Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.079
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000496

RESUMO

It is generally accepted that adjacent guanine residues in DNA are the primary target for platinum antitumor drugs and that differences in the conformations of the Pt-DNA adducts can play a role in their antitumor activity. In this study, we investigated the effect of the carrier ligand cis-1,3-diaminocyclohexane (cis-1,3-DACH) upon formation, stability, and stereochemistry of the (cis-1,3-DACH)PtG2 and (cis-1,3-DACH)Pt(d(GpG)) adducts (G = 9-EthlyGuanine, guanosine, 5'- and 3'-guanosine monophosphate; d(GpG) = deoxyguanosil(3'-5')deoxyguanosine). A peculiar feature of the cis-1,3-DACH carrier ligand is the steric bulk of the diamine, which is asymmetric with respect to the Pt-coordination plane. The (cis-1,3-DACH)Pt(5'GMP)2 and (cis-1,3-DACH)Pt(3'GMP)2 adducts show preference for the ΛHT and ∆HT conformations, respectively (HT stands for Head-to-Tail). Moreover, the increased intensity of the circular dichroism signals in the cis-1,3-DACH derivatives with respect to the analogous cis-(NH3)2 species could be a consequence of the greater bite angle of the cis-1,3-DACH carrier ligand with respect to cis-(NH3)2. Finally, the (cis-1,3-DACH)Pt(d(GpG)) adduct is present in two isomeric forms, each one giving a pair of H8 resonances linked by a NOE cross peak. The two isomers were formed in comparable amounts and had a dominance of the HH conformer but with some contribution of the ΔHT conformer which is related to the HH conformer by having the 3'-G base flipped with respect to the 5'-G residue.


Assuntos
Adutos de DNA , DNA , Oxaliplatina , DNA/química , DNA/metabolismo , Adutos de DNA/química , Oxaliplatina/química , Oxaliplatina/farmacologia , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Ligantes , Modelos Moleculares , Conformação de Ácido Nucleico
2.
Nature ; 630(8017): 744-751, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38867042

RESUMO

DNA base damage is a major source of oncogenic mutations1. Such damage can produce strand-phased mutation patterns and multiallelic variation through the process of lesion segregation2. Here we exploited these properties to reveal how strand-asymmetric processes, such as replication and transcription, shape DNA damage and repair. Despite distinct mechanisms of leading and lagging strand replication3,4, we observe identical fidelity and damage tolerance for both strands. For small alkylation adducts of DNA, our results support a model in which the same translesion polymerase is recruited on-the-fly to both replication strands, starkly contrasting the strand asymmetric tolerance of bulky UV-induced adducts5. The accumulation of multiple distinct mutations at the site of persistent lesions provides the means to quantify the relative efficiency of repair processes genome wide and at single-base resolution. At multiple scales, we show DNA damage-induced mutations are largely shaped by the influence of DNA accessibility on repair efficiency, rather than gradients of DNA damage. Finally, we reveal specific genomic conditions that can actively drive oncogenic mutagenesis by corrupting the fidelity of nucleotide excision repair. These results provide insight into how strand-asymmetric mechanisms underlie the formation, tolerance and repair of DNA damage, thereby shaping cancer genome evolution.


Assuntos
Dano ao DNA , Reparo do DNA , DNA Polimerase Dirigida por DNA , DNA , Mutagênese , Mutação , Animais , Humanos , Camundongos , Alquilação/efeitos da radiação , Linhagem Celular , DNA/química , DNA/genética , DNA/metabolismo , DNA/efeitos da radiação , Adutos de DNA/química , Adutos de DNA/genética , Adutos de DNA/metabolismo , Adutos de DNA/efeitos da radiação , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , Reparo do DNA/genética , Reparo do DNA/fisiologia , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Mutagênese/genética , Mutagênese/efeitos da radiação , Mutação/genética , Mutação/efeitos da radiação , Neoplasias/genética , Transcrição Gênica , Raios Ultravioleta/efeitos adversos
3.
J Org Chem ; 89(11): 7680-7691, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38739842

RESUMO

Safrole is a natural product present in many plants and plant products, including spices and essential oils. During cellular metabolism, it converts to a highly reactive trans-isosafrole (SF) intermediate that reacts with genomic DNA and forms N2-SF-dG and N6-SF-dA DNA adducts, which are detected in the oral tissue of cancer patients with betel quid chewing history. To study the SF-induced carcinogenesis and to probe the role of low fidelity translesion synthesis (TLS) polymerases in bypassing SF adducts, herein, we report the synthesis of N2-SF-dG modified DNAs using phosphoramidite chemistry. The N2-SF-dG modification in the duplex DNA does not affect the thermal stability and retains the B-form of helical conformation, indicating that this adduct may escape the radar of common DNA repair mechanisms. Primer extension studies showed that the N2-SF-dG adduct is bypassed by human TLS polymerases hpolκ and hpolη, which perform error-free replication across this adduct. Furthermore, molecular modeling and dynamics studies revealed that the adduct reorients to pair with the incoming nucleotide, thus allowing the effective bypass. Overall, the results indicate that hpolκ and hpolη do not distinguish the N2-SF-dG adduct, suggesting that they may not be involved in the safrole-induced carcinogenicity.


