Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
J Water Health ; 22(6): 1033-1043, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38935454

RESUMO

The misuse of antibiotics and the emergence of antimicrobial resistance (AMR) is a concern in the aquaculture industry because it contributes to global health risks and impacts the environment. This study analyzed the AMR of sentinel bacteria associated with striped catfish (Pangasisanodon hypophthalmus) and giant snakehead (Channa micropeltes), the two main fish species reared in the pond culture in Cambodia. Phenotypic and genotypic characterization of the recovered isolates from fish, water, and sediment samples revealed the presence of bacteria, such as 22 species belonging to families Aeromonadaceae, Enterobacteriaceae, and Pseudomonadaceae. Among 48 isolates, Aeromonas caviae (n = 2), Aeromonas hydrophila (n = 2), Aeromonas ichthiosmia (n = 1), Aeromonas salmonicida (n = 4) were detected. A. salmonicida and A. hydrophilla are known as fish pathogens that occur worldwide in both fresh and marine water aquaculture. Antibiotic susceptibility testing revealed antibiotic resistance patterns of 24 (50 %) isolates among 48 isolates with higher multiple antibiotic resistance index (> 0.2). All the isolates of Enterobacteriaceae were susceptible to ciprofloxacin. Ciprofloxacin is a frontline antibiotic that is not recommended to use in aquaculture. Therefore, its use has to be strictly controlled. This study expands our knowledge of the AMR status in aquaculture farms which is very limited in Cambodia.


Assuntos
Aquicultura , Farmacorresistência Bacteriana , Microbiologia da Água , Camboja , Peixes-Gato/microbiologia , Espécies Sentinelas , Fenótipo , Genótipo , Aeromonadaceae/classificação , Aeromonadaceae/isolamento & purificação , Aeromonadaceae/fisiologia , Enterobacteriaceae/classificação , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/fisiologia , Pseudomonadaceae/classificação , Pseudomonadaceae/isolamento & purificação , Pseudomonadaceae/fisiologia , Aeromonas caviae/isolamento & purificação , Aeromonas caviae/fisiologia , Aeromonas hydrophila/isolamento & purificação , Aeromonas hydrophila/fisiologia , Ciprofloxacina/farmacologia , Ciprofloxacina/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/veterinária , Monitoramento Ambiental
2.
Microb Genom ; 10(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38814176

RESUMO

Aeromonas caviae is an emerging human enteric pathogen. However, the genomic features and virulence genes of A. caviae strains from human gastroenteritis and other sources have not been fully elucidated. Here, we conducted a genomic analysis of 565 global A. caviae strains isolated from different sources, including 261 strains isolated from faecal samples of gastroenteritis patients, of which 18 genomes were sequenced in this study. The presence of bacterial virulence genes and secretion systems in A. caviae strains from different sources was compared, and the phylogenetic relationship of A. caviae strains was assessed based on the core genome. The complete genome of A. caviae strain A20-9 isolated from a gastroenteritis patient was obtained in this study, from which 300 putative virulence factors and a T4SS-encoding plasmid, pAC, were identified. Genes encoding T4SS were also identified in a novel genomic island, ACI-1, from other T4SS-positive strains. The prevalence of T4SS was significantly lower in A. caviae strains from gastroenteritis patients than in environmental strains (3 %, P<0.0001 vs 14 %, P<0.01). Conversely, the prevalence of T6SS was significantly higher in A. caviae strains isolated from gastroenteritis patients than in environmental strains (25 %, P<0.05 vs 13  %, P<0.01). Four phylogenetic clusters were formed based on the core genome of 565 A. caviae strains, and strains carrying T6SS often showed close phylogenetic relationships. T3SS, aerolysin and thermostable cytotonic enterotoxin were absent in all 565 A. caviae strains. Our findings provide novel information on the genomic features of A. caviae and suggest that T6SS may play a role in A. caviae-induced human gastroenteritis.


