Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Biol Chem ; 299(3): 102926, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36682493

RESUMO

Soluble amyloid-ß oligomers (AßOs) are proposed to instigate and mediate the pathology of Alzheimer's disease, but the mechanisms involved are not clear. In this study, we reported that AßOs can undergo liquid-liquid phase separation (LLPS) to form liquid-like droplets in vitro. We determined that AßOs exhibited an α-helix conformation in a membrane-mimicking environment of SDS. Importantly, SDS is capable of reconfiguring the assembly of different AßOs to induce their LLPS. Moreover, we found that the droplet formation of AßOs was promoted by strong hydrated anions and weak hydrated cations, suggesting that hydrophobic interactions play a key role in mediating phase separation of AßOs. Finally, we observed that LLPS of AßOs can further promote Aß to form amyloid fibrils, which can be modulated by (-)-epigallocatechin gallate. Our study highlights amyloid oligomers as an important entity involved in protein liquid-to-solid phase transition and reveals the regulatory role of LLPS underlying amyloid protein aggregation, which may be relevant to the pathological process of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Transição de Fase , Agregação Patológica de Proteínas , Humanos , Doença de Alzheimer/fisiopatologia , Amiloide/química , Amiloide/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Dodecilsulfato de Sódio/química , Agregação Patológica de Proteínas/fisiopatologia
2.
J Biol Chem ; 298(5): 101912, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35398355

RESUMO

Molecular chaperones safeguard cellular protein homeostasis and obviate proteotoxicity. In the process of aging, as chaperone networks decline, aberrant protein amyloid aggregation accumulates in a mechanism that underpins neurodegeneration, leading to pathologies such as Alzheimer's disease and Parkinson's disease. Thus, it is important to identify and characterize chaperones for preventing such protein aggregation. In this work, we identified that the NAD+ synthase-nicotinamide mononucleotide adenylyltransferase (NMNAT) 3 from mouse (mN3) exhibits potent chaperone activity to antagonize aggregation of a wide spectrum of pathological amyloid client proteins including α-synuclein, Tau (K19), amyloid ß, and islet amyloid polypeptide. By combining NMR spectroscopy, cross-linking mass spectrometry, and computational modeling, we further reveal that mN3 uses different region of its amphiphilic surface near the active site to directly bind different amyloid client proteins. Our work demonstrates a client recognition mechanism of NMNAT via which it chaperones different amyloid client proteins against pathological aggregation and implies a potential protective role for NMNAT in different amyloid-associated diseases.


Assuntos
Proteínas Amiloidogênicas , Nicotinamida-Nucleotídeo Adenililtransferase , Proteínas Amiloidogênicas/metabolismo , Animais , Camundongos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Agregação Patológica de Proteínas/fisiopatologia
3.
Gut Microbes ; 13(1): 1996848, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34812107

RESUMO

Amyotrophic Lateral Sclerosis is a neuromuscular disease characterized by the progressive death of motor neurons and muscle atrophy. The gastrointestinal symptoms in ALS patients were largely ignored or underestimated. The relationship between the enteric neuromuscular system and microbiome in ALS progression is unknown. We performed longitudinal studies on the enteric neuron system (ENS) and microbiome in the ALS human-SOD1G93A (Superoxide Dismutase 1) transgenic mice. We treated age-matched wild-type and ALS mice with butyrate or antibiotics to investigate the microbiome and neuromuscular functions. We examined intestinal mobility, microbiome, an ENS marker GFAP (Glial Fibrillary Acidic Protein), a smooth muscle marker (SMMHC, Smooth Muscle Myosin Heavy Chain), and human colonoids. The distribution of human-G93A-SOD1 protein was tested as an indicator of ALS progression. At 2-month-old before ALS onset, SOD1G93A mice had significantly lower intestinal mobility, decreased grip strength, and reduced time in the rotarod. We observed increased GFAP and decreased SMMHC expression. These changes correlated with consistent increased aggregation of mutated SOD1G93A in the colon, small intestine, and spinal cord. Butyrate or antibiotics treated SOD1G93A mice had a significantly longer latency to fall in the rotarod test, reduced SOD1G93A aggregation, and enhanced enteric neuromuscular function. Feces from 2-month-old SOD1G93A mice significantly enhanced SOD1G93A aggregation in human colonoids transfected with a SOD1G93A-GFP plasmid. Longitudinal studies of microbiome data further showed the altered bacterial community related to autoimmunity (e.g., Clostridium sp. ASF502, Lachnospiraceae bacterium A4), inflammation (e.g., Enterohabdus Muris,), and metabolism (e.g., Desulfovibrio fairfieldensis) at 1- and 2-month-old SOD1G93A mice, suggesting the early microbial contribution to the pathological changes. We have demonstrated a novel link between the microbiome, hSOD1G93A aggregation, and intestinal mobility. Dysbiosis occurred at the early stage of the ALS mice before observed mutated-SOD1 aggregation and dysfunction of ENS. Manipulating the microbiome improves the muscle performance of SOD1G93A mice. We provide insights into the fundamentals of intestinal neuromuscular function and microbiome in ALS.