Assuntos
Adutos de DNA , DNA Polimerase Dirigida por DNA , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/química , Humanos , Adutos de DNA/química , Adutos de DNA/metabolismo , Adutos de DNA/síntese química , Safrol/química , Safrol/análogos & derivados , DNA/química , DNA/metabolismo , Estrutura Molecular
4.
Chem Res Toxicol ; 37(6): 1023-1034, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38743824

RESUMO

The clinically used antihypertensive agent hydralazine rapidly generates hydrazone-derived adducts by reaction with apurinic/apyrimidinic (also known as abasic or AP) sites in many different sequences of duplex DNA. The reaction rates are comparable to those of some AP-trapping reagents previously described as "ultrafast." Initially, reversible formation of a hydrazone adduct is followed by an oxidative cyclization reaction that generates a chemically stable triazolo[3,4-a]phthalazine adduct. The net result is that the reaction of hydralazine with AP sites in duplex DNA yields a rapid and irreversible adduct formation. Although the hydrazone and triazolo[3,4-a]phthalazine adducts differ by only two mass units, it was possible to use MALDI-TOF-MS and ESI-QTOF-nanospray-MS to quantitatively characterize mixtures of these adducts by deconvolution of overlapping isotope envelopes. Reactions of hydralazine with the endogenous ketone pyruvate do not prevent the formation of the hydralazine-AP adducts, providing further evidence that these adducts have the potential to form in cellular DNA. AP sites are ubiquitous in cellular DNA, and rapid, irreversible adduct formation by hydralazine could be relevant to the pathogenesis of systemic drug-induced lupus erythematosus experienced by some patients. Finally, hydralazine might be developed as a probe for the detection of AP sites, the study of cellular BER, and marking the location of AP sites in DNA-sequencing analyses.


Assuntos
Adutos de DNA , DNA , Hidralazina , Ftalazinas , Hidralazina/química , DNA/química , DNA/efeitos dos fármacos , Adutos de DNA/química , Ftalazinas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Anti-Hipertensivos/química , Triazóis/química , Espectrometria de Massas por Ionização por Electrospray
5.
Nucleic Acids Res ; 51(20): 10846-10866, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37850658

RESUMO

Apurinic/apyrimidinic (AP) sites, 5-formyluracil (fU) and 5-formylcytosine (fC) are abundant DNA modifications that share aldehyde-type reactivity. Here, we demonstrate that polyamines featuring at least one secondary 1,2-diamine fragment in combination with aromatic units form covalent DNA adducts upon reaction with AP sites (with concomitant cleavage of the AP strand), fU and, to a lesser extent, fC residues. Using small-molecule mimics of AP site and fU, we show that reaction of secondary 1,2-diamines with AP sites leads to the formation of unprecedented 3'-tetrahydrofuro[2,3,4-ef]-1,4-diazepane ('ribodiazepane') scaffold, whereas the reaction with fU produces cationic 2,3-dihydro-1,4-diazepinium adducts via uracil ring opening. The reactivity of polyamines towards AP sites versus fU and fC can be tuned by modulating their chemical structure and pH of the reaction medium, enabling up to 20-fold chemoselectivity for AP sites with respect to fU and fC. This reaction is efficient in near-physiological conditions at low-micromolar concentration of polyamines and tolerant to the presence of a large excess of unmodified DNA. Remarkably, 3'-ribodiazepane adducts are chemically stable and resistant to the action of apurinic/apyrimidinic endonuclease 1 (APE1) and tyrosyl-DNA phosphoesterase 1 (TDP1), two DNA repair enzymes known to cleanse a variety of 3' end-blocking DNA lesions.


