Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.315
Filtrar
1.
Nutrients ; 16(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38892556

RESUMO

Sphingosine-1-phosphate lyase (SPL) resides at the endpoint of the sphingolipid metabolic pathway, catalyzing the irreversible breakdown of sphingosine-1-phosphate. Depletion of SPL precipitates compromised muscle morphology and function; nevertheless, the precise mechanistic underpinnings remain elusive. Here, we elucidate a model of SPL functional deficiency in Caenorhabditis elegans using spl-1 RNA interference. Within these SPL-deficient nematodes, we observed diminished motility and perturbed muscle fiber organization, correlated with the accumulation of sphingoid bases, their phosphorylated forms, and ceramides (collectively referred to as the "sphingolipid rheostat"). The disturbance in mitochondrial morphology was also notable, as SPL functional loss resulted in heightened levels of reactive oxygen species. Remarkably, the administration of the antioxidant N-acetylcysteine (NAC) ameliorates locomotor impairment and rectifies muscle fiber disarray, underscoring its therapeutic promise for ceramide-accumulation-related muscle disorders. Our findings emphasize the pivotal role of SPL in preserving muscle integrity and advocate for exploring antioxidant interventions, such as NAC supplementation, as prospective therapeutic strategies for addressing muscle function decline associated with sphingolipid/ceramide metabolism disruption.


Assuntos
Acetilcisteína , Aldeído Liases , Caenorhabditis elegans , Ceramidas , Esfingolipídeos , Animais , Caenorhabditis elegans/efeitos dos fármacos , Acetilcisteína/farmacologia , Ceramidas/metabolismo , Aldeído Liases/metabolismo , Esfingolipídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Músculos/efeitos dos fármacos , Músculos/metabolismo , Interferência de RNA , Esfingosina/análogos & derivados , Esfingosina/metabolismo
2.
BMC Plant Biol ; 24(1): 590, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902595

RESUMO

BACKGROUND: The Prunus sibirica seeds with rich oils has great utilization, but contain amygdalin that can be hydrolyzed to release toxic HCN. Thus, how to effectively reduce seed amygdalin content of P. sibirica is an interesting question. Mandelonitrile is known as one key intermediate of amygdalin metabolism, but which mandelonitrile lyase (MDL) family member essential for its dissociation destined to low amygdalin accumulation in P. sibirica seeds still remains enigmatic. An integration of our recent 454 RNA-seq data, amygdalin and mandelonitrile content detection, qRT-PCR analysis and function determination is described as a critical attempt to determine key MDL and to highlight its function in governing mandelonitrile catabolism with low amygdalin accumulation in Prunus sibirica seeds for better developing edible oil and biodiesel in China. RESULTS: To identify key MDL and to unravel its function in governing seed mandelonitrile catabolism with low amygdalin accumulation in P. sibirica. Global identification of mandelonitrile catabolism-associated MDLs, integrated with the across-accessions/developing stages association of accumulative amount of amygdalin and mandelonitrile with transcriptional level of MDLs was performed on P. sibirica seeds of 5 accessions to determine crucial MDL2 for seed mandelonitrile catabolism of P. sibirica. MDL2 gene was cloned from the seeds of P. sibirica, and yeast eukaryotic expression revealed an ability of MDL2 to specifically catalyze the dissociation of mandelonitrile with the ideal values of Km (0.22 mM) and Vmax (178.57 U/mg). A combination of overexpression and mutation was conducted in Arabidopsis. Overexpression of PsMDL2 decreased seed mandelonitrile content with an increase of oil accumulation, upregulated transcript of mandelonitrile metabolic enzymes and oil synthesis enzymes (involving FA biosynthesis and TAG assembly), but exhibited an opposite situation in mdl2 mutant, revealing a role of PsMDL2-mediated regulation in seed amygdalin and oil biosynthesis. The PsMDL2 gene has shown as key molecular target for bioengineering high seed oil production with low amygdalin in oilseed plants. CONCLUSIONS: This work presents the first integrated assay of genome-wide identification of mandelonitrile catabolism-related MDLs and the comparative association of transcriptional level of MDLs with accumulative amount of amygdalin and mandelonitrile in the seeds across different germplasms and developmental periods of P. sibirica to determine MDL2 for mandelonitrile dissociation, and an effective combination of PsMDL2 expression and mutation, oil and mandelonitrile content detection and qRT-PCR assay was performed to unravel a mechanism of PsMDL2 for controlling amygdalin and oil production in P. sibirica seeds. These findings could offer new bioengineering strategy for high oil production with low amygdalin in oil plants.