Assuntos
Aeromonas caviae , Gastroenterite , Genoma Bacteriano , Filogenia , Fatores de Virulência , Gastroenterite/microbiologia , Humanos , Aeromonas caviae/genética , Aeromonas caviae/classificação , Fatores de Virulência/genética , Sistemas de Secreção Tipo VI/genética , Fezes/microbiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Ilhas Genômicas , Plasmídeos/genética
3.
Microbiol Spectr ; 12(5): e0368523, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38511954

RESUMO

Hospital sewage serves as a crucial reservoir for antibiotic resistance genes. As colistin and carbapenems are the last-resort antibiotics, the emergence of their resistance genes has become a significant concern in clinical settings. In this study, we found that two novel mcr alleles (mcr-3.43 and mcr-7.2) with two carbapenemase genes (blaNDM-1 and blaKPC-2) were encoded in a single Aeromonas caviae strain isolated from hospital sewage. Our phylogenetic analysis revealed that the mcr-3.43 gene clustered with mcr-3.17 (with 95.55% amino acid identity), while the mcr-7.2 gene clustered with mcr-7.1 (with 68.68% amino acid identity). BLAST search against GenBank showed that mcr-7.2 was exclusively detected in Aeromonas spp. Mobile genetic elements were not found in the genetic context of mcr-7.2, suggesting that the dissemination of mcr-7.2 in Aeromonas spp. may be dependent on vertical transfer or recombination. The blaNDM-1 was adjacent to a recombinase gene and flanked by two IS91 elements, indicating a potential mobilization mechanism mediated by recombination and/or ISs. The blaKPC-2 gene was located on an IncU plasmid and adjacent to an ISKpn6. In summary, our study provides evidence for Aeromonas spp. as one of the potential reservoirs of colistin and carbapenem resistance genes.IMPORTANCEThe study discovered two novel mcr genes (mcr-3.43 and mcr-7.2) and two carbapenemase genes (blaNDM-1 and blaKPC-2) in a single Aeromonas caviae strain retrieved from hospital sewage. Using phylogenetic analysis and comparative data evaluation, the study revealed the genetic relatedness and dissemination potential of the detected resistance genes. With the exclusive discovery that mcr-7.2 is only present in Aeromonas spp. and the lack of mobile genetic elements in its genetic context, there is a strong indication of limited dissemination. The identification of these four resistance genes in a single strain of Aeromonas provided valuable insights into their potential presence in this genus. This study revealed that hospital sewage functions as a significant reservoir for antibiotic resistance genes, including colistin and carbapenem resistance genes.


Assuntos
Aeromonas caviae , Antibacterianos , Proteínas de Bactérias , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Filogenia , Esgotos , beta-Lactamases , beta-Lactamases/genética , beta-Lactamases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Aeromonas caviae/genética , Aeromonas caviae/efeitos dos fármacos , Aeromonas caviae/enzimologia , Aeromonas caviae/isolamento & purificação , Esgotos/microbiologia , Colistina/farmacologia , Carbapenêmicos/farmacologia , Humanos , Plasmídeos/genética
4.
Biodegradation ; 35(2): 137-153, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37639167

RESUMO

PHB depolymerase enzymes are able to breakdown the PHB polymers and thereby get significant economic value in the bioplastics industry and for bioremediation as well. This study shows the purification of novel extracellular PHB depolymerase enzyme from Aeromonas caviae Kuk1-(34) using dialysis followed by gel filtration and HPLC. The purification fold and yield after HPLC were 45.92 and 27.04%, respectively. HPLC data showed a single peak with a retention time of 1.937 min. GC-MS analysis reveals the presence of three compounds, of which 1-Dodecanol was found to be most significant with 54.48% area and 8.623-min retention time (RT). The molecular weight of the purified enzyme was obtained as 35 kDa with Km and apparent Vmax values of 0.769 mg/mL and 1.89 U/mL, respectively. The enzyme was moderately active at an optimum temperature of 35 °C and at pH 8.0. The stability was detected at pH 7.0-9.0 and 35-45 °C. Complete activity loss was observed with EDTA, SDS, Tween-20 at 5 mM and with 0.1% Triton X 100. A biodegradation study of commercially available biodegradable polymer films was carried out in a liquid medium and in soil separately with pure microbial culture and with purified enzyme for 7, 14, 28, and 49 consecutive days. In a liquid medium, with a pure strain of Aeromonas caviae Kuk1-(34), the maximum degradation (89%) was achieved on the PHB film, while no changes were observed with other polymer films. With purified enzyme in the soil, 71% degradation of the PHB film was noticed, and it was only 18% in the liquid medium. All such weight analysis were confirmed by SEM images where several holes, pits, grooves, crest, and surface roughness are clearly observed. Our results demonstrated the potential utility of Aeromonas caviae Kuk1-(34) as a source of extracellular PHB depolymerase capable of degrading PHB under a wide range of natural/ lab conditions.