Assuntos
Adutos de DNA , Poliaminas , DNA/química , Adutos de DNA/química , Adutos de DNA/metabolismo , Dano ao DNA , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Conformação de Ácido Nucleico , Poliaminas/química , Poliaminas/metabolismo
6.
Chem Res Toxicol ; 36(2): 132-140, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36626705

RESUMO

Acrolein is a major component in cigarette smoke and a product of endogenous lipid peroxidation. It is difficult to distinguish human exposure to acrolein from exogenous sources versus endogenous causes, as components in cigarette smoke can stimulate lipid peroxidation in vivo. Therefore, analysis of acrolein-induced DNA and protein adducts by the highly accurate, sensitive, and specific mass spectrometry-based methods is vital to estimate the degree of damage by this IARC Group 2A carcinogen. This Perspective reviews the analyses of acrolein-induced DNA and protein adducts in humans by mass spectrometry focusing on samples accessible for biomonitoring, including DNA from leukocytes and oral cells and abundant proteins from blood, i.e., hemoglobin and serum albumin.


Assuntos
Acroleína , Fumar Cigarros , Adutos de DNA , Humanos , Acroleína/química , Biomarcadores , Fumar Cigarros/efeitos adversos , Fumar Cigarros/metabolismo , DNA/química , Adutos de DNA/química , Espectrometria de Massas , Proteínas/química , Nicotiana/metabolismo
7.
Rapid Commun Mass Spectrom ; 36(6): e9245, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34939243

RESUMO

RATIONALE: Acrylamide is classified as a probable human carcinogen that is metabolised to glycidamide, which can covalently bind to DNA. The aim of this study was to investigate the formation of N7-glycidamide guanine (N7-GA-Gua) adducts in human blood DNA following exposure to acrylamide present in carbohydrate-rich foods as part of the normal human diet. METHODS: Lymphocyte DNA was extracted from blood samples obtained from healthy human volunteers. Following thermal depurination of the DNA samples, N7-GA-Gua adducts were quantified using a validated liquid chromatography/tandem mass spectrometry (LC/MS/MS) method incorporating a stable isotope labelled internal standard. Estimated dietary acrylamide intake was recorded by completion of food frequency questionnaires for the 24 hours prior to volunteer blood donation. RESULTS: An LC/MS/MS method was validated with a limit of detection of 0.25 fmol and a lower limit of quantitation of 0.50 fmol on column. N7-GA-Gua adducts were detected in human blood DNA with the levels ranging between 0.3 to 6.3 adducts per 108 nucleotides. The acrylamide intake was calculated from the food frequency questionnaires ranging between 20.0 and 78.6 µg. CONCLUSIONS: Identification and quantification of N7-GA-Gua adducts in the blood DNA of healthy volunteers suggests that dietary acrylamide exposure may lead to the formation of DNA adducts. This important finding warrants further investigation to ascertain a correlation between environmental/dietary acrylamide exposure and levels of DNA adducts.


Assuntos
Acrilamida/metabolismo , Cromatografia Líquida/métodos , Adutos de DNA/química , DNA/química , Exposição Dietética/efeitos adversos , Compostos de Epóxi/química , Guanina/química , Espectrometria de Massas em Tandem/métodos , Humanos , Linfócitos/química
8.
Int J Mol Sci ; 22(19)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34639179

RESUMO

DNA-dependent DNA and RNA polymerases are important modulators of biological functions such as replication, transcription, recombination, or repair. In this work performed in cell-free media, we studied the ability of selected DNA polymerases to overcome a monofunctional adduct of the cytotoxic/antitumor platinum-acridinylthiourea conjugate [PtCl(en)(L)](NO3)2 (en = ethane-1,2-diamine, L = 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea) (ACR) in its favored 5'-CG sequence. We focused on how a single site-specific ACR adduct with intercalation potency affects the processivity and fidelity of DNA-dependent DNA polymerases involved in translesion synthesis (TLS) and repair. The ability of the G(N7) hybrid ACR adduct formed in the 5'-TCGT sequence of a 24-mer DNA template to inhibit the synthesis of a complementary DNA strand by the exonuclease-deficient Klenow fragment of DNA polymerase I (KFexo-) and human polymerases eta, kappa, and iota was supplemented by thermodynamic analysis of the polymerization process. Thermodynamic parameters of a simulated translesion synthesis across the ACR adduct were obtained by using microscale thermophoresis (MST). Our results show a strong inhibitory effect of an ACR adduct on enzymatic TLS: there was only small synthesis of a full-length product (less than 10%) except polymerase eta (~20%). Polymerase eta was able to most efficiently bypass the ACR hybrid adduct. Incorporation of a correct dCMP opposite the modified G residue is preferred by all the four polymerases tested. On the other hand, the frequency of misinsertions increased. The relative efficiency of misinsertions is higher than that of matched cytidine monophosphate but still lower than for the nonmodified control duplex. Thermodynamic inspection of the simulated TLS revealed a significant stabilization of successively extended primer/template duplexes containing an ACR adduct. Moreover, no significant decrease of dissociation enthalpy change behind the position of the modification can contribute to the enzymatic TLS observed with the DNA-dependent, repair-involved polymerases. This TLS could lead to a higher tolerance of cancer cells to the ACR conjugate compared to its enhanced analog, where thiourea is replaced by an amidine group: [PtCl(en)(L)](NO3)2 (complex AMD, en = ethane-1,2-diamine, L = N-[2-(acridin-9-ylamino)ethyl]-N-methylpropionamidine).


