Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 506
Filtrar
1.
Allergy ; 79(7): 1868-1880, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38720169

RESUMO

BACKGROUND: There are no studies of longitudinal immunoglobulin measurements in a population-based cohort alongside challenge-confirmed peanut allergy outcomes. Little is known about biomarkers for identifying naturally resolving peanut allergy during childhood. OBJECTIVES: To measure longitudinal trends in whole peanut and component Ara h 2 sIgE and sIgG4 in the first 10 years of life, in a population cohort of children with challenge-confirmed peanut allergy, and to determine whether peanut-specific immunoglobulin levels or trends are associated with peanut allergy persistence or resolution by 10 years of age. METHODS: One-year-old infants with challenge-confirmed peanut allergy (n = 156) from the HealthNuts study (n = 5276) were prospectively followed at ages 4, 6, and 10 years with questionnaires, skin prick tests, oral food challenges, and plasma total-IgE, sIgE and sIgG4 to peanut and Ara h 2. RESULTS: Peanut allergy resolved in 33.9% (95% CI = 25.3%, 43.3%) of children by 10 years old with most resolving (97.4%, 95% CI = 86.5%, 99.9%) by 6 years old. Decreasing Ara h 2 sIgE (p = .01) and increasing peanut sIgG4 (p < .001), Ara h 2 sIgG4 (p = .01), peanut sIgG4/sIgE (p < .001) and Ara h 2 sIgG4/sIgE (p < .001) from 1 to 10 years of age were associated with peanut allergy resolution. Peanut sIgE measured at 1 year old had the greatest prognostic value (AUC = 0.75 [95% CI = 0.66, 0.82]); however, no single threshold produced both high sensitivity and specificity. CONCLUSION: One third of infant peanut allergy resolved by 10 years of age. Decreasing sIgE and sIgG4 to peanut and Ara h 2 over time were associated with natural resolution of peanut allergy. However, biomarker levels at diagnosis were not strongly associated with the natural history of peanut allergy.


Assuntos
Albuminas 2S de Plantas , Antígenos de Plantas , Arachis , Imunoglobulina E , Imunoglobulina G , Hipersensibilidade a Amendoim , Humanos , Hipersensibilidade a Amendoim/imunologia , Hipersensibilidade a Amendoim/diagnóstico , Hipersensibilidade a Amendoim/sangue , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Masculino , Criança , Feminino , Antígenos de Plantas/imunologia , Pré-Escolar , Albuminas 2S de Plantas/imunologia , Lactente , Arachis/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Biomarcadores/sangue , Estudos Longitudinais , Alérgenos/imunologia , Glicoproteínas/imunologia , Testes Cutâneos
2.
Int J Biol Macromol ; 264(Pt 2): 130613, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447836

RESUMO

The 2S albumins Ara h 2 and Ara h 6 have been shown to be the most important source of allergenicity in peanut. Several isoforms of these allergens have been described. Using extraction and liquid chromatography we isolated proteins with homology to Ara h 2 and characterized hitherto unknown Ara h 2 proteoforms with additional post-translational cleavage. High-resolution mass spectrometry located the cleavage site on the non-structured loop of Ara h 2 while far UV CD spectroscopy showed a comparable structure to Ara h 2. The cleaved forms of Ara h 2 were present in genotypes of peanut commonly consumed. Importantly, we revealed that newly identified Ara h 2 cleaved proteoforms showed comparable IgE-binding using sera from 28 peanut-sensitized individuals, possessed almost the same IgE binding potency and are likely similarly allergenic as intact Ara h 2. This makes these newly identified forms relevant proteoforms of peanut allergen Ara h 2.