Assuntos
Aeromonas caviae , Polímeros , Poliésteres/metabolismo , Aeromonas caviae/metabolismo , Biodegradação Ambiental , Diálise Renal , Solo
6.
Antimicrob Agents Chemother ; 67(11): e0070723, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37889006

RESUMO

Vibrio cholerae carbapenemase (VCC-1) is a chromosomal encoded class A carbapenemase thus far reported in environmental Vibrio cholerae isolates. Here, we report the first isolation of a blaVCC-1 -carrying Aeromonas caviae from a clinical sample in Israel. The isolate was resistant to all ß-lactam agents, including carbapenems. The blaVCC-1 was located on a large plasmid. GC content suggests that the origin of the blaVCC-1 gene is neither Aeromonas nor Vibrio spp. but an unknown progenitor.


Assuntos
Aeromonas caviae , Aeromonas , Vibrio cholerae , Aeromonas caviae/genética , Antibacterianos/farmacologia , Vibrio cholerae/genética , Testes de Sensibilidade Microbiana , beta-Lactamases/genética , Plasmídeos/genética , Aeromonas/genética
7.
Microbiol Spectr ; 11(6): e0218823, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37811969

RESUMO

IMPORTANCE: The emergence and spread of carbapenemase-producing organisms (CPOs) represent a global health threat because they are associated with limited treatment options and poor clinical outcomes. Wastewater is considered a hotspot for the evolution and dissemination of antimicrobial resistance. Thus, analyses of municipal wastewater are critical for understanding the circulation of these CPOs and carbapenemase genes in local communities, which remains scarcely known in Japan. This study resulted in several key observations: (i) the vast majority of bla GES genes, including six new bla GES variants, and less frequent bla IMP genes were carbapenemase genes encountered exclusively in wastewater influent; (ii) the most dominant CPO species were Aeromonas spp., in which a remarkable diversity of new sequence types was observed; and (iii) CPOs were detected from combined sewer wastewater, but not from separate sewer wastewater, suggesting that the load of CPOs from unrecognized environmental sources could greatly contribute to their detection in influent wastewater.


Assuntos
Aeromonas caviae , Aeromonas caviae/genética , Águas Residuárias , beta-Lactamases/genética , Proteínas de Bactérias/genética , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia
8.
Braz J Microbiol ; 54(3): 1533-1545, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37610567

RESUMO

N-Acetyl-glucosaminidases (GlcNAcases) are exoenzymes found in a wide range of living organisms, which have gained great attention in the treatment of disorders related to diabetes, Alzheimer's, Tay-Sachs', and Sandhoff's diseases; the control of phytopathogens; and the synthesis of bioactive GlcNAc-containing products. Aiming at future industrial applications, in this study, GlcNAcase production by marine Aeromonas caviae CHZ306 was enhanced first in shake flasks in terms of medium composition and then in bench-scale stirred-tank bioreactor in terms of physicochemical conditions. Stoichiometric balance between the bioavailability of carbon and nitrogen in the formulated culture medium, as well as the use of additional carbon and nitrogen sources, played a central role in improving the bioprocess, considerably increasing the enzyme productivity. The optimal cultivation medium was composed of colloidal α-chitin, corn steep liquor, peptone A, and mineral salts, in a 5.2 C:N ratio. Optimization of pH, temperature, colloidal α-chitin concentration, and kLa conditions further increased GlcNAcase productivity. Under optimized conditions in bioreactor (i.e., 34 °C, pH 8 and kLa 55.2 h-1), GlcNAcase activity achieved 173.4 U.L-1 after 12 h of cultivation, and productivity no less than 14.45 U.L-1.h-1 corresponding to a 370-fold enhancement compared to basal conditions.