Assuntos
Adutos de DNA/química , Dano ao DNA , Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Substâncias Intercalantes/química , Compostos Organoplatínicos/química , Ureia/análogos & derivados , Replicação do DNA , Humanos , Ureia/química
9.
Molecules ; 26(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34500720

RESUMO

Mutation patterns of DNA adducts, such as mutational spectra and signatures, are useful tools for diagnostic and prognostic purposes. Mutational spectra of carcinogens derive from three sources: adduct formation, replication bypass, and repair. Here, we consider the repair aspect of 1,N6-ethenoadenine (εA) by the 2-oxoglutarate/Fe(II)-dependent AlkB family enzymes. Specifically, we investigated εA repair across 16 possible sequence contexts (5'/3' flanking base to εA varied as G/A/T/C). The results revealed that repair efficiency is altered according to sequence, enzyme, and strand context (ss- versus ds-DNA). The methods can be used to study other aspects of mutational spectra or other pathways of repair.


Assuntos
Adutos de DNA/química , Reparo do DNA/fisiologia , Adutos de DNA/genética , Reparo do DNA/genética , Mutação , Oxirredução
10.
Nature ; 596(7873): 597-602, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34408320

RESUMO

ADP-ribosyltransferases use NAD+ to catalyse substrate ADP-ribosylation1, and thereby regulate cellular pathways or contribute to toxin-mediated pathogenicity of bacteria2-4. Reversible ADP-ribosylation has traditionally been considered a protein-specific modification5, but recent in vitro studies have suggested nucleic acids as targets6-9. Here we present evidence that specific, reversible ADP-ribosylation of DNA on thymidine bases occurs in cellulo through the DarT-DarG toxin-antitoxin system, which is found in a variety of bacteria (including global pathogens such as Mycobacterium tuberculosis, enteropathogenic Escherichia coli and Pseudomonas aeruginosa)10. We report the structure of DarT, which identifies this protein as a diverged member of the PARP family. We provide a set of high-resolution structures of this enzyme in ligand-free and pre- and post-reaction states, which reveals a specialized mechanism of catalysis that includes a key active-site arginine that extends the canonical ADP-ribosyltransferase toolkit. Comparison with PARP-HPF1, a well-established DNA repair protein ADP-ribosylation complex, offers insights into how the DarT class of ADP-ribosyltransferases evolved into specific DNA-modifying enzymes. Together, our structural and mechanistic data provide details of this PARP family member and contribute to a fundamental understanding of the ADP-ribosylation of nucleic acids. We also show that thymine-linked ADP-ribose DNA adducts reversed by DarG antitoxin (functioning as a noncanonical DNA repair factor) are used not only for targeted DNA damage to induce toxicity, but also as a signalling strategy for cellular processes. Using M. tuberculosis as an exemplar, we show that DarT-DarG regulates growth by ADP-ribosylation of DNA at the origin of chromosome replication.


Assuntos
ADP-Ribosilação , Proteínas de Bactérias/metabolismo , DNA/química , DNA/metabolismo , Timina/química , Timina/metabolismo , Adenosina Difosfato Ribose/metabolismo , Antitoxinas , Proteínas de Bactérias/química , Toxinas Bacterianas , Sequência de Bases , Biocatálise , DNA/genética , Adutos de DNA/química , Adutos de DNA/metabolismo , Dano ao DNA , Reparo do DNA , Elementos de DNA Transponíveis/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Modelos Moleculares , Mycobacterium/enzimologia , Mycobacterium/genética , Nitrogênio/química , Nitrogênio/metabolismo , Poli(ADP-Ribose) Polimerases/química , Origem de Replicação/genética , Especificidade por Substrato , Thermus/enzimologia , Timidina/química , Timidina/metabolismo
11.
J Chem Phys ; 154(18): 184101, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34241037

RESUMO

We examine the use of the truncated singular value decomposition and Tikhonov regularization in standard form to address ill-posed least squares problems Ax = b that frequently arise in molecular mechanics force field parameter optimization. We illustrate these approaches by applying them to dihedral parameter optimization of genotoxic polycyclic aromatic hydrocarbon-DNA adducts that are of interest in the study of chemical carcinogenesis. Utilizing the discrete Picard condition and/or a well-defined gap in the singular value spectrum when A has a well-determined numerical rank, we are able to systematically determine truncation and in turn regularization parameters that are correspondingly used to produce truncated and regularized solutions to the ill-posed least squares problem at hand. These solutions in turn result in optimized force field dihedral terms that accurately parameterize the torsional energy landscape. As the solutions produced by this approach are unique, it has the advantage of avoiding the multiple iterations and guess and check work often required to optimize molecular mechanics force field parameters.