Assuntos
Hipersensibilidade a Amendoim , Proteínas de Plantas , Humanos , Proteínas de Plantas/química , Antígenos de Plantas/química , Imunoglobulina E/metabolismo , Albuminas 2S de Plantas/química , Glicoproteínas/química , Alérgenos/química , Arachis/química
3.
J Allergy Clin Immunol ; 153(6): 1611-1620.e7, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460677

RESUMO

BACKGROUND: Clinical efficacy of oral immunotherapy (OIT) has been associated with the induction of blocking antibodies, particularly those capable of disrupting IgE-allergen interactions. Previously, we identified mAbs to Ara h 2 and structurally characterized their epitopes. OBJECTIVE: We investigated longitudinal changes during OIT in antibody binding to conformational epitopes and correlated the results with isotype and clinical efficacy. METHODS: We developed an indirect inhibitory ELISA using mAbs to block conformational epitopes on immobilized Ara h 2 from binding to serum immunoglobulins from peanut-allergic patients undergoing OIT. We tested the functional blocking ability of mAbs using passive cutaneous anaphylaxis in mice with humanized FcεRI receptors. RESULTS: Diverse serum IgE recognition of Ara h 2 conformational epitopes are similar before and after OIT. Optimal inhibition of serum IgE occurs with the combination of 2 neutralizing mAbs (nAbs) recognizing epitopes 1.2 and 3, compared to 2 nonneutralizing mAbs (non-nAbs). After OIT, IgG4 nAbs, but not IgG1 or IgG2 nAbs, increased in sustained compared to transient outcomes. Induction of IgG4 nAbs occurs after OIT only in those with sustained efficacy. Murine passive cutaneous anaphylaxis after sensitization with pooled human sera is significantly inhibited by nAbs compared to non-nAbs. CONCLUSIONS: Serum IgE conformational epitope diversity remains unchanged during OIT. However, IgG4 nAbs capable of uniquely disrupting IgE-allergen interactions to prevent effector cell activation are selectively induced in OIT-treated individuals with sustained clinical efficacy. Therefore, the induction of neutralizing IgG4 antibodies to Ara h 2 are clinically relevant biomarkers of durable efficacy in OIT.


Assuntos
Albuminas 2S de Plantas , Biomarcadores , Dessensibilização Imunológica , Imunoglobulina E , Imunoglobulina G , Hipersensibilidade a Amendoim , Humanos , Hipersensibilidade a Amendoim/imunologia , Hipersensibilidade a Amendoim/terapia , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Animais , Dessensibilização Imunológica/métodos , Feminino , Imunoglobulina E/imunologia , Imunoglobulina E/sangue , Camundongos , Albuminas 2S de Plantas/imunologia , Masculino , Administração Oral , Antígenos de Plantas/imunologia , Anticorpos Neutralizantes/imunologia , Epitopos/imunologia , Adulto , Arachis/imunologia , Adolescente , Alérgenos/imunologia , Alérgenos/administração & dosagem , Criança , Resultado do Tratamento
4.
Food Funct ; 15(5): 2577-2586, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38353700

RESUMO

Given that roasted peanut (Ro) products are commonly used in daily life, peanut allergenicity is a foremost concern. Analyzing the changes in the structure and potential allergenicity of individual allergens can promote the exploration of the structural basis of the alterations in the potential allergenicity of Ro. This work focused on four major allergens in raw peanut (Ra) and Ro. Structural changes were analyzed on the basis of circular dichroism, ultraviolet and fluorescence spectroscopy, and molecular dynamic simulation. The IgE recognition capability of allergens was assessed via western blot analysis. The IgE binding capacity of allergens was detected by conducting enzyme-linked immunosorbent assay. The potential allergenicity of allergens was evaluated using the KU812 cell degranulation model. The results showed that roasting induced different changes in the overall structures of allergens and altered the structures and electrostatic potential of IgE epitopes, especially Ara h 1 and Ara h 6. These alterations affected the potential allergenicity of allergens. Ara h 1 and Ara h 6 in Ro showed significantly enhanced IgE binding capacities and abilities to elicit KU812 cell degranulation, while Ara h 2 and Ara h 3 did not change significantly. For total protein, the roasted peanut protein showed decreased abilities to elicit KU812 cell degranulation. The results indicated that different allergens in Ro showed different changes of structures and potential allergenicity and that the conformational structure plays a crucial role in potential allergenicity of allergens.