Assuntos
Aeromonas caviae , Aeromonas caviae/genética , Reatores Biológicos , Carbono , Quitina , Hexosaminidases , Nitrogênio
9.
Front Cell Infect Microbiol ; 13: 1131059, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033477

RESUMO

Introduction: The objective of this study is to thoroughly analyze the detailed genomic characteristics of clinical strain 211703 of Aeromonas caviae, which co-carrying bla RSA-1 and bla NDM-1 genes. 211703 was isolated from the patient's cerebrospinal fluid drainage sample in a Chinese tertiary hospital. Methods: Carbapenemase NDM was detected by the immunocolloidal gold technique. The MIC values were determined by VITEK2. The whole genome sequence of 211703 was analyzed using phylogenetics, genomic comparison, and extensive dissection. Results: This study revealed that 211703 only contained a single 4.78 Mb chromosome (61.8% GC content), and no plasmids were discovered in 211703. 15 different types of resistant genes were detected in the genome of 211703, including bla RSA-1 harbored on integrative and mobilizable element (IME) Tn7413a, and bla NDM-1 harbored on integrative and conjugative element (ICE). The ICE and IME were all carried on the chromosome of 211703 (c211703). Detailed comparison of related IMEs/ICEs showed that they shared similar conserved backbone regions, respectively. Comprehensive annotation revealed that bla RSA-1 was carried by the gene cassette of a novel integron In2148 on Tn7413a, and bla NDM-1 was captured by an insertion sequence ISCR14-like on the ICE of 211703. We speculated that mobile genetic elements (MGEs) such as ICE and IME facilitated the spread of resistance genes such as bla RSA-1 and bla NDM-1. Discussion: In conclusion, this study provides an overall understanding of the genomic characterization of clinically isolated A. caviae 211703, and an in-depth discussion of multiple acquisition methods of drug resistance genes in Aeromonas. To the best of our knowledge, this is the first report of A. caviae carrying bla RSA-1 even both bla RSA-1 and bla NDM-1, and this is the first bacterium carrying bla RSA-1 isolated from the clinical setting.


Assuntos
Aeromonas caviae , Humanos , Genômica , Cromossomos
10.
Front Cell Infect Microbiol ; 13: 1084352, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909720

RESUMO

Objective: Aeromonas caviae (A. caviae) is one of the major etiological agents in human intestinal infections reported to be associated with a broad spectrum of extra-intestinal infections with increasing incidence over recent years. Although previous studies have established its significance as a causative agent of both bloodstream and gastrointestinal infections, the characteristics of A. caviae that cause extra-intestinal infections remain unilluminated.In this single-center retrospective study, we investigated epidemiological characteristics, antimicrobial resistance genes and phenotypes, virulence genes, and phyloevolution of 47 clinical A. caviae isolated from patients with extra-intestinal infections from 2017 to 2020. Methods: A. caviae strains were identified by biochemical tests and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF/MS), ultimately confirmed to species level by whole-genome sequencing (WGS). Antimicrobial resistance and virulence genes were identified using the Comprehensive Antibiotic Resistance Database (CARD) and the virulence factor database (VFDB), respectively. Phylogenetic analysis of 47 clinical strains was performed by combining with 521 A. caviae strains from NCBI database. Results: A. caviae was an opportunistic pathogen in immunocompromised patients, especially those with underlying hepatobiliary diseases and malignancies. 19 out of 47 isolates were identified as multidrug resistance (MDR) strains. Piperacillin-tazobactam, levofloxacin, gentamicin, amikacin with a resistance rate of less than 10% remained as options to treat extra-intestinal infections. 24 out of 47 isolates exhibited non-susceptibility to cephalosporins and cephamycins, all of which carried ß-lactamase gene, including bla MOX, bla PER-3, bla OXA, bla NDM, and bla CphA. Most stains (98%, 46/47) carried at least one of the virulence genes, but extra-intestinal infections had a low mortality rate. Phylogenetic analysis indicated the risk of nosocomial transmission but revealed no outbreak. However, the emergence of MDR and ß-lactamase resistance genes in extra-intestinal isolates of A. caviae is becoming an increasing risk to public health and requires attention. Conclusions: This study strengthen our understanding of A.caviae isolated from extra-intestinal infections. It may contribute to the management of extra-intestinal infections as well as the prevention and control of drug resistance.