Assuntos
Esclerose Lateral Amiotrófica/microbiologia , Disbiose/microbiologia , Sistema Nervoso Entérico/fisiopatologia , Músculo Liso/fisiopatologia , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Antibacterianos/uso terapêutico , Butiratos/uso terapêutico , Modelos Animais de Doenças , Disbiose/tratamento farmacológico , Disbiose/fisiopatologia , Sistema Nervoso Entérico/efeitos dos fármacos , Sistema Nervoso Entérico/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Motilidade Gastrointestinal/efeitos dos fármacos , Humanos , Intestino Delgado/inervação , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Intestino Delgado/fisiopatologia , Estudos Longitudinais , Camundongos , Camundongos Transgênicos , Força Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Agregação Patológica de Proteínas/tratamento farmacológico , Agregação Patológica de Proteínas/microbiologia , Agregação Patológica de Proteínas/fisiopatologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
4.
Neuron ; 109(12): 1949-1962.e6, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33991504

RESUMO

Expansion of a hexanucleotide repeat GGGGCC (G4C2) in the intron of the C9ORF72 gene is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9-ALS/FTD). Transcripts carrying G4C2 repeat expansions generate neurotoxic dipeptide repeat (DPR) proteins, including poly-Gly-Ala (poly-GA), which tends to form protein aggregates. Here, we demonstrate that UBQLN2, another ALS/FTD risk factor, is recruited to reduce poly-GA aggregates and alleviate poly-GA-induced neurotoxicity. UBQLN2 could recognize HSP70 ubiquitination, which facilitates the UBQLN2-HSP70-GA complex formation and promotes poly-GA degradation. ALS/FTD-related UBQLN2 mutants fail to bind HSP70 and clear poly-GA aggregates. Disruption of the interaction between UBQLN2 and HSP70 inhibits poly-GA aggregation in C9-ALS/FTD iPSC-derived neurons. Finally, enhancing HSP70 by the chemical compound 17AAG at the adult stage mitigates behavioral defects in poly-GA animals. Our findings suggest a critical role of the UBQLN2-HSP70 axis in protein aggregate clearance in C9-ALS/FTD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Esclerose Lateral Amiotrófica/genética , Proteínas Relacionadas à Autofagia/genética , Proteína C9orf72/genética , Demência Frontotemporal/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Proteína C9orf72/metabolismo , Expansão das Repetições de DNA , Modelos Animais de Doenças , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Demência Frontotemporal/fisiopatologia , Células HEK293 , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas , Camundongos , Córtex Motor/patologia , Polímeros/metabolismo , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Agregação Patológica de Proteínas/fisiopatologia , Ubiquitinação
5.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926107

RESUMO

Amyloid ß-peptide (Aß) oligomerization is believed to contribute to the neuronal dysfunction in Alzheimer disease (AD). Despite decades of research, many details of Aß oligomerization in neurons still need to be revealed. Förster resonance energy transfer (FRET) is a simple but effective way to study molecular interactions. Here, we used a confocal microscope with a sensitive Airyscan detector for FRET detection. By live cell FRET imaging, we detected Aß42 oligomerization in primary neurons. The neurons were incubated with fluorescently labeled Aß42 in the cell culture medium for 24 h. Aß42 were internalized and oligomerized in the lysosomes/late endosomes in a concentration-dependent manner. Both the cellular uptake and intracellular oligomerization of Aß42 were significantly higher than for Aß40. These findings provide a better understanding of Aß42 oligomerization in neurons.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo , Agregação Patológica de Proteínas/fisiopatologia , Doença de Alzheimer , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide , Animais , Endossomos/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Humanos , Lisossomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Células PC12 , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Agregação Patológica de Proteínas/diagnóstico por imagem , Ratos
6.
Acta Neuropathol Commun ; 9(1): 41, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712082

