.


Assuntos
Adenoviridae/enzimologia , Adenoviridae/isolamento & purificação , DNA Polimerase Dirigida por DNA/genética , Fezes/virologia , Macaca mulatta/virologia , Proteínas Virais/genética , Adenoviridae/classificação , Adenoviridae/genética , Animais , Feminino , Masculino , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
17.
J Virol ; 85(14): 7081-94, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21561915

RESUMO

The adenovirus type 5 (Ad5) E1B-55K and E4orf6 (E1B-55K/E4orf6) proteins are multifunctional regulators of Ad5 replication, participating in many processes required for virus growth. A complex containing the two proteins mediates the degradation of cellular proteins through assembly of an E3 ubiquitin ligase and induces shutoff of host cell protein synthesis through selective nucleocytoplasmic viral late mRNA export. Both proteins shuttle between the nuclear and cytoplasmic compartments via leucine-rich nuclear export signals (NES). However, the role of their NES-dependent export in viral replication has not been established. It was initially shown that mutations in the E4orf6 NES negatively affect viral late gene expression in transfection/infection complementation assays, suggesting that E1B-55K/E4orf6-dependent viral late mRNA export involves a CRM1 export pathway. However, a different conclusion was drawn from similar studies showing that E1B-55K/E4orf6 promote late gene expression without active CRM1 or functional NES. To evaluate the role of the E1B-55K/E4orf6 NES in viral replication in the context of Ad-infected cells and in the presence of functional CRM1, we generated virus mutants carrying amino acid exchanges in the NES of either or both proteins. Phenotypic analyses revealed that mutations in the NES of E1B-55K and/or E4orf6 had no or only moderate effects on viral DNA replication, viral late protein synthesis, or viral late mRNA export. Significantly, such mutations also did not interfere with the degradation of cellular substrates, indicating that the NES of E1B-55K or E4orf6 is dispensable both for late gene expression and for the activity associated with the E3 ubiquitin ligase.


Assuntos
Adenoviridae/metabolismo , Proteínas E1B de Adenovirus/metabolismo , Carioferinas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adenoviridae/enzimologia , Adenoviridae/genética , Proteínas E1B de Adenovirus/genética , Sequência de Bases , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Primers do DNA , Técnica Indireta de Fluorescência para Anticorpo , Células HeLa , Humanos , Mutação , Fases de Leitura Aberta , Reação em Cadeia da Polimerase , Transporte Proteico , Proteína Exportina 1
18.
Am J Physiol Lung Cell Mol Physiol ; 301(2): L161-70, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21571906

RESUMO

Phosphodiesterase 2A (PDE2A) is stimulated by cGMP to hydrolyze cAMP, a potent endothelial barrier-protective molecule. We previously found that lung PDE2A contributed to a mouse model of ventilator-induced lung injury (VILI). The purpose of the present study was to determine the contribution of PDE2A in a two-hit mouse model of 1-day intratracheal (IT) LPS followed by 4 h of 20 ml/kg tidal volume ventilation. Compared with IT water controls, LPS alone (3.75 µg/g body wt) increased lung PDE2A mRNA and protein expression by 6 h with a persistent increase in protein through day 4 before decreasing to control levels on days 6 and 10. Similar to the PDE2A time course, the peak in bronchoalveolar lavage (BAL) neutrophils, lactate dehydrogenase (LDH), and protein concentration also occurred on day 4 post-LPS. IT LPS (1 day) and VILI caused a threefold increase in lung PDE2A and inducible nitric oxide synthase (iNOS) and a 24-fold increase in BAL neutrophilia. Compared with a control adenovirus, PDE2A knockdown with an adenovirus expressing a short hairpin RNA administered IT 3 days before LPS/VILI effectively decreased lung PDE2A expression and significantly attenuated BAL neutrophilia, LDH, protein, and chemokine levels. PDE2A knockdown also reduced lung iNOS expression by 53%, increased lung cAMP by nearly twofold, and improved survival from 47 to 100%. We conclude that in a mouse model of LPS/VILI, a synergistic increase in lung PDE2A expression increased lung iNOS and alveolar inflammation and contributed significantly to the ensuing acute lung injury.