Assuntos
Adutos de DNA/química , Análise dos Mínimos Quadrados , Hidrocarbonetos Policíclicos Aromáticos/química , Algoritmos
12.
J Chem Phys ; 154(17): 175102, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34241046

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are widely distributed in environments, and some of them are causative agents of human cancer. Previous studies concluded that benzo[a]pyrene-7,8-dione (BPQ), which is one kind of carcinogenic PAH metabolites, forms covalently bonded adducts with DNA, and the major adduct formed is a deoxyguanosine adduct. In this work, we investigate the interactions between BPQ and DNA molecules via first-principles calculations. We identify six possible DNA adducts with BPQ. In addition to the four adducts forming covalent bonds, there are two adducts bound purely by van der Waals (vdW) interactions. Remarkably, the two vdW-bound adducts have comparable, if not larger, binding energies as the covalent adducts. The results may help us gain more understanding of the interactions between PAH metabolites and DNA.


Assuntos
Benzopirenos/química , Adutos de DNA/química , Teoria da Densidade Funcional , Simulação de Dinâmica Molecular , Benzopirenos/metabolismo , Adutos de DNA/metabolismo , Estrutura Molecular
13.
Biochemistry ; 60(23): 1797-1807, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34080848

RESUMO

DNA-protein cross-links (DPCs) are unusually bulky DNA lesions that form when cellular proteins become trapped on DNA following exposure to ultraviolet light, free radicals, aldehydes, and transition metals. DPCs can also form endogenously when naturally occurring epigenetic marks [5-formyl cytosine (5fC)] in DNA react with lysine and arginine residues of histones to form Schiff base conjugates. Our previous studies revealed that DPCs inhibit DNA replication and transcription but can undergo proteolytic cleavage to produce smaller DNA-peptide conjugates. We have shown that 5fC-conjugated DNA-peptide cross-links (DpCs) placed within the CXA sequence (X = DpC) can be bypassed by human translesion synthesis (TLS) polymerases η and κ in an error-prone manner. However, the local nucleotide sequence context can have a strong effect on replication bypass of bulky lesions by influencing the geometry of the ternary complex among the DNA template, polymerase, and the incoming dNTP. In this work, we investigated polymerase bypass of 5fC-DNA-11-mer peptide cross-links placed in seven different sequence contexts (CXC, CXG, CXT, CXA, AXA, GXA, and TXA) in the presence of human TLS polymerase η. Primer extension products were analyzed by gel electrophoresis, and steady-state kinetics of the misincorporation of dAMP opposite the DpC lesion in different base sequence contexts was investigated. Our results revealed a strong impact of nearest neighbor base identity on polymerase η activity in the absence and presence of a DpC lesion. Molecular dynamics simulations were used to structurally explain the experimental findings. Our results suggest a possible role of local DNA sequence in promoting TLS-related mutational hot spots in the presence and absence of DpC lesions.


Assuntos
Citosina/análogos & derivados , Reparo do DNA/fisiologia , DNA/química , Arginina/química , Sequência de Bases/genética , Citosina/química , Adutos de DNA/química , Dano ao DNA/fisiologia , Replicação do DNA/fisiologia , DNA Polimerase Dirigida por DNA/metabolismo , Histonas/metabolismo , Humanos , Cinética , Lisina/química , Mutação/genética , Peptídeos/química
14.
Food Chem Toxicol ; 153: 112253, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34015424

RESUMO

Estragole and anethole are secondary metabolites occurring in a variety of commonly used herbs like fennel, basil, and anise. Estragole is genotoxic and carcinogenic in rodents, which depends on the formation of 1'-sulfoxyestragole after hydroxylation and subsequent sulfoconjugation catalyzed by CYP and SULT, respectively. It was hypothesized recently that anethole may be bioactivated via the same metabolic pathways. Incubating estragole with hepatic S9-fractions from rats and humans, specific adducts with hemoglobin (N-(isoestragole-3-yl)-valine, IES-Val) and DNA (isoestragole-2'-deoxyguanosine and isoestragole-2'-deoxyadenosine) were formed. An isotope-dilution technique was developed for the quantification of IES-Val after cleavage with fluorescein isothiocyanate (FITC) according to a modified Edman degradation. The same adducts, albeit at lower levels, were also detected in reactions with anethole, indicating the formation of 3'-hydroxyanethole and the reactive 3'-sulfoxyanethole. Finally, we conducted a pilot investigation in which IES-Val levels in human blood were determined during and after the consumption of an estragole- and anethole-rich fennel tea for four weeks. A significant increase of IES-Val levels was observed during the consumption phase and followed by a continuous decrease during the washout period. IES-Val may be used to monitor the internal exposure to the common reactive genotoxic metabolites of estragole and anethole, 1'-sulfoxyestragole and 3'-sulfoxyanethole, respectively.