Assuntos
Aeromonas caviae , Aeromonas , Anti-Infecciosos , Humanos , Virulência/genética , Antibacterianos/farmacologia , Filogenia , Estudos Retrospectivos , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
11.
Chemosphere ; 317: 137882, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36657578

RESUMO

Sulfamethoxazole (SMX) is a frequently detected antibiotic in the environment and has attracted much attention. Aeromonas caviae strain GLB-10 was isolated, which could degrade SMX to Aniline and 3-Amino-5-methylisoxazole. Compared to the single bacteria, the mixed bacteria including stain GLB-10, Vibrio diabolicus strain L2-2, Zobellella taiwanensis, Microbacterium testaceum, Methylobacterium, etc, had an ultrahigh degradation efficiency to SMX, with 250 mg/L SMX being degraded in 3 days. In addition to bioproducts of single bacteria, SMX bioproducts by the mixed bacteria also included acetanilide and hydroquinone which were not detected in the single bacteria. The SMX degradation mechanism of the mixed bacteria was more complicated including acetylation, sulfur reduction 4S pathway, and ipso-hydrolysis. The molecular mechanism of the mixed bacteria degrading SMX was also investigated, revealing that the resistance mechanism related to protein outer membrane protein and catalase peroxidase were overexpressed, meanwhile, 6-hydroxynicotinate 3-monooxygenase and ammonia monooxygenase might be the key proteins in SMX degradation. The mixed bacteria could efficiently degrade SMX in different real environments including tap water, river water, artificial lake water, estuary, and, marine water, and have very great research value in bacterial co-metabolism and biodegradation of sulfonamides antibiotics in the environment.


Assuntos
Aeromonas caviae , Sulfametoxazol , Sulfametoxazol/metabolismo , Aeromonas caviae/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Água/metabolismo
12.
BMC Microbiol ; 22(1): 272, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36368971

RESUMO

BACKGROUND: Pasteurella multocida is an opportunistic pathogen causing porcine respiratory diseases by co-infections with other bacterial and viral pathogens. Various bacterial genera isolated from porcine respiratory tracts were shown to inhibit the growth of the porcine isolates of P. multocida. However, molecular mechanisms during the interaction between P. multocida and these commensal bacteria had not been examined.  METHODS: This study aimed to investigate the interaction between two porcine isolates of P. multocida (PM2 for type D and PM7 for type A) with Aeromonas caviae selected from the previously published work by co-culturing P. multocida in the conditioned media prepared from A. caviae growth and examining transcriptomic changes using RNA sequencing and bioinformatics analysis.  RESULTS: In total, 629 differentially expressed genes were observed in the isolate with capsular type D, while 110 genes were significantly shown in type A. High expression of genes required for energy metabolisms, nutrient uptakes, and quorum sensing were keys to the growth and adaptation to the conditioned media, together with the decreased expression of those in the unurgent pathways, including translation and antibacterial resistance. CONCLUSION: This transcriptomic analysis also displayed the distinct capability of the two isolates of P. multocida and the preference of the capsular type A isolate in response to the tough environment of the A. caviae conditioned media. Therefore, controlling the environmental sensing and nutrient acquisition mechanisms of P. multocida would possibly prevent the overpopulation of these bacteria and reduce the chance of becoming opportunistic pathogens.