Assuntos
Amigdalina , Prunus , Sementes , Amigdalina/metabolismo , Prunus/genética , Prunus/metabolismo , Prunus/enzimologia , Sementes/metabolismo , Sementes/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Óleos de Plantas/metabolismo , Aldeído Liases/metabolismo , Aldeído Liases/genética , Regulação da Expressão Gênica de Plantas
3.
Phytochemistry ; 224: 114151, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38768880

RESUMO

The plant lipoxygenase cascade is a source of various regulatory oxylipins that play a role in cell signalling, stress adaptation, and immune response. Recently, we detected an unprecedented 16(S)-lipoxygenase, CsLOX3, in the leaves and fruit pericarp of cucumber (Cucumis sativus L.). In the present work, an array of products biosynthesized through the conversions of α-linolenic acid 16-hydroperoxide (16-HPOT) was detected. Firstly, a prominent 15-hydroxy-9,12-pentadecadienoic acid (Me/TMS) was detected, the product of hydroperoxide lyase (HPL) chain cleavage of 16-HPOT and further reduction of aldehyde 15-oxo-9,12-pentadecadienoic acid to alcohol. Besides, the presence of dicarboxylic acid, 3,6-pentadecadiene-1,15-dioic acid, was deduced from the detection of its catalytic hydrogenation product, pentadecane-1,15-dioic acid. Finally, 12,15-dihydroxypentadecanoic acid (Me/TMS) was detected amongst the hydrogenated products, thus indicating the presence of the parent 12,15-dihydroxy-9,13-pentadecadienoic acid. To confirm the proposed HPL chain cleavage, the 16(S)-HPOT was prepared and incubated with the recombinant cucumber HPL CYP74B6 enzyme. The CYP74B6 possessed high activity towards 16-HPOT. Chain cleavage yields the (9Z,12Z)-15-oxo-9,12-pentadecadienoic acid, undergoing a spontaneous isomerization into (9Z,13E)-15-oxo-9,13-pentadecadienoic acid. Thus, the cucumber plants as well as the recombinant cucumber HPL CYP74B6 possessed unprecedented 16-HPL activity, cleaving 16-HPOT into a C15 fragment, 15-oxo-9,12-pentadecadienoic acid, and a complementary volatile C3 fragment, propionic aldehyde. The 16-LOX/16-HPL route of oxylipin biosynthesis presents a novel facet of the plant LOX pathway.


Assuntos
Aldeído Liases , Cucumis sativus , Sistema Enzimático do Citocromo P-450 , Oxilipinas , Cucumis sativus/metabolismo , Cucumis sativus/enzimologia , Aldeído Liases/metabolismo , Aldeído Liases/química , Oxilipinas/metabolismo , Oxilipinas/química , Oxilipinas/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Estrutura Molecular
4.
Biomed Pharmacother ; 174: 116575, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599060

RESUMO

Sepsis is characterized as life-threatening organ dysfunction caused by a dysregulated host response to an infection. Despite numerous clinical trials that addressed this syndrome, there is still no causative treatment available to dampen its severity. Curtailing the infection at an early stage with anti-infectives is the only effective treatment regime besides intensive care. In search for additional treatment options, we recently discovered the inhibition of the sphingosine 1-phosphate (S1P) lyase and subsequent activation of the S1P receptor type 3 (S1PR3) in pre-conditioning experiments as promising targets for sepsis prevention. Here, we demonstrate that treatment of septic mice with the direct S1P lyase inhibitor C31 or the S1PR3 agonist CYM5541 in the advanced phase of sepsis resulted in a significantly increased survival rate. A single dose of each compound led to a rapid decline of sepsis severity in treated mice and coincided with decreased cytokine release and increased lung barrier function with unaltered bacterial load. The survival benefit of both compounds was completely lost in S1PR3 deficient mice. Treatment of the murine macrophage cell line J774.1 with either C31 or CYM5541 resulted in decreased protein kinase B (Akt) and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) phosphorylation without alteration of the mitogen-activated protein kinase (MAPK) p38 and p44/42 phosphorylation. Thus, activation of S1PR3 in the acute phase of sepsis by direct agonism or S1P lyase inhibition dampened Akt and JNK phosphorylation, resulting in decreased cytokine release, improved lung barrier stability, rapid decline of sepsis severity and better survival in mice.