RESUMO

A fundamental property of infectious agents is their particulate nature: infectivity arises from independently-acting particles rather than as a result of collective action. Assemblies of the protein tau can exhibit seeding behaviour, potentially underlying the apparent spread of tau aggregation in many neurodegenerative diseases. Here we ask whether tau assemblies share with classical pathogens the characteristic of particulate behaviour. We used organotypic hippocampal slice cultures from P301S tau transgenic mice in order to precisely control the concentration of extracellular tau assemblies in neural tissue. Whilst untreated slices displayed no overt signs of pathology, exposure to recombinant tau assemblies could result in the formation of intraneuronal, hyperphosphorylated tau structures. However, seeding ability of tau assemblies did not titrate in a one-hit manner in neural tissue. The results suggest that seeding behaviour of tau arises at high concentrations, with implications for the interpretation of high-dose intracranial challenge experiments and the possible contribution of seeded aggregation to human disease.


Assuntos
Príons/patogenicidade , Agregação Patológica de Proteínas/patologia , Agregação Patológica de Proteínas/fisiopatologia , Tauopatias/patologia , Tauopatias/fisiopatologia , Proteínas tau/metabolismo , Doença de Alzheimer , Animais , Modelos Animais de Doenças , Células HEK293 , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Técnicas In Vitro , Camundongos , Camundongos Transgênicos , Fosforilação , Agregação Patológica de Proteínas/metabolismo , Tauopatias/metabolismo , Técnicas de Cultura de Tecidos , Proteínas tau/genética
7.
Autophagy ; 17(11): 3306-3322, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33632058

RESUMO

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two clinically distinct classes of neurodegenerative disorders. Yet, they share a range of genetic, cellular, and molecular features. Hexanucleotide repeat expansions (HREs) in the C9orf72 gene and the accumulation of toxic protein aggregates in the nervous systems of the affected individuals are among such common features. Though the mechanisms by which HREs cause toxicity is not clear, the toxic gain of function due to transcribed HRE RNA or dipeptide repeat proteins (DPRs) produced by repeat-associated non-AUG translation together with a reduction in C9orf72 expression are proposed as the contributing factors for disease pathogenesis in ALS and FTD. In addition, several recent studies point toward alterations in protein homeostasis as one of the root causes of the disease pathogenesis. In this review, we discuss the effects of the C9orf72 HRE in the autophagy-lysosome pathway based on various recent findings. We suggest that dysfunction of the autophagy-lysosome pathway synergizes with toxicity from C9orf72 repeat RNA and DPRs to drive disease pathogenesis.Abbreviation: ALP: autophagy-lysosome pathway; ALS: amyotrophic lateral sclerosis; AMPK: AMP-activated protein kinase; ATG: autophagy-related; ASO: antisense oligonucleotide; C9orf72: C9orf72-SMCR8 complex subunit; DENN: differentially expressed in normal and neoplastic cells; DPR: dipeptide repeat protein; EIF2A/eIF2α: eukaryotic translation initiation factor 2A; ER: endoplasmic reticulum; FTD: frontotemporal dementia; GAP: GTPase-activating protein; GEF: guanine nucleotide exchange factor; HRE: hexanucleotide repeat expansion; iPSC: induced pluripotent stem cell; ISR: integrated stress response; M6PR: mannose-6-phosphate receptor, cation dependent; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MN: motor neuron; MTORC1: mechanistic target of rapamycin kinase complex 1; ND: neurodegenerative disorder; RAN: repeat-associated non-ATG; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SLC66A1/PQLC2: solute carrier family 66 member 1; SMCR8: SMCR8-C9orf72 complex subunit; SQSTM1/p62: sequestosome 1; STX17: syntaxin 17; TARDBP/TDP-43: TAR DNA binding protein; TBK1: TANK binding kinase 1; TFEB: transcription factor EB; ULK1: unc-51 like autophagy activating kinase 1; UPS: ubiquitin-proteasome system; WDR41: WD repeat domain 41.