Assuntos
Derivados de Alilbenzenos/toxicidade , Anisóis/toxicidade , Adutos de DNA/química , Foeniculum/química , Hemoglobinas/química , Derivados de Alilbenzenos/metabolismo , Animais , Anisóis/metabolismo , Bebidas/análise , Biomarcadores/sangue , Humanos , Ratos
15.
Arch Toxicol ; 95(6): 1917-1942, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34003343

RESUMO

Pyrrolizidine alkaloids (PAs) and PA N-oxides are common phytotoxins produced by over 6000 plant species. Humans are frequently exposed to PAs via ingestion of PA-containing herbal products or PA-contaminated foods. PAs require metabolic activation to form pyrrole-protein adducts and pyrrole-DNA adducts which lead to cytotoxicity and genotoxicity. Individual PAs differ in their metabolic activation patterns, which may cause significant difference in toxic potency of different PAs. This review discusses the current knowledge and recent advances of metabolic pathways of different PAs, especially the metabolic activation and metabolism-mediated cytotoxicity and genotoxicity, and the risk evaluation methods of PA exposure. In addition, this review provides perspectives of precision toxicity assessment strategies and biomarker development for the risk control and translational investigations of human intoxication by PAs.


Assuntos
Adutos de DNA/toxicidade , Dano ao DNA/efeitos dos fármacos , Alcaloides de Pirrolizidina/toxicidade , Animais , Biomarcadores/metabolismo , Adutos de DNA/química , Humanos , Mutagênicos/metabolismo , Mutagênicos/toxicidade , Alcaloides de Pirrolizidina/metabolismo , Medição de Risco/métodos
16.
Rapid Commun Mass Spectrom ; 35(13): e9095, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33821547

RESUMO

RATIONALE: As a new approach to DNA adductomics, we directly reacted intact, double-stranded (ds)-DNA under warm conditions with an alkylating mass tag followed by analysis by liquid chromatography/mass spectrometry. This method is based on the tendency of adducted nucleobases to locally disrupt the DNA structure (forming a "DNA bubble") potentially increasing exposure of their nucleophilic (including active hydrogen) sites for preferential alkylation. Also encouraging this strategy is that the scope of nucleotide excision repair is very broad, and this system primarily recognizes DNA bubbles. METHODS: A cationic xylyl (CAX) mass tag with limited nonpolarity was selected to increase the retention of polar adducts in reversed-phase high-performance liquid chromatography (HPLC) for more detectability while maintaining resolution. We thereby detected a diversity of DNA adducts (mostly polar) by the following sequence of steps: (1) react DNA at 45°C for 2 h under aqueous conditions with CAX-B (has a benzyl bromide functional group to label active hydrogen sites) in the presence of triethylamine; (2) remove residual reagents by precipitating and washing the DNA (a convenient step); (3) digest the DNA enzymatically to nucleotides and remove unlabeled nucleotides by nonpolar solid-phase extraction (also a convenient step); and (4) detect CAX-labeled, adducted nucleotides by LC/MS2 or a matrix-assisted laser desorption/ionization (MALDI)-MS technique. RESULTS: Examples of the 42 DNA or RNA adducts detected, or tentatively so based on accurate mass and fragmentation data, are as follows: 8-oxo-dGMP, ethyl-dGMP, hydroxyethyl-dGMP (four isomers, all HPLC-resolved), uracil-glycol, apurinic/apyrimidinic sites, benzo[a]pyrene-dGMP, and, for the first time, benzoquinone-hydroxymethyl-dCMP. Importantly, these adducts are detected in a single procedure under a single set of conditions. Sensitivity, however, is only defined in a preliminary way, namely the latter adduct seems to be detected at a level of about 4 adducts in 109 nucleotides (S/N ~30). CONCLUSIONS: CAX-Prelabeling is an emerging new technique for DNA adductomics, providing polar DNA adductomics in a practical way for the first time. Further study of the method is encouraged to better characterize and extend its performance, especially in scope and sensitivity.