Assuntos
Aldeído Liases , Camundongos Endogâmicos C57BL , Sepse , Receptores de Esfingosina-1-Fosfato , Animais , Sepse/tratamento farmacológico , Sepse/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Receptores de Esfingosina-1-Fosfato/antagonistas & inibidores , Aldeído Liases/antagonistas & inibidores , Aldeído Liases/metabolismo , Camundongos , Receptores de Lisoesfingolipídeo/agonistas , Receptores de Lisoesfingolipídeo/metabolismo , Masculino , Modelos Animais de Doenças , Linhagem Celular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Citocinas/metabolismo , Camundongos Knockout
5.
Nat Commun ; 15(1): 3199, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615009

RESUMO

The increasing availability of experimental and computational protein structures entices their use for function prediction. Here we develop an automated procedure to identify enzymes involved in metabolic reactions by assessing substrate conformations docked to a library of protein structures. By screening AlphaFold-modeled vitamin B6-dependent enzymes, we find that a metric based on catalytically favorable conformations at the enzyme active site performs best (AUROC Score=0.84) in identifying genes associated with known reactions. Applying this procedure, we identify the mammalian gene encoding hydroxytrimethyllysine aldolase (HTMLA), the second enzyme of carnitine biosynthesis. Upon experimental validation, we find that the top-ranked candidates, serine hydroxymethyl transferase (SHMT) 1 and 2, catalyze the HTMLA reaction. However, a mouse protein absent in humans (threonine aldolase; Tha1) catalyzes the reaction more efficiently. Tha1 did not rank highest based on the AlphaFold model, but its rank improved to second place using the experimental crystal structure we determined at 2.26 Å resolution. Our findings suggest that humans have lost a gene involved in carnitine biosynthesis, with HTMLA activity of SHMT partially compensating for its function.


Assuntos
Aldeído Liases , Frutose-Bifosfato Aldolase , Humanos , Animais , Camundongos , Frutose-Bifosfato Aldolase/genética , Catálise , Biblioteca Gênica , Glicina Hidroximetiltransferase/genética , Carnitina , Mamíferos
6.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612566

RESUMO

Rubisco large-subunit methyltransferase (LSMT), a SET-domain protein lysine methyltransferase, catalyzes the formation of trimethyl-lysine in the large subunit of Rubisco or in fructose-1,6-bisphosphate aldolases (FBAs). Rubisco and FBAs are both vital proteins involved in CO2 fixation in chloroplasts; however, the physiological effect of their trimethylation remains unknown. In Nannochloropsis oceanica, a homolog of LSMT (NoLSMT) is found. Phylogenetic analysis indicates that NoLSMT and other algae LSMTs are clustered in a basal position, suggesting that algal species are the origin of LSMT. As NoLSMT lacks the His-Ala/ProTrp triad, it is predicted to have FBAs as its substrate instead of Rubisco. The 18-20% reduced abundance of FBA methylation in NoLSMT-defective mutants further confirms this observation. Moreover, this gene (nolsmt) can be induced by low-CO2 conditions. Intriguingly, NoLSMT-knockout N. oceanica mutants exhibit a 9.7-13.8% increase in dry weight and enhanced growth, which is attributed to the alleviation of photoinhibition under high-light stress. This suggests that the elimination of FBA trimethylation facilitates carbon fixation under high-light stress conditions. These findings have implications in engineering carbon fixation to improve microalgae biomass production.


Assuntos
Aldeído Liases , Lisina , Ribulose-Bifosfato Carboxilase/genética , Biomassa , Dióxido de Carbono , Filogenia , Frutose-Bifosfato Aldolase , Histona-Lisina N-Metiltransferase , Cloroplastos/genética
7.
Chembiochem ; 25(11): e202400118, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38526556

RESUMO

Hydroxynitrile lyase (HNL) from the cyanogenic millipede Oxidus gracillis (OgraHNL) is a crucial enzyme in the cyanogenesis pathway. Here, the crystal structures of OgraHNL complexed with sulfate, benzaldehyde (BA), (R)-mandelonitrile ((R)-Man), (R)-2-chloromandelonitrile ((R)-2-Cl-Man), and acetone cyanohydrin (ACN) were solved at 1.6, 1.7, 2.3, 2.1, and 2.0 Šresolutions, respectively. The structure of OgraHNL revealed that it belonged to the lipocalin superfamily. Based on this structure, positive variants were designed to further improve the catalytic activity and enantioselectivity of the enzyme for asymmetric hydrocyanation and Henry reactions.