Assuntos
Esclerose Lateral Amiotrófica/genética , Autofagia/genética , Proteína C9orf72/genética , Demência Frontotemporal/genética , Lisossomos/genética , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Autofagossomos/genética , Autofagossomos/patologia , Autofagossomos/fisiologia , Autofagia/fisiologia , Transporte Axonal/genética , Transporte Axonal/fisiologia , Proteína C9orf72/fisiologia , Expansão das Repetições de DNA/genética , Expansão das Repetições de DNA/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Demência Frontotemporal/patologia , Demência Frontotemporal/fisiopatologia , Terapia Genética , Humanos , Lisossomos/fisiologia , Modelos Neurológicos , Degeneração Neural/genética , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/fisiopatologia , Proteostase/genética , Proteostase/fisiologia , Proteínas de Ligação a RNA/fisiologia
8.
Acta Neuropathol Commun ; 9(1): 15, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33461623

RESUMO

Transactive response DNA-binding protein 43 kDa (TDP-43) has been identified as the major component of ubiquitinated inclusions found in patients with sporadic amyotrophic lateral sclerosis (ALS). Increasing evidence suggests prion-like transmission of TDP-43 aggregates via neuroanatomic connection in vitro and pyramidal tract in vivo. However, it is still unknown whether the spreading of pathological TDP-43 sequentially via pyramidal tract can initiate ALS-like pathology and phenotypes. In this study, we reported that injection of TDP-43 preformed fibrils (PFFs) into the primary motor cortex (M1) of Thy1-e (IRES-TARDBP) 1 mice induced the spreading of pathological TDP-43 along pyramidal tract axons anterogradely. Moreover, TDP-43 PFFs-injected Thy1-e (IRES-TARDBP) 1 mice displayed ALS-like neuropathological features and symptoms, including motor dysfunctions and electrophysiological abnormalities. These findings provide direct evidence that transmission of pathological TDP-43 along pyramidal tract induces ALS-like phenotypes, which further suggest the potential mechanism for TDP-43 proteinopathy.


Assuntos
Esclerose Lateral Amiotrófica/genética , Transporte Axonal , Proteínas de Ligação a DNA/genética , Córtex Motor/metabolismo , Agregados Proteicos , Agregação Patológica de Proteínas/genética , Tratos Piramidais/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Humanos , Camundongos , Camundongos Transgênicos , Córtex Motor/patologia , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Agregação Patológica de Proteínas/fisiopatologia , Tratos Piramidais/patologia
9.
Acta Neuropathol Commun ; 9(1): 13, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413679

RESUMO

Alpha-synuclein (αsyn) is the key component of proteinaceous aggregates termed Lewy Bodies that pathologically define a group of disorders known as synucleinopathies, including Parkinson's Disease (PD) and Dementia with Lewy Bodies. αSyn is hypothesized to misfold and spread throughout the brain in a prion-like fashion. Transmission of αsyn necessitates the release of misfolded αsyn from one cell and the uptake of that αsyn by another, in which it can template the misfolding of endogenous αsyn upon cell internalization. 14-3-3 proteins are a family of highly expressed brain proteins that are neuroprotective in multiple PD models. We have previously shown that 14-3-3θ acts as a chaperone to reduce αsyn aggregation, cell-to-cell transmission, and neurotoxicity in the in vitro pre-formed fibril (PFF) model. In this study, we expanded our studies to test the impact of 14-3-3s on αsyn toxicity in the in vivo αsyn PFF model. We used both transgenic expression models and adenovirus associated virus (AAV)-mediated expression to examine whether 14-3-3 manipulation impacts behavioral deficits, αsyn aggregation, and neuronal counts in the PFF model. 14-3-3θ transgene overexpression in cortical and amygdala regions rescued social dominance deficits induced by PFFs at 6 months post injection, whereas 14-3-3 inhibition by transgene expression of the competitive 14-3-3 peptide inhibitor difopein in the cortex and amygdala accelerated social dominance deficits. The behavioral rescue by 14-3-3θ overexpression was associated with delayed αsyn aggregation induced by PFFs in these brain regions. Conversely, 14-3-3 inhibition by difopein in the cortex and amygdala accelerated αsyn aggregation and reduction in NECAB1-positive neuron counts induced by PFFs. 14-3-3θ overexpression by AAV in the substantia nigra (SN) also delayed αsyn aggregation in the SN and partially rescued PFF-induced reduction in tyrosine hydroxylase (TH)-positive dopaminergic cells in the SN. 14-3-3 inhibition in the SN accelerated nigral αsyn aggregation and enhanced PFF-induced reduction in TH-positive dopaminergic cells. These data indicate a neuroprotective role for 14-3-3θ against αsyn toxicity in vivo.