Assuntos
Aeromonas caviae , Infecções por Pasteurella , Pasteurella multocida , Doenças dos Suínos , Suínos , Animais , Pasteurella multocida/genética , Infecções por Pasteurella/microbiologia , Aeromonas caviae/genética , Meios de Cultivo Condicionados/farmacologia , Transcriptoma , Doenças dos Suínos/microbiologia
13.
Microbiologyopen ; 11(4): e1306, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36031959

RESUMO

Bacterial swimming is mediated by the rotation of a flagellar filament. Many bacteria are now known to be able to O-glycosylate their flagellins, the proteins that make up the flagellar filament. For bacteria that use nonulosonic acid sugars such as pseudaminic acid, this glycosylation process is essential for the formation of a functional flagellum. However, the specific role of glycosylation remains elusive. Aeromonas caviae is a model for this process as it has a genetically simple glycosylation system. Here, we investigated the localization of the glycans on the A. caviae flagellum filament. Using mass spectrometry it was revealed that pseudaminic acid O-glycosylation was heterogeneous with no serine or threonine sites that were constantly glycosylated. Site-directed mutagenesis of particular glycosylation sites in most cases resulted in strains that had reduced motility and produced less detectable flagellin on Western blots. For flagellin O-linked glycosylation, there is no known consensus sequence, although hydrophobic amino acids have been suggested to play a role. We, therefore, performed site-directed mutagenesis of isoleucine or leucine residues flanking the sites of glycosylation and demonstrated a reduction in motility and the amount of flagellin present in the cells, indicating a role for these hydrophobic amino acids in the flagellin glycosylation process.


Assuntos
Aeromonas caviae , Flagelina , Aminoácidos , Flagelos , Glicosilação , Metilação
14.
Microb Pathog ; 169: 105662, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35781004

RESUMO

Aeromonas spp. is a pathogenic bacteria that potentially cause infection in farmed fish, including Catfishes. In the present study, dominant bacteria were isolated from diseased Clarias magur and tentatively named BLBM-05. Based on morphological, physiological, and biochemical features as well as 16S rRNA gene sequence and gyrB gene sequences (Gen Bank accession number: MT973994.1 and MZ398017.1), the bacteria in the isolate was found to be Aeromonas caviae. Further, the isolate was screened for five known virulence genes, namely ß-hemolysin, lafA, exu, ompA1 and ascV. Among them, three virulence genes related to pathogenicity, including aerolysin (aer), outer membrane protein (ompA1), lateral flagella (lafA), were identified in the A. caviae isolate. The median lethal dosage (LD50) of the BLBM-05 isolate for magur was determined as 1.53x106 CFU/mL. The histopathological analysis showed that the BLBM-05 isolate induced considerable histological lesions in the magur fish, including necrosis, hemolysis of erythrocytes, myolysis, hemorrhage, and desquamation in the intestinal tissue, tissue loosening, and infiltration of inflammatory cells. Drug sensitivity test showed that the isolate was susceptible to Gentamicin, Ceftazidine, Ceftrioxone, Amikacin, Tetracycline, Meropener and Oxytetracycline. The present results provide a scientific basis to identify A. caviae further, a line of treatment for magur infected by this pathogen.


Assuntos
Aeromonas caviae , Aeromonas , Infecções por Bactérias Gram-Negativas , Aeromonas caviae/genética , Animais , Antibacterianos/farmacologia , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , RNA Ribossômico 16S/genética , Virulência/genética
15.
Fish Shellfish Immunol ; 127: 1001-1011, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35870745