Assuntos
Antígenos de Plantas , Hipersensibilidade a Amendoim , Arachis/química , Imunoglobulina E/metabolismo , Alérgenos/metabolismo , Proteínas de Plantas/química , Albuminas 2S de Plantas/química
5.
Clin Exp Immunol ; 216(1): 25-35, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346116

RESUMO

In peanut allergy, Arachis hypogaea 2 (Ara h 2) and Arachis hypogaea 6 (Ara h 6) are two clinically relevant peanut allergens with known structural and sequence homology and demonstrated cross-reactivity. We have previously utilized X-ray crystallography and epitope binning to define the epitopes on Ara h 2. We aimed to quantitatively characterize the cross-reactivity between Ara h 2 and Ara h 6 on a molecular level using human monoclonal antibodies (mAbs) and structural characterization of allergenic epitopes. We utilized mAbs cloned from Ara h 2 positive single B cells isolated from peanut-allergic, oral immunotherapy-treated patients to quantitatively analyze cross-reactivity between recombinant Ara h 2 (rAra h 2) and Ara h 6 (rAra h 6) proteins using biolayer interferometry and indirect inhibitory ELISA. Molecular dynamics simulations assessed time-dependent motions and interactions in the antibody-antigen complexes. Three epitopes-conformational epitopes 1.1 and 3, and the sequential epitope KRELRNL/KRELMNL-are conserved between Ara h 2 and Ara h 6, while two more conformational and three sequential epitopes are not. Overall, mAb affinity was significantly lower to rAra h 6 than it was to rAra h 2. This difference in affinity was primarily due to increased dissociation of the antibodies from rAra h 6, a phenomenon explained by the higher conformational flexibility of the Ara h 6-antibody complexes in comparison to Ara h 2-antibody complexes. Our results further elucidate the cross-reactivity of peanut 2S albumins on a molecular level and support the clinical immunodominance of Ara h 2.


Assuntos
Arachis , Proteínas de Plantas , Humanos , Arachis/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Antígenos de Plantas/química , Anticorpos Monoclonais , Albuminas 2S de Plantas/química , Imunoglobulina E , Epitopos , Alérgenos
6.
Food Chem ; 445: 138757, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367563

RESUMO

Peanut is an important food that can cause food allergies, often leading to moderate and severe allergic symptoms such as skin rashes, asthma, and even anaphylactic shock.Research indicates that Ara h 3 is one of the major peanut allergen. In order to establish a simple analytical method for detecting Ara h 3, we developed a sandwich enzyme-linked immunosorbent assay (ELISA) with antibodies that were induced from purified Ara h 3. The experimental results showed that the purified Ara h 3 had good purity, and we successfully prepared capture and detection antibodies. The method established in this study exhibited high specificity and did not cross-react with soybeans, cashew nuts, and sesame. For validation, including precision, recovery and sensitivity were in good condition. We also detected the Ara h 3 in peanut related foods. Overall, the ELISA developed in this study is a reliable method for Ara h 3 detection.


Assuntos
Arachis , Hipersensibilidade a Amendoim , Antígenos de Plantas , Anticorpos Monoclonais , Alérgenos , Ensaio de Imunoadsorção Enzimática/métodos , Hipersensibilidade a Amendoim/diagnóstico , Proteínas de Plantas/análise , Albuminas 2S de Plantas
7.
Clin Exp Allergy ; 54(1): 46-55, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38168500

RESUMO

INTRODUCTION: Adverse reactions are relatively common during peanut oral immunotherapy. To reduce the risk to the patient, some researchers have proposed modifying the allergen to reduce IgE reactivity, creating a putative hypoallergen. Analysis of recently cloned human IgG from patients treated with peanut immunotherapy suggested that there are three common conformational epitopes for the major peanut allergen Ara h 2. We sought to test if structural information on these epitopes could indicate mutagenesis targets for designing a hypoallergen and evaluated the reduction in IgE binding via immunochemistry and a mouse model of passive cutaneous anaphylaxis (PCA). METHODS: X-ray crystallography characterized the conformational epitopes in detail, followed by mutational analysis of key residues to modify monoclonal antibody (mAb) and serum IgE binding, assessed by ELISA and biolayer interferometry. A designed Ara h 2 hypoallergen was tested for reduced vascularization in mouse PCA experiments using pooled peanut allergic patient serum. RESULTS: A ternary crystal structure of Ara h 2 in complex with patient antibodies 13T1 and 13T5 was determined. Site-specific mutants were designed that reduced 13T1, 13T5, and 22S1 mAbs binding by orders of magnitude. By combining designed mutations from the three major conformational bins, a hexamutant (Ara h 2 E46R, E89R, E97R, E114R, Q146A, R147E) was created that reduced IgE binding in serum from allergic patients. Further, in the PCA model where mice were primed with peanut allergic patient serum, reactivity upon allergen challenge was significantly decreased using the hexamutant. CONCLUSION: These studies demonstrate that prior knowledge of common conformational epitopes can be used to engineer reduced IgE reactivity, an important first step in hypoallergen design.