Assuntos
Aldeído Liases , Mutagênese Sítio-Dirigida , Aldeído Liases/metabolismo , Aldeído Liases/química , Aldeído Liases/genética , Animais , Benzaldeídos/metabolismo , Benzaldeídos/química , Acetonitrilas/química , Acetonitrilas/metabolismo , Modelos Moleculares , Cristalografia por Raios X , Nitrilas/metabolismo , Nitrilas/química , Estereoisomerismo
8.
ACS Synth Biol ; 13(3): 888-900, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359048

RESUMO

Methanol has gained substantial attention as a substrate for biomanufacturing due to plentiful stocks and nonreliance on agriculture, and it can be sourced renewably. However, due to inevitable complexities in cell metabolism, microbial methanol conversion requires further improvement before industrial applicability. Here, we present a novel, parallel strategy using artificial cells to provide a simplified and well-defined environment for methanol utilization as artificial methylotrophic cells. We compartmentalized a methanol-utilizing enzyme cascade, including NAD-dependent methanol dehydrogenase (Mdh) and pyruvate-dependent aldolase (KHB aldolase), in cell-sized lipid vesicles using the inverted emulsion method. The reduction of cofactor NAD+ to NADH was used to quantify the conversion of methanol within individual artificial methylotrophic cells via flow cytometry. Compartmentalization of the reaction cascade in liposomes led to a 4-fold higher NADH production compared with bulk enzyme experiments, and the incorporation of KHB aldolase facilitated another 2-fold increase above the Mdh-only reaction. This methanol-utilizing platform can serve as an alternative route to speed up methanol biological conversion, eventually shifting sugar-based bioproduction toward a sustainable methanol bioeconomy.


Assuntos
Células Artificiais , Metanol , Metanol/metabolismo , NAD/metabolismo , Frutose-Bifosfato Aldolase , Aldeído Liases/metabolismo
9.
J Pathol ; 263(1): 22-31, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38332723

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive scarring disease of the lung that leads rapidly to respiratory failure. Novel approaches to treatment are urgently needed. The bioactive lipid sphingosine-1-phosphate (S1P) is increased in IPF lungs and promotes proinflammatory and profibrotic TGF-ß signaling. Hence, decreasing lung S1P represents a potential therapeutic strategy for IPF. S1P is degraded by the intracellular enzyme S1P lyase (SPL). Here we find that a knock-in mouse with a missense SPL mutation mimicking human disease resulted in reduced SPL activity, increased S1P, increased TGF-ß signaling, increased lung fibrosis, and higher mortality after injury compared to wild type (WT). We then tested adeno-associated virus 9 (AAV9)-mediated overexpression of human SGPL1 (AAV-SPL) in mice as a therapeutic modality. Intravenous treatment with AAV-SPL augmented lung SPL activity, attenuated S1P levels within the lungs, and decreased injury-induced fibrosis compared to controls treated with saline or only AAV. We confirmed that AAV-SPL treatment led to higher expression of SPL in the epithelial and fibroblast compartments during bleomycin-induced lung injury. Additionally, AAV-SPL decreased expression of the profibrotic cytokines TNFα and IL1ß as well as markers of fibroblast activation, such as fibronectin (Fn1), Tgfb1, Acta2, and collagen genes in the lung. Taken together, our results provide proof of concept for the use of AAV-SPL as a therapeutic strategy for the treatment of IPF. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Dependovirus , Fibrose Pulmonar Idiopática , Lisofosfolipídeos , Esfingosina/análogos & derivados , Humanos , Camundongos , Animais , Dependovirus/genética , Pulmão/metabolismo , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/terapia , Fibrose Pulmonar Idiopática/metabolismo , Bleomicina , Modelos Animais , Terapia Genética , Aldeído Liases/genética , Aldeído Liases/metabolismo
10.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396648

RESUMO

The employment of 2-deoxyribose-5-phosphate aldolase (DERA) stands as a prevalent biocatalytic route for synthesizing statin side chains. The main problem with this pathway is the low stability of the enzyme. In this study, mesocellular silica foam (MCF) with different pore sizes was used as a carrier for the covalent immobilization of DERA. Different functionalizing and activating agents were tested and kinetic modeling was subsequently performed. The use of succinic anhydride as an activating agent resulted in an enzyme hyperactivation of approx. 140%, and the stability almost doubled compared to that of the