Assuntos
Adutos de DNA/análise , Animais , Benzo(a)pireno/análise , Compostos de Benzil , Cátions , Bovinos , Cromatografia Líquida de Alta Pressão , Adutos de DNA/química , Adutos de DNA/metabolismo , Etilaminas , Guanina/análogos & derivados , Guanina/análise , Humanos , Nucleotídeos/metabolismo , Radioisótopos de Fósforo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Uracila/análogos & derivados , Uracila/análise
17.
J Biol Chem ; 296: 100642, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33839151

RESUMO

Etheno (ε)-adducts, e.g., 1,N2-ε-guanine (1,N2-ε-G) and 1,N6-ε-adenine (1,N6-ε-A), are formed through the reaction of DNA with metabolites of vinyl compounds or with lipid peroxidation products. These lesions are known to be mutagenic, but it is unknown how they lead to errors in DNA replication that are bypassed by DNA polymerases. Here we report the structural basis of misincorporation frequencies across from 1,N2-ε-G by human DNA polymerase (hpol) η. In single-nucleotide insertions opposite the adduct 1,N2-ε-G, hpol η preferentially inserted dGTP, followed by dATP, dTTP, and dCTP. This preference for purines was also seen in the first extension step. Analysis of full-length extension products by LC-MS/MS revealed that G accounted for 85% of nucleotides inserted opposite 1,N2-ε-G in single base insertion, and 63% of bases inserted in the first extension step. Extension from the correct nucleotide pair (C) was not observed, but the primer with A paired opposite 1,N2-ε-G was readily extended. Crystal structures of ternary hpol η insertion-stage complexes with nonhydrolyzable nucleotides dAMPnPP or dCMPnPP showed a syn orientation of the adduct, with the incoming A staggered between adducted base and the 5'-adjacent T, while the incoming C and adducted base were roughly coplanar. The formation of a bifurcated H-bond between incoming dAMPnPP and 1,N2-ε-G and T, compared with the single H-bond formed between incoming dCMPnPP and 1,N2-ε-G, may account for the observed facilitated insertion of dGTP and dATP. Thus, preferential insertion of purines by hpol η across from etheno adducts contributes to distinct outcomes in error-prone DNA replication.


Assuntos
Adutos de DNA/química , Adutos de DNA/metabolismo , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Desoxiguanosina/análogos & derivados , Cromatografia Líquida , Cristalografia por Raios X , Desoxiguanosina/química , Desoxiguanosina/metabolismo , Humanos , Espectrometria de Massas em Tandem
18.
Chem Res Toxicol ; 34(4): 1004-1015, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33720703

RESUMO

The International Agency for Research on Cancer has classified the tobacco-specific nitrosamines N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) as "carcinogenic to humans" (Group 1). To exert its carcinogenicity, NNN requires metabolic activation to form reactive intermediates which alkylate DNA. Previous studies have identified cytochrome P450-catalyzed 2'-hydroxylation and 5'-hydroxylation of NNN as major metabolic pathways, with preferential activation through the 5'-hydroxylation pathway in some cultured human tissues and patas monkeys. So far, the only DNA adducts identified from NNN 5'-hydroxylation in rat tissues are 2-[2-(3-pyridyl)-N-pyrrolidinyl]-2'-deoxyinosine (Py-Py-dI), 6-[2-(3-pyridyl)-N-pyrrolidinyl]-2'-deoxynebularine (Py-Py-dN), and N6-[4-hydroxy-1-(pyridine-3-yl)butyl]-2'-deoxyadenosine (N6-HPB-dAdo) after reduction. To expand the DNA adduct panel formed by NNN 5'-hydroxylation and identify possible activation biomarkers of NNN metabolism, we investigated the formation of dAdo-derived adducts using a new highly sensitive and specific liquid chromatography-nanoelectrospray ionization-high-resolution tandem mass spectrometry method. Two types of NNN-specific dAdo-derived adducts, N6-[5-(3-pyridyl)tetrahydrofuran-2-yl]-2'-deoxyadenosine (N6-Py-THF-dAdo) and 6-[2-(3-pyridyl)-N-pyrrolidinyl-5-hydroxy]-2'-deoxynebularine (Py-Py(OH)-dN), were observed for the first time in calf thymus DNA incubated with 5'-acetoxyNNN. More importantly, Py-Py(OH)-dN was also observed in relatively high abundance in the liver and lung DNA of rats treated with racemic NNN in the drinking water for 3 weeks. These new adducts were characterized using authentic synthesized standards. Both NMR and MS data agreed well with the proposed structures of N6-Py-THF-dAdo and Py-Py(OH)-dN. Reduction of Py-Py(OH)-dN by NaBH3CN led to the formation of Py-Py-dN both in vitro and in vivo, which was confirmed by its isotopically labeled internal standard [pyridine-d4]Py-Py-dN. The NNN-specific dAdo adducts Py-THF-dAdo and Py-Py(OH)-dN formed by NNN 5'-hydroxylation provide a more comprehensive understanding of the mechanism of DNA adduct formation by NNN.