Assuntos
Hipersensibilidade , Hipersensibilidade a Amendoim , Humanos , Animais , Camundongos , Epitopos , Sequência de Aminoácidos , Antígenos de Plantas , Imunoglobulina E , Albuminas 2S de Plantas , Alérgenos , Arachis
8.
Ann Allergy Asthma Immunol ; 132(6): 686-693, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38272114

RESUMO

Allergist-immunologists use serologic peanut allergy testing to maximize test sensitivity and specificity while minimizing cost and inconvenience. Recent advances toward this goal include a better understanding of specific IgE (sIgE) and component testing, epitope-sIgE assays, and basophil activation testing. Predicting reaction severity with serologic testing is challenged by a range of co-factors that influence reaction severity, such as the amount and form of any allergen consumed and comorbid disease. In 2020, the Allergy Immunology Joint Task Force on Practice Parameters recommended Ara h 2-sIgE as the most cost-effective diagnostic test for peanut allergy because of its superior performance, when compared with skin prick testing and serum IgE. Basophil activation testing, a functional test of allergic response not evaluated in the Joint Task Force on Practice Parameters guideline, is a promising option for both allergy diagnosis and prognosis. Similarly, epitope-sIgE testing may improve prediction of reaction thresholds, but further validation is needed. Despite advances in food allergy testing, many of these tools remain limited by cost, accessibility, and feasibility. In addition, there is a need for further research on how atopic dermatitis may be modifying serologic food allergy severity assessments. Given these limitations, allergy test selection requires a shared decision-making approach so that a patient's values and preferences regarding financial impact, inconvenience, and psychological effects are considered in the context of clinician expertise on the timing and use of optimized testing.


Assuntos
Imunoglobulina E , Hipersensibilidade a Amendoim , Hipersensibilidade a Amendoim/diagnóstico , Hipersensibilidade a Amendoim/imunologia , Hipersensibilidade a Amendoim/sangue , Humanos , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Índice de Gravidade de Doença , Testes Sorológicos/métodos , Antígenos de Plantas/imunologia , Testes Cutâneos , Alérgenos/imunologia , Albuminas 2S de Plantas/imunologia , Arachis/imunologia
9.
J Allergy Clin Immunol ; 153(1): 182-192.e7, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37748654

RESUMO

BACKGROUND: Despite their central role in peanut allergy, human monoclonal IgE antibodies have eluded characterization. OBJECTIVE: We sought to define the sequences, affinities, clonality, and functional properties of human monoclonal IgE antibodies in peanut allergy. METHODS: We applied our single-cell RNA sequencing-based SEQ SIFTER discovery platform to samples from allergic individuals who varied by age, sex, ethnicity, and geographic location in order to understand commonalities in the human IgE response to peanut allergens. Select antibodies were then recombinantly expressed and characterized for their allergen and epitope specificity, affinity, and functional properties. RESULTS: We found striking convergent evolution of IgE monoclonal antibodies (mAbs) from several clonal families comprising both memory B cells and plasmablasts. These antibodies bound with subnanomolar affinity to the immunodominant peanut allergen Ara h 2, specifically a linear, repetitive motif. Further characterization of these mAbs revealed their ability to single-handedly cause affinity-dependent degranulation of human mast cells and systemic anaphylaxis on peanut allergen challenge in humanized mice. Finally, we demonstrated that these mAbs, reengineered as IgGs, inhibit significant, but variable, amounts of Ara h 2- and peanut-mediated degranulation of mast cells sensitized with allergic plasma. CONCLUSIONS: Convergent evolution of IgE mAbs in peanut allergy is a common phenomenon that can reveal immunodominant epitopes on major allergenic proteins. Understanding the functional properties of these molecules is key to developing therapeutics, such as competitive IgG inhibitors, that are able to stoichiometrically outcompete endogenous IgE for allergen and thereby prevent allergic cascade in cases of accidental allergen exposure.