Assuntos
Lesão Pulmonar Aguda/etiologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/deficiência , Pulmão/metabolismo , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Adenoviridae/enzimologia , Adenoviridae/genética , Animais , Líquido da Lavagem Broncoalveolar/citologia , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/administração & dosagem , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/patologia , Óxido Nítrico Sintase Tipo II/metabolismo , Proteínas/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Volume de Ventilação Pulmonar , Fatores de Tempo , Traqueia , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia
19.
Nucleic Acids Res ; 39(5): e30, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21138963

RESUMO

Adenoviruses (Ads) are the most frequently used viruses for oncolytic and gene therapy purposes. Most Ad-based vectors have been generated through rational design. Although this led to significant vector improvements, it is often hampered by an insufficient understanding of Ad's intricate functions and interactions. Here, to evade this issue, we adopted a novel, mutator Ad polymerase-based, 'accelerated-evolution' approach that can serve as general method to generate or optimize adenoviral vectors. First, we site specifically substituted Ad polymerase residues located in either the nucleotide binding pocket or the exonuclease domain. This yielded several polymerase mutants that, while fully supportive of viral replication, increased Ad's intrinsic mutation rate. Mutator activities of these mutants were revealed by performing deep sequencing on pools of replicated viruses. The strongest identified mutators carried replacements of residues implicated in ssDNA binding at the exonuclease active site. Next, we exploited these mutators to generate the genetic diversity required for directed Ad evolution. Using this new forward genetics approach, we isolated viral mutants with improved cytolytic activity. These mutants revealed a common mutation in a splice acceptor site preceding the gene for the adenovirus death protein (ADP). Accordingly, the isolated viruses showed high and untimely expression of ADP, correlating with a severe deregulation of E3 transcript splicing.


Assuntos
Adenoviridae/genética , DNA Polimerase Dirigida por DNA/genética , Evolução Molecular Direcionada/métodos , Vírus Oncolíticos/genética , Proteínas Virais/genética , Adenoviridae/enzimologia , Proteínas E3 de Adenovirus/genética , Proteínas E3 de Adenovirus/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Linhagem Celular , Linhagem Celular Tumoral , DNA Polimerase Dirigida por DNA/química , Vetores Genéticos , Humanos , Dados de Sequência Molecular , Mutação , Splicing de RNA , Replicação Viral
20.
Cancer Gene Ther ; 17(7): 484-91, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20168351

RESUMO

OBP-301 (a telomerase-specific, replication-competent adenovirus with hTERT promoter) was constructed in a previous study and it showed a strong anticancer effect by inducing cell lysis in human lung and prostate cancer cells. This study investigated the effectiveness of a combination therapy of OBP-301 and interleukin-2 (IL-2) in a mouse model of renal cell carcinoma (RCC). The cell-killing effect of OBP-301 was confirmed in vitro in the RENCA cancer cells. In in vivo experiment, luciferase-expressing RENCA cells were implanted in the left kidney and lung of BALB/c mice to prepare the RCC metastatic model. The animals were randomly divided into four treatment groups: PBS, IL-2 alone, OBP-301 alone and the combination. The analyses of orthotopic tumor weight, lung metastasis and luciferin-stained tumor images 14 days after each treatment showed significant tumor growth inhibition in the combination group in comparison with that in the OBP-301- or IL-2-treated groups. In addition, the percentage of regulatory T-cells (Tregs) in the combination group was significantly suppressed in comparison with that in the PBS and single-agent treatment groups. The outcomes of this study suggest that tumor-specific oncolytic immunovirotherapy may become an attractive strategy for the treatment of human RCC.


Assuntos
Carcinoma de Células Renais/terapia , Terapia Genética/métodos , Interleucina-2/administração & dosagem , Neoplasias Renais/terapia , Terapia Viral Oncolítica/métodos , Telomerase/metabolismo , Adenoviridae/enzimologia , Adenoviridae/genética , Adenoviridae/fisiologia , Animais , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/virologia , Linhagem Celular Tumoral , Terapia Combinada , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Neoplasias Renais/virologia , Camundongos , Camundongos Endogâmicos BALB C , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...