RESUMO

Aeromonas caviae is a zoonotic pathogen that can cause disease in aquatic organisms and mammals, including humans, and it is widespread in nature, especially in freshwater environments. Previous research has reported that extracellular products (ECPs) secreted by pathogens during growth are effective protective antigens that can induce the host immune response and protect the host from pathogens. However, little is known about how ECPs enhance immunity. Here, we prepared extracellular products by the cellophane plate method, determined the total protein concentration, and analysed the protein composition of the extracellular products by SDS-PAGE. Subsequently, their enzyme activity and pathogenicity were evaluated separately. Crucian carp were randomly divided into four groups to receive formalin-inactivated A. caviae vaccine (FKC), ECPs mixed with the same amount of Freund's complete adjuvant, the same amount of ECPs mixed with an equal volume of A. caviae inactivated vaccine (FKC + ECPs), sterile PBS alone via intraperitoneal injection. On Days 7, 14, 21, and 28 after immunization, the expression levels of IgM, SOD, and CAT and the lysozyme (LYS) activity in the serum were detected by ELISA, and the relative expression levels of the TNF-α, IFN-γ, IL-1ß, and IL-10 genes in the liver, kidney, spleen, intestine, and gills were measured by qPCR. The extracellular products generated five clearly visible protein bands and exhibited lipase, protease, amylase, DNase and lysozyme but no urease or lecithinase activities. In addition, the median lethal doses of A. caviae and ECPs to crucian carp were 411.64 µg/fish and 1.6 × 105 CFU/mL, respectively. Compared with those of the control group, the IgM, SOD, and CAT contents and serum LYS activity were significantly increased in the experimental groups, and the qRT-PCR results showed that the relative expression levels of TNF-α, IFN-γ, IL-1ß, and IL-10 genes in the liver, kidney, spleen, and intestine were significantly increased after injection immunization. In addition, the relative immune protection rates of the three experimental groups were 60%, 65%, and 45%, all of which were significantly higher than those of the control group. Collectively, our findings show that the extracellular products of A. caviae can be used as a vaccine to significantly improve the immune level of crucian carp and have obvious anti-infection ability. This may represent a promising approach to prevent and control infection by A. caviae and provides strong theoretical support for the development of new inactivated vaccines.


Assuntos
Aeromonas caviae , Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Doenças dos Peixes/prevenção & controle , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária , Imunoglobulina M , Interleucina-10 , Mamíferos , Muramidase , Superóxido Dismutase , Fator de Necrose Tumoral alfa , Vacinas de Produtos Inativados
18.
PLoS One ; 17(4): e0264207, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35421107

RESUMO

Bioplastics, synthesized by several microbes, accumulates inside cells under stress conditions as a storage material. Several microbial enzymes play a crucial role in their degradation. This research was carried to test the biodegradability of poly-ß-hydroxybutyrate (PHB) utilizing PHB depolymerase, produced by bacteria isolated from sewage waste soil samples. Potent PHB degrader was screened based on the highest zone of hydrolysis followed by PHB depolymerase activity. Soil burial method was employed to check their degradation ability at different incubation periods of 15, 30, and 45 days at 37±2°C, pH 7.0 at 60% moisture with 1% microbial inoculum of Aeromonas caviae Kuk1-(34) (MN414252). Without optimized conditions, 85.76% of the total weight of the PHB film was degraded after 45 days. This degradation was confirmed with Fourier-transform infrared spectroscopy (FTIR) and Scanning electron microscope (SEM) analysis. The presence of bacterial colonies on the surface of the degraded film, along with crest, holes, surface erosion, and roughness, were visible. Media optimization was carried out in statistical mode using Plackett Burman (PB) and Central Composite Design (CCD) of Response Surface Methodology (RSM) by considering ten different factors. Analysis of Variance (ANOVA), Pareto chart, response surface plots, and F-value of 3.82 implies that the above statistical model was significant. The best production of PHB depolymerase enzyme (14.98 U/mL) was observed when strain Kuk1-(34) was grown in a media containing 0.1% PHB, K2HPO4 (1.6 gm/L) at 27 ℃ for seven days. Exploiting these statistically optimized conditions, the culture was found to be a suitable candidate for the management of solid waste, where 94.4% of the total weight of the PHB film was degraded after 45 days of incubation.