Assuntos
Hipersensibilidade a Amendoim , Humanos , Animais , Camundongos , Epitopos Imunodominantes , Antígenos de Plantas , Glicoproteínas , Imunoglobulina E , Epitopos , Anticorpos Monoclonais , Alérgenos , Arachis , Albuminas 2S de Plantas
10.
Mol Nutr Food Res ; 67(22): e2300134, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37706599

RESUMO

SCOPE: The unstructured region of Ara h 2, referred to as epitope 3, contains a repeated motif, DYPSh (h = hydroxyproline) that is important for IgE binding. METHODS AND RESULTS: IgE binding assays to 20mer and shorter peptides of epitope 3, defines a 16mer core sequence containing one copy of the DPYSh motif, DEDSYERDPYShSQDP. This study performs alanine scanning of this and a related 12mer mimotope, LLDPYAhRAWTK. IgE binding, using a pool of 10 sera and with individual sera, is greatly reduced when alanine is substituted for aspartate at position 8 (D8; p < 0.01), tyrosine at position 10 (Y10; p < 0.01), and hydroxyproline at position 12 (h12; p < 0.001). IgE binding to alanine-substituted peptides of a mimotope containing the DPY_h motif confirm the critical importance of Y (p < 0.01) and h (p < 0.01), but not D. Molecular modeling of the core and mimotope suggests an h-dependent conformational basis for the recognition of these sequences by polyclonal IgE. CONCLUSIONS: IgE from pooled sera and individual sera differentially bound amino acids throughout the sequences of Epitope 3 and its mimotope, with Y10 and h12 being most important for all sera. These results are highly significant for designing hypoallergenic forms of Ara h 2.


Assuntos
Aminoácidos , Hipersensibilidade a Amendoim , Humanos , Sequência de Aminoácidos , Antígenos de Plantas/química , Alanina , Hidroxiprolina , Epitopos , Proteínas de Plantas/química , Peptídeos , Imunoglobulina E/metabolismo , Albuminas 2S de Plantas , Alérgenos/química
11.
J Allergy Clin Immunol Pract ; 11(11): 3485-3492.e2, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37495080

RESUMO

BACKGROUND: A precise diagnosis of peanut allergy is extremely important. We identified 4 Ara h 2 peptides that improved Ara h 2-specific IgE (sIgE) diagnostic accuracy. OBJECTIVE: To assess the diagnostic utility of sIgE to the mixture of these peptides and their role in mast cell response to peanut allergens. METHODS: sIgE to the peptide mix was determined using ImmunoCAP. Its diagnostic utility was compared with Ara h 2-sIgE and sIgE to the individual peptides. The functional relevance of the peptides was tested on the mast cell activation test using laboratory of allergic diseases 2 cell line and flow cytometry. RESULTS: A total of 52 peanut-allergic (PA), 36 peanut-sensitized but tolerant, and 9 nonsensitized nonallergic children were studied. Peptide mix-sIgE improved the diagnostic performance of Ara h 2-sIgE compared with Ara h 2-sIgE alone (area under the receiver operating characteristic curve .92 vs .89, respectively; P = .056). The sensitivity and specificity of Ara h 2-sIgE combined with the peptide mix were 85% and 96%, respectively. sIgE to individual peptides had the highest specificity (91%-96%) but the lowest sensitivity (10%-52%) compared with Ara h 2-sIgE (69% specificity and 87% sensitivity) or with peptide mix-sIgE (82% specificity and 63% sensitivity). Peptide 3 directly induced mast cell activation, and the peptide mix inhibited Ara h 2-induced activation of mast cells sensitized with plasma from Ara h 2-positive PA patients. CONCLUSIONS: sIgE to the peptide mix improved the diagnostic performance of Ara h 2-sIgE similarly to sIgE to individual peptides. The peptides interfered with Ara h 2-induced mast cell activation, confirming its relevance in peanut allergy.