Assuntos
Proteínas 14-3-3/genética , Doença de Parkinson/genética , Agregação Patológica de Proteínas/genética , alfa-Sinucleína/metabolismo , Proteínas 14-3-3/metabolismo , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/patologia , Animais , Comportamento Animal/fisiologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Técnicas de Introdução de Genes , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Agregados Proteicos , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Agregação Patológica de Proteínas/fisiopatologia , Proteínas/genética , Predomínio Social , Substância Negra/metabolismo , Substância Negra/patologia
10.
Acta Neuropathol Commun ; 8(1): 210, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33261653

RESUMO

The molecular chaperone Clusterin (CLU) impacts the amyloid pathway in Alzheimer's disease (AD) but its role in tau pathology is unknown. We observed CLU co-localization with tau aggregates in AD and primary tauopathies and CLU levels were upregulated in response to tau accumulation. To further elucidate the effect of CLU on tau pathology, we utilized a gene delivery approach in CLU knock-out (CLU KO) mice to drive expression of tau bearing the P301L mutation. We found that loss of CLU was associated with exacerbated tau pathology and anxiety-like behaviors in our mouse model of tauopathy. Additionally, we found that CLU dramatically inhibited tau fibrilization using an in vitro assay. Together, these results demonstrate that CLU plays a major role in both amyloid and tau pathologies in AD.


Assuntos
Clusterina/genética , Clusterina/metabolismo , Agregação Patológica de Proteínas/genética , Tauopatias/genética , Proteínas tau/metabolismo , Idoso , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Animais , Ansiedade/fisiopatologia , Humanos , Técnicas In Vitro , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Doença de Pick/genética , Doença de Pick/metabolismo , Doença de Pick/patologia , Doença de Pick/fisiopatologia , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Agregação Patológica de Proteínas/fisiopatologia , Tauopatias/metabolismo , Tauopatias/patologia , Tauopatias/fisiopatologia
11.
Neurobiol Dis ; 143: 105011, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32653674

RESUMO

Progressive accumulation of hyperphosphorylated tau is a hallmark of various neurodegenerative disorders including Alzheimer's disease. However, to date, the functional effects of tau pathology on brain network connectivity remain poorly understood. To directly interrogate the impact of tau pathology on functional brain connectivity, we conducted a longitudinal experiment in which we monitored a fibril-seeded hTau.P301L mouse model using correlative whole-brain microscopy and resting-state functional MRI. Despite a progressive aggravation of tau pathology across the brain, the major resting-state networks appeared unaffected up to 15 weeks after seeding. Targeted analyses also showed that the connectivity of regions with high levels of hyperphosphorylated tau was comparable to that observed in controls. In line with the ostensible retention of connectivity, no behavioural changes were detected between seeded and control hTau.P301L mice as determined by three different paradigms. Our data indicate that seeded tau pathology, with accumulation of tau aggregates throughout different regions of the brain, does not alter functional connectivity or behaviour in this mouse model. Additional correlative functional studies on different mouse models should help determine whether this is a generalizable trait of tauopathies.


Assuntos
Encéfalo/fisiopatologia , Rede Nervosa/fisiopatologia , Vias Neurais/fisiopatologia , Agregação Patológica de Proteínas/fisiopatologia , Proteínas tau/metabolismo , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Humanos , Imageamento por Ressonância Magnética , Camundongos , Rede Nervosa/patologia , Vias Neurais/patologia , Agregação Patológica de Proteínas/patologia
12.
Biochim Biophys Acta Mol Basis Dis ; 1866(10): 165876, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32531261

RESUMO

TAR DNA binding protein (TDP-43) is a DNA/RNA binding protein whose pathological role in amyotrophic lateral sclerosis (ALS) and frontal temporal lobe dementia (FTLD) via formation of protein aggregates is well established. In contrast, knowledge concerning its interactions with other neuropathological aggregating proteins is poorly understood. Human α-synuclein (HASN) elicits dopaminergic neuron degeneration via protein aggregation in Parkinson's disease. HASN protein aggregates are also found in TDP-43 lesions and colocalize in Lewy Body Dementia (LBD). To better understand the interactions of TDP-43 and HASN, we investigated the effects of genetic deletion of tdp-1, the Caenorhabditis elegans ortholog of human TDP-43, as well as overexpression of TDP-43, in transgenic models overexpressing HASNWT and HASNA53T. Tdp-1 deletion improved the posture, movement, and developmental delay observed in transgenic animals pan-neuronally overexpressing HASNA53T, and attenuated the loss and impairment of dopaminergic neurons caused by HASNA53T or HASNWT overexpression. Tdp-1 deletion also led to a decrease in protein level, mRNA level and aggregate formation of HASN in living animals. RNA-seq studies suggested that tdp-1 supports expression of lysosomal genes and decreases expression of genes involved in heat shock. RNAi demonstrated that heat shock proteins can mediate HASN neuropathology. Co-overexpression of both human TDP-43 and HASNWT resulted in locomotion deficits, shorter lifespan, and more severe dopaminergic neuron impairments compared to single transgenes. Our results suggest TDP-1/TDP-43 potentiates HASN mediated neurodegeneration in C. elegans. This study indicates a multifunctional role for TDP-1/TDP-43 in neurodegeneration involving HASN.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Doença por Corpos de Lewy/genética , Agregação Patológica de Proteínas/genética , Proteínas de Ligação a RNA/genética , alfa-Sinucleína/genética , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Modelos Animais de Doenças , Neurônios Dopaminérgicos/patologia , Técnicas de Inativação de Genes , Humanos , Doença por Corpos de Lewy/patologia , Doença por Corpos de Lewy/fisiopatologia , Locomoção/genética , Longevidade/genética , Agregação Patológica de Proteínas/patologia , Agregação Patológica de Proteínas/fisiopatologia , alfa-Sinucleína/metabolismo
13.
Sci Rep ; 10(1): 9742, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546691