Assuntos
Adutos de DNA/metabolismo , DNA/química , Desoxiadenosinas/biossíntese , Fígado/química , Pulmão/química , Nitrosaminas/metabolismo , Animais , DNA/metabolismo , Adutos de DNA/química , Desoxiadenosinas/química , Fígado/metabolismo , Pulmão/metabolismo , Estrutura Molecular , Nitrosaminas/química , Ratos
19.
Chem Res Toxicol ; 34(3): 901-911, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33595290

RESUMO

Dietary exposure to aflatoxins is a significant risk factor in the development of hepatocellular carcinomas. Following bioactivation by microsomal P450s, the reaction of aflatoxin B1 (AFB1) with guanine (Gua) in DNA leads to the formation of stable, imidazole ring-opened 8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxyaflatoxin B1 (AFB1-FapyGua) adducts. In contrast to most base modifications that result in destabilization of the DNA duplex, the AFB1-FapyGua adduct increases the thermal stability of DNA via 5'-interface intercalation and base-stacking interactions. Although it was anticipated that this stabilization might make these lesions difficult to repair relative to helix distorting modifications, prior studies have shown that both the nucleotide and base excision repair pathways participate in the removal of the AFB1-FapyGua adduct. Specifically for base excision repair, we previously showed that the DNA glycosylase NEIL1 excises AFB1-FapyGua and catalyzes strand scission in both synthetic oligodeoxynucleotides and liver DNA of exposed mice. Since it is anticipated that error-prone replication bypass of unrepaired AFB1-FapyGua adducts contributes to cellular transformation and carcinogenesis, the structural and thermodynamic parameters that modulate the efficiencies of these repair pathways are of considerable interest. We hypothesized that the DNA sequence context in which the AFB1-FapyGua adduct is formed might modulate duplex stability and consequently alter the efficiencies of NEIL1-initiated repair. To address this hypothesis, site-specific AFB1-FapyGua adducts were synthesized in three sequence contexts, with the 5' neighbor nucleotide being varied. DNA structural stability analyses were conducted using UV absorbance- and NMR-based melting experiments. These data revealed differentials in thermal stabilities associated with the 5'-neighbor base pair. Single turnover kinetic analyses using the NEIL1 glycosylase demonstrated corresponding sequence-dependent differences in the repair of this adduct, such that there was an inverse correlation between the stabilization of the duplex and the efficiency of NEIL1-mediated catalysis.


Assuntos
Aflatoxina B1/metabolismo , Adutos de DNA/metabolismo , DNA Glicosilases/metabolismo , DNA/metabolismo , Guanina/metabolismo , Pirimidinas/metabolismo , Aflatoxina B1/química , Sequência de Bases , Biocatálise , DNA/química , Adutos de DNA/química , DNA Glicosilases/química , Guanina/química , Humanos , Estrutura Molecular , Pirimidinas/química
20.
Chem Res Toxicol ; 34(3): 695-698, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33417436

RESUMO

Alkylation represents a main form of DNA damage. The N2 position of guanine is frequently alkylated in DNA. The SOS-induced polymerases have been shown to be capable of bypassing various DNA damage products in Escherichia coli. Herein, we explored the influences of four N2-alkyl-dG lesions (alkyl = ethyl, n-butyl, isobutyl, or sec-butyl) on DNA replication in AB1157 E. coli cells and the corresponding strains with polymerases (Pol) II, IV, and V being individually or simultaneously knocked out. We found that N2-Et-dG is slightly less blocking to DNA replication than the N2-Bu-dG lesions, which display very similar replication bypass efficiencies. Additionally, Pol II and, to a lesser degree, Pol IV and Pol V are required for the efficient bypass of the N2-alkyl-dG adducts, and none of these lesions was mutagenic. Together, our results support that the efficient replication across small N2-alkyl-dG DNA adducts in E. coli depends mainly on Pol II.


Assuntos
Adutos de DNA/metabolismo , DNA Polimerase II/metabolismo , DNA Bacteriano/metabolismo , Desoxiguanosina/metabolismo , Escherichia coli/metabolismo , Adutos de DNA/química , Replicação do DNA , Desoxiguanosina/análogos & derivados , Desoxiguanosina/química , Escherichia coli/citologia , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...