Assuntos
Hipersensibilidade a Amendoim , Criança , Humanos , Hipersensibilidade a Amendoim/diagnóstico , Mastócitos , Antígenos de Plantas , Imunoglobulina E , Albuminas 2S de Plantas , Arachis , Alérgenos , Peptídeos
12.
J Agric Food Chem ; 71(23): 9110-9119, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37256970

RESUMO

Given that roasting changes the structure and allergenicity of peanut allergens, the structural information of peanut allergens must be expounded to explain the alteration in their allergenicity. This work focused on allergen aggregations (AAs) in roasted peanuts. IgE recognition capability was assessed via western blot analysis. The disulfide bond (DB) rearrangement and chemical modification in AAs were identified by combining mass spectroscopy and software tools, and structural changes induced by cross-links were displayed by molecular dynamics and PyMOL software. Results showed that AAs were strongly recognized by IgE and cross-linked mainly by DBs. The types of DB rearrangement in AAs included interprotein (98 peptide pairs), intraprotein (22 peptide pairs), and loop-linked (6 peptides) DBs. Among allergens, Ara h 2 and Ara h 6 presented the most cysteine residues to cross-linkf with others or themselves. DB rearrangement involved IgE epitopes and induced structural changes. Ara h 1 and Ara h 3 were predominantly chemically modified. Moreover, chemical modification altered the local structures of proteins, which may change the allergenic potential of allergens.


Assuntos
Arachis , Hipersensibilidade a Amendoim , Arachis/química , Alérgenos/química , Proteínas de Plantas/química , Antígenos de Plantas/química , Imunoglobulina E/metabolismo , Dissulfetos , Albuminas 2S de Plantas
13.
Clin Exp Allergy ; 53(6): 636-647, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37038893

RESUMO

BACKGROUND: Clinical and experimental analyses indicate a pathognomonic role for allergen IgE crosslinking through epitope-paratope interactions as a major initial step in the cascade leading to effector cell activation and clinical manifestations of lgE-mediated food allergies. We aimed to undertake the initial development and assessment of Ara h 2-specific IgE epitope-like peptides that can bind to allergen-specific IgE paratopes and suppress effector cell activation. METHODS: We performed biopanning, screening, IgE binding, selection and mapping of peptides. We generated synthetic peptides for use in all functional experiments. ImmunoCAP inhibition, basophil and mast cell activation tests, with LAD2 cells, a human mast cell line were performed. Twenty-six children or young adults who had peanut allergy were studied. RESULTS: We identified and selected three linear peptides (DHPRFNRDNDVA, DHPRYGP and DHPRFST), and immunoblot analyses revealed binding to lgE from peanut-allergic individuals. The peptide sequences were aligned to the disordered region corresponding to the loop between helices 2 and 3 of Ara h 2, and conformational mapping showed that the peptides match the surface of Ara h 2 and h 6 but not other peanut allergens. In ImmunoCAP inhibition experiments, the peptides significantly inhibit the binding of IgE to Ara h 2 (p < .001). In basophil and mast cell activation tests, the peptides significantly suppressed Ara h 2-induced effector cell activation (p < .05) and increased the half-maximal Ara h 2 effective concentration (p < .05). Binding of the peptides to specific IgEs did not induce activation of basophils or mast cells. CONCLUSIONS: These studies show that the indicated peptides reduce the allergenic activity of Ara h 2 and suppress lgE-dependent basophil and mast cell activation. These observations may suggest a novel therapeutic strategy for food allergy based on epitope-paratop blocking.


Assuntos
Hipersensibilidade Alimentar , Hipersensibilidade a Amendoim , Criança , Adulto Jovem , Humanos , Epitopos , Antígenos de Plantas , Glicoproteínas , Peptídeos , Imunoglobulina E , Alérgenos , Arachis , Albuminas 2S de Plantas
14.
Int Arch Allergy Immunol ; 184(8): 767-775, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37071975