RESUMO

Alzheimer's disease (AD) is a progressive disorder of the brain that gradually decreases thinking, memory, and language abilities. The aggregation process of amyloid ß (Aß) is a key step in the expression of its neurocytotoxicity and development of AD because Aß aggregation and accumulation around neuronal cells induces cell death. However, the molecular mechanism underlying the neurocytotoxicity and cell death by Aß aggregation has not been clearly elucidated. In this study, we successfully visualized real-time process of Aß42 aggregation around living cells by applying our established QD imaging method. 3D observations using confocal laser microscopy revealed that Aß42 preferentially started to aggregate at the region where membrane protrusions frequently formed. Furthermore, we found that inhibition of actin polymerization using cytochalasin D reduced aggregation of Aß42 on the cell surface. These results indicate that actin polymerization-dependent cell motility is responsible for the promotion of Aß42 aggregation at the cell periphery. 3D observation also revealed that the aggregates around the cell remained in that location even if cell death occurred, implying that amyloid plaques found in the AD brain grew from the debris of dead cells that accumulated Aß42 aggregates.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Microscopia Confocal/métodos , Agregação Patológica de Proteínas/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Peptídeos beta-Amiloides/fisiologia , Animais , Encéfalo/metabolismo , Imageamento Tridimensional/métodos , Memória/fisiologia , Neurônios/metabolismo , Células PC12 , Fragmentos de Peptídeos/metabolismo , Placa Amiloide/metabolismo , Agregação Patológica de Proteínas/fisiopatologia , Ratos
14.
Phys Chem Chem Phys ; 22(14): 7241-7249, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32207466

RESUMO

The self-assembly of Tau protein into amyloid structures is associated with Alzheimer's disease and other tauopathies. Dominant familial mutations in the Tau gene, such as P301L and P301S, increase the propensity of the Tau protein to aggregate abnormally into filaments. A quantitative description of the fibrillization process of Tau will facilitate the understanding of the cytotoxicity of Tau aggregates and their intercellular spreading. Here, we investigated the aggregation kinetics of Tau and disease-associated P301L and P301S mutants by combined thioflavin T assay and kinetic modeling, which revealed the rate constants of individual microscopic steps in the process of amyloid formation. Compared to WT Tau, P301L shows a larger primary nucleation rate while P301S has higher elongation and fragmentation rates and a more apparent fibril annealing process. Cross-seeding assays and FRET experiments indicate that the structures of the fibrillar nuclei of the three variants are distinct. These results provide detailed insights into how the amyloid aggregation mechanism of Tau protein is affected by the familial mutations P301L and P301S, and relates the physical properties of Tau mutants to their pathogenic mechanism.


Assuntos
Agregação Patológica de Proteínas/fisiopatologia , Proteínas tau/química , Proteínas tau/genética , Doença de Alzheimer/fisiopatologia , Transferência Ressonante de Energia de Fluorescência , Humanos , Cinética , Mutação , Proteínas tau/toxicidade , Proteínas tau/ultraestrutura
15.
Commun Biol ; 3(1): 79, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32071389

RESUMO

The molecular events causing memory loss and neuronal cell death in Alzheimer's disease (AD) over time are still unknown. Here we found that picomolar concentrations of soluble oligomers of synthetic beta amyloid (Aß42) aggregates incubated with BV2 cells or rat astrocytes caused a sensitised response of Toll-like receptor 4 (TLR4) with time, leading to increased production of TNF-α. Aß aggregates caused long term potentiation (LTP) deficit in hippocampal slices and predominantly neuronal cell death in co-cultures of astrocytes and neurons, which was blocked by TLR4 antagonists. Soluble Aß aggregates cause LTP deficit and neuronal death via an autocrine/paracrine mechanism due to TLR4 signalling. These findings suggest that the TLR4-mediated inflammatory response may be a key pathophysiological process in AD.