Assuntos
Aeromonas caviae , Gerenciamento de Resíduos , Aeromonas caviae/metabolismo , Bactérias/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Meios de Cultura , Hidroxibutiratos/metabolismo , Poliésteres/química , Polímeros , Solo , Resíduos Sólidos
19.
J Appl Microbiol ; 132(6): 4321-4329, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35355377

RESUMO

AIMS: To investigate the antibacterial activity of three (palmarosa, basil and rosemary) essential oils (EOs) on Aeromonas veronii and Aeromonas caviae, and determine minimum inhibitory concentration (MIC) of potent EO against tetracycline and sulfonamide resistant strains. METHODS AND RESULTS: Palmarosa oil (PMO) showed significantly (p < 0.05) higher inhibition zones against both A. veronii and A. caviae (n = 30) than basil and rosemary in the disk diffusion assay. The MIC (% v/v) of PMO ranged from 0.008% to 1.00%. The mean MIC was significantly higher for A. caviae (0.48 ± 0.24%) than A. veronii (0.21 ± 0.15%). Further, the MIC of PMO was compared in six groups: Group 1: Tetracycline Resistant A. veronii (TRV); Group 2: Tetracycline Resistant A. caviae (TRC); Group 3: Sulfonamide Resistant A. veronii (SRV); Group 4: Sulfonamide Resistant A. caviae (SRC); Group 5: Susceptible A. veronii (SV) and Group 6: Susceptible A. caviae (SC). No significant differences were observed between overall resistant (TRV+ SRV) and susceptible A. veronii (SV). However, in A. caviae, the resistant group had a lower MIC than the susceptible group. Moreover, the MIC was significantly lower for TRC (0.31 ± 0.11%) as compared to SRC (0.46 ± 0.10%). The time of kill of PMO for both the species of Aeromonas was 20-30 min. CONCLUSION: Palmarosa oil exhibited significantly higher activity on A. veronii than A. caviae. The resistant strains of A. caviae were inhibited at a lower concentration than susceptible strains. SIGNIFICANCE AND IMPACT OF THE STUDY: Palmarosa oil could be explored as an alternative antimicrobial agent for mitigating antimicrobial resistance and managing Aeromonas infection in fish and their risks to public health.


Assuntos
Aeromonas caviae , Aeromonas , Infecções por Bactérias Gram-Negativas , Aeromonas veronii , Animais , Antibacterianos/farmacologia , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Testes de Sensibilidade Microbiana , Sulfonamidas , Tetraciclina/farmacologia
20.
Lett Appl Microbiol ; 73(2): 176-186, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33891720

RESUMO

Aeromonas spp. are associated with seafood-related outbreaks worldwide. In seafood industry, shellfish play a major role in global seafood production. With this emerging trend of shellfish consumption, shellfish-related bacterial infections are being reported frequently. Aeromonas spp. are natural contaminants found in shellfish. Although 36 species have been identified, some species including Aeromonas hydrophila, Aeromonas caviae and Aeromonas veronii biotype sobria have dragged major attention as foodborne pathogenic bacteria. The ability to elaborate a variety of virulence factors of Aeromonas spp. contributes to the pathogenic activities. Also, emerging antimicrobial resistance in Aeromonas spp. has become a huge challenge in seafood industry. Furthermore, multidrug resistance increases the risk of consumer health. Studies have supplied pieces of evidence about the emerging health risk of Aeromonas spp. isolated from seafood. Therefore, the present review was intended to highlight the prevalence, virulence and antimicrobial resistance of Aeromonas spp. isolated from various types of shellfish.


Assuntos
Aeromonas/efeitos dos fármacos , Aeromonas/patogenicidade , Farmacorresistência Bacteriana , Frutos do Mar/microbiologia , Virulência , Aeromonas caviae/efeitos dos fármacos , Aeromonas caviae/patogenicidade , Aeromonas hydrophila/efeitos dos fármacos , Aeromonas hydrophila/patogenicidade , Aeromonas veronii/efeitos dos fármacos , Aeromonas veronii/patogenicidade , Animais , Antibacterianos/farmacologia , Biofilmes , Contaminação de Alimentos , Microbiologia de Alimentos , Humanos , Prevalência , Alimentos Marinhos/microbiologia , Fatores de Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...