RESUMO

INTRODUCTION: Recently, specific IgE (sIgE) sensitization against Gly m 8 (soy 2S albumin) has been described as a good diagnostic marker for soy allergy (SA). The aim of this study was to evaluate the diagnostic value of Gly m 8 by determining the sensitization profiles based on the homologues soy allergens Bet v 1, Ara h 1, Ara h 2, and Ara h 3. METHODS: Thirty soy-allergic adults were included; sIgE to total soy extract, Gly m 8, Gly m 4, Gly m 5, Gly m 6, Bet v 1, Ara h 1, Ara h 2, and Ara h 3 were determined. Sensitization patterns were analyzed and determined. The clinical relevance of sIgE of Gly m 8 sensitization was measured by assessing its capacity to degranulate basophils in Gly m8-sensitized patients by an indirect basophil activation test (iBAT). RESULTS: Based on the sIgE patterns of sensitization, two groups of SA patients were identified: (i) peanut-associated SA group (all patients were sensitized to one or more of the peanut compounds) and (ii) non-peanut/PR-10-associated SA group (22 patients were sensitized to Gly m 4 and Bet v 1 but not to any of the peanut compounds). A high and significant correlation between total soy extract and Gly m 6 (R2 = 0.97), Gly m 5 (R2 = 0.85), and Gly m 8 (R2 = 0.78) was observed. A nonsignificant correlation was observed between the levels of sIgE of Gly m 8 versus Ara h2. The iBAT results showed that Gly m 8 did not induce basophil degranulation in any of the peanut-associated patients, indicating that the Gly m8 sensitizations were not clinically relevant. CONCLUSIONS: Gly m 8 was not a major allergen in the selected soy-allergic population. The iBAT results indicated that Gly m 8 was not able to induce basophil degranulation in sIgE Gly m 8-sensitized soy-allergic patients. Thus, Gly m 8 would have no added value in the diagnosis of SA in the present study population.


Assuntos
Arachis , Hipersensibilidade a Amendoim , Humanos , Adulto , Imunoglobulina E , Antígenos de Plantas , Hipersensibilidade a Amendoim/diagnóstico , Alérgenos , Albuminas 2S de Plantas , Extratos Vegetais
16.
J Allergy Clin Immunol ; 152(2): 436-444.e6, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37028524

RESUMO

BACKGROUND: Surprisingly, IgE cross-reactivity between the major peanut allergens Ara h 1, 2, and 3 has been reported despite very low sequence identities. OBJECTIVE: We investigated the unexpected cross-reactivity between peanut major allergens. METHODS: Cross-contamination of purified natural Ara h 1, 2, 3, and 6 was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Western blot test, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and sandwich enzyme-linked immunosorbent assay (ELISA). IgE cross-reactivity was studied with sera of peanut-allergic patients (n = 43) by ELISA and ImmunoCAP inhibition using both intact natural and recombinant allergens and synthetic peptides representing postulated Ara h 1 and Ara h 2 cross-reactive epitopes. RESULTS: Both purified nAra h 1 and nAra h 3 were demonstrated to contain small but significant amounts of Ara h 2 and Ara h 6 (<1%) by sandwich ELISA, SDS-PAGE/Western blot analysis, and LC-MS/MS. IgE cross-inhibition between both 2S albumins and Ara h 1 and Ara h 3 was only observed when using natural purified allergens, not recombinant allergens or synthetic peptides. Apparent cross-reactivity was lost when purified nAra h 1 was pretreated under reducing conditions, suggesting that Ara h 2 and Ara h 6 contaminations may be covalently bound to Ara h 1 via disulfide interactions. CONCLUSION: True cross-reactivity of both peanut 2S albumins with Ara h 1 and Ara h 3 could not be demonstrated. Instead, cross-contamination with small quantities was shown to be sufficient to cause significant cross-inhibition that can be misinterpreted as molecular cross-reactivity. Diagnostic tests using purified nAra h 1 and nAra h 3 can overestimate their importance as major allergens as a result of the presence of contaminating 2S albumins, making recombinant Ara h 1 and Ara h 3 a preferred alternative.


Assuntos
Alérgenos , Hipersensibilidade a Amendoim , Humanos , Alérgenos/química , Proteínas de Plantas/química , Arachis , Antígenos de Plantas/metabolismo , Cromatografia Líquida , Imunoglobulina E , Espectrometria de Massas em Tandem , Albuminas 2S de Plantas , Peptídeos/metabolismo , Albuminas/metabolismo , Hipersensibilidade a Amendoim/diagnóstico
19.
Allergy ; 78(6): 1605-1614, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36704937