Assuntos
Peptídeos beta-Amiloides/fisiologia , Neurônios/fisiologia , Agregados Proteicos/fisiologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Animais , Animais Recém-Nascidos , Morte Celular/efeitos dos fármacos , Células Cultivadas , Embrião de Mamíferos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/fisiopatologia , Agregação Patológica de Proteínas/psicologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
16.
Neuron ; 105(5): 813-821.e6, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-31899071

RESUMO

Despite being an autosomal dominant disorder caused by a known coding mutation in the gene HTT, Huntington's disease (HD) patients with similar trinucleotide repeat mutations can have an age of onset that varies by decades. One likely contributing factor is the genetic heterogeneity of patients that might modify their vulnerability to disease. We report that although the heterozygous depletion of the autophagy adaptor protein Alfy/Wdfy3 has no consequence in control mice, it significantly accelerates age of onset and progression of HD pathogenesis. Alfy is required in the adult brain for the autophagy-dependent clearance of proteinaceous deposits, and its depletion in mice and neurons derived from patient fibroblasts accelerates the aberrant accumulation of this pathological hallmark shared across adult-onset neurodegenerative diseases. These findings indicate that selectively compromising the ability to eliminate aggregated proteins is a pathogenic driver, and the selective elimination of aggregates may confer disease resistance.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Relacionadas à Autofagia/genética , Doença de Huntington/genética , Macroautofagia/genética , Neurônios/metabolismo , Agregação Patológica de Proteínas/genética , Idade de Início , Animais , Morte Celular/genética , Modelos Animais de Doenças , Feminino , Fibroblastos , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Doença de Huntington/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/fisiopatologia
17.
Elife ; 92020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31895037

RESUMO

Seeding, in the context of amyloid disease, is the sequential transfer of pathogenic protein aggregates from cell-to-cell within affected tissues. The structure of pathogenic seeds provides the molecular basis and enables rapid conversion of soluble protein into fibrils. To date, there are no inhibitors that specifically target seeding of Parkinson's disease (PD)-associated α-synuclein (α-syn) fibrils, in part, due to lack of information of the structural properties of pathological seeds. Here we design small peptidic inhibitors based on the atomic structure of the core of α-syn fibrils. The inhibitors prevent α-syn aggregation in vitro and in cell culture models with binding affinities of 0.5 µM to α-syn fibril seeds. The inhibitors also show efficacy in preventing seeding by human patient-derived α-syn fibrils. Our results suggest that pathogenic seeds of α-syn contain steric zippers and suggest a therapeutic approach targeted at the spread and progression that may be applicable for PD and related synucleinopathies.


Assuntos
Doença de Parkinson/metabolismo , Agregados Proteicos/fisiologia , Agregação Patológica de Proteínas/fisiopatologia , alfa-Sinucleína/metabolismo , Células HEK293 , Humanos
18.
Cell Mol Neurobiol ; 40(3): 313-345, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31584139

RESUMO

Neurodegeneration entails progressive loss of neuronal structure as well as function leading to cognitive failure, apathy, anxiety, irregular body movements, mood swing and ageing. Proteomic dysregulation is considered the key factor for neurodegeneration. Mechanisms involving deregulated processing of proteins such as amyloid beta (Aß) oligomerization; tau hyperphosphorylation, prion misfolding; α-synuclein accumulation/lewy body formation, chaperone deregulation, acetylcholine depletion, adenosine 2A (A2A) receptor hyperactivation, secretase deregulation, leucine-rich repeat kinase 2 (LRRK2) mutation and mitochondrial proteinopathies have deeper implications in neurodegenerative disorders. Better understanding of such pathological mechanisms is pivotal for exploring crucial drug targets. Herein, we provide a comprehensive outlook about the diverse proteomic irregularities in Alzheimer's, Parkinson's and Creutzfeldt Jakob disease (CJD). We explicate the role of key neuroproteomic drug targets notably Aß, tau, alpha synuclein, prions, secretases, acetylcholinesterase (AchE), LRRK2, molecular chaperones, A2A receptors, muscarinic acetylcholine receptors (mAchR), N-methyl-D-aspartate receptor (NMDAR), glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) and mitochondrial/oxidative stress-related proteins for combating neurodegeneration and associated cognitive and motor impairment. Cross talk between amyloidopathy, synucleinopathy, tauopathy and several other proteinopathies pinpoints the need to develop safe therapeutics with ability to strike multiple targets in the aetiology of the neurodegenerative disorders. Therapeutics like microtubule stabilisers, chaperones, kinase inhibitors, anti-aggregation agents and antibodies could serve promising regimens for treating neurodegeneration. However, drugs should be target specific, safe and able to penetrate blood-brain barrier.