RESUMO

BACKGROUND: Peanut allergy is a type-I hypersensitivity immune reaction mediated by the binding of peanut allergens to IgE-FcεRI complexes on mast cells and basophils and by their subsequent cellular degranulation. Of all major peanut allergens, Ara h 2 is considered the most anaphylactic. With few options but allergen avoidance, effective treatment of allergic patients is needed. Passive immunotherapy (herein called PIT) based on prophylactic administration of peanut-specific monoclonal antibodies (mAbs) may present a promising treatment option for this under-served disease. METHOD: Fully human recombinant anti-peanut IgG mAbs were tested in mice sensitized to peanut allergen extract. Allergic mice received intravenous immunotherapy with anti-peanut Ara h 2-specific IgG1 or IgG4 mAbs cocktails, and were then challenged by a systemic injection of high-dose peanut allergen extract. The protection from allergic anaphylaxis was measured by monitoring the core body temperature. RESULTS: PIT with peanut-specific mAbs was associated with a significant and dose-dependent reduction of anaphylactic reactions in peanut-sensitized mice challenged with peanut allergen extract. Complete protection was observed at doses approximately 0.3-0.6 mg mAbs. Mixtures of mAbs were more effective than single mAbs, and effective treatment could be obtained with mAbs of both IgG1 and IgG4 subclasses. The therapeutic effect of anti-Ara h 2 mAbs was based on allergen neutralization and independent of the Fcγ receptor and mast-cell inhibition. CONCLUSION: This is the first report that shows that human-derived anti-peanut mAbs can prevent allergic anaphylaxis in mice. The study demonstrates that neutralizing allergenic epitopes on Ara h 2 by mAbs may represent a promising treatment option in peanut-allergy.


Assuntos
Anafilaxia , Hipersensibilidade Imediata , Hipersensibilidade a Amendoim , Humanos , Camundongos , Animais , Anafilaxia/prevenção & controle , Anticorpos Monoclonais , Antígenos de Plantas , Hipersensibilidade a Amendoim/prevenção & controle , Alérgenos , Proteínas Recombinantes , Imunoglobulina G , Arachis , Extratos Vegetais , Albuminas 2S de Plantas/química
20.
Int Arch Allergy Immunol ; 184(3): 273-278, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36502801

RESUMO

BACKGROUND: Currently, there is no laboratory test that can accurately identify children at risk of developing peanut allergy. Utilizing a subset of children randomized to the peanut avoidance arm of the LEAP trial, we monitored the development of epitope-specific (ses-)IgE and ses-IgG4 from 4-11 months to 5 years of age. OBJECTIVE: The aim of the study was to evaluate the prognostic ability of epitope-specific antibodies to predict the result of an oral food challenge (OFC) at 5 years. METHODS: A Bead-Based Epitope Assay was used to quantitate IgE and IgG4 to 64 sequential (linear) epitopes from Ara h 1-3 proteins at 4-11 months, 1 and 2.5 years of age in 74 subjects (38 of them with a positive OFC at 5 years). Specific IgE (sIgE) to peanut and component proteins was measured using ImmunoCAP. Machine learning methods were used to identify the earliest time point to predict 5-year outcome, developing prognostic algorithms based only on 4-11 month samples, 1-year or 2.5-year, and a combination of them. Data from 74 children were iteratively split 3:1 into training and validation sets, and machine learning models were developed to predict the 5-year outcome. A test set (n = 90) from an independent cohort was used for final evaluation. RESULTS: Elastic-Net algorithm combining ses-IgE and IgE to Ara h 1, 2, 3, and 9 proteins could predict the 5-year peanut allergy status of LEAP participants with an average validation accuracy of 64% at baseline. Samples taken at 1 year accurately predicted a 5-year OFC outcome with 83% accuracy. This performance remained consistent when evaluated on an independent CoFAR2 cohort with an accuracy of 78% for the 1-year model. CONCLUSION: IgE antibody profiles at 1 year of age are predictive of peanut OFC at 5 years in children avoiding peanuts. If further confirmed, this model may enable early identification of infants who may benefit from early immunotherapeutic interventions.


Assuntos
Arachis , Hipersensibilidade a Amendoim , Criança , Lactente , Humanos , Pré-Escolar , Epitopos , Antígenos de Plantas , Imunoglobulina E , Imunoglobulina G , Alérgenos , Albuminas 2S de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...