Assuntos
Terapia de Alvo Molecular , Degeneração Neural/metabolismo , Agregação Patológica de Proteínas/metabolismo , Proteoma/análise , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Animais , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Síndrome de Creutzfeldt-Jakob/fisiopatologia , Humanos , Terapia de Alvo Molecular/métodos , Terapia de Alvo Molecular/tendências , Degeneração Neural/genética , Degeneração Neural/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/fisiopatologia , Agregação Patológica de Proteínas/terapia , Proteoma/metabolismo , Proteômica , Transdução de Sinais/fisiologia
19.
Acta Neuropathol Commun ; 7(1): 213, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31856920

RESUMO

Here we describe the use of an organotypic hippocampal slice model for studying α-synuclein aggregation and inter-neuronal spreading initiated by microinjection of pre-formed α-synuclein fibrils (PFFs). PFF injection at dentate gyrus (DG) templates the formation of endogenous α-synuclein aggregates in axons and cell bodies of this region that spread to CA3 and CA1 regions. Aggregates are insoluble and phosphorylated at serine-129, recapitulating Lewy pathology features found in Parkinson's disease and other synucleinopathies. The model was found to favor anterograde spreading of the aggregates. Furthermore, it allowed development of slices expressing only serine-129 phosphorylation-deficient human α-synuclein (S129G) using an adeno-associated viral (AAV) vector in α-synuclein knockout slices. The processes of aggregation and spreading of α-synuclein were thereby shown to be independent of phosphorylation at serine-129. We provide methods and highlight crucial steps for PFF microinjection and characterization of aggregate formation and spreading. Slices derived from genetically engineered mice or manipulated using viral vectors allow testing of hypotheses on mechanisms involved in the formation of α-synuclein aggregates and their prion-like spreading.


Assuntos
Hipocampo/fisiopatologia , Neurônios/fisiologia , Agregação Patológica de Proteínas/fisiopatologia , Sinucleinopatias/fisiopatologia , alfa-Sinucleína/fisiologia , Animais , Axônios/patologia , Axônios/fisiologia , Hipocampo/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/patologia , Técnicas de Cultura de Órgãos , Sinucleinopatias/patologia , alfa-Sinucleína/genética
20.
Nature ; 575(7784): 669-673, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31748742

RESUMO

Alzheimer's disease is characterized by the accumulation of amyloid-beta in plaques, aggregation of hyperphosphorylated tau in neurofibrillary tangles and neuroinflammation, together resulting in neurodegeneration and cognitive decline1. The NLRP3 inflammasome assembles inside of microglia on activation, leading to increased cleavage and activity of caspase-1 and downstream interleukin-1ß release2. Although the NLRP3 inflammasome has been shown to be essential for the development and progression of amyloid-beta pathology in mice3, the precise effect on tau pathology remains unknown. Here we show that loss of NLRP3 inflammasome function reduced tau hyperphosphorylation and aggregation by regulating tau kinases and phosphatases. Tau activated the NLRP3 inflammasome and intracerebral injection of fibrillar amyloid-beta-containing brain homogenates induced tau pathology in an NLRP3-dependent manner. These data identify an important role of microglia and NLRP3 inflammasome activation in the pathogenesis of tauopathies and support the amyloid-cascade hypothesis in Alzheimer's disease, demonstrating that neurofibrillary tangles develop downstream of amyloid-beta-induced microglial activation.


Assuntos
Inflamassomos/metabolismo , Microglia/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas tau/metabolismo , Animais , Quinase 5 Dependente de Ciclina/metabolismo , Regulação da Expressão Gênica/genética , Humanos , Inflamassomos/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fosforilação , Agregação Patológica de Proteínas/fisiopatologia , Proteínas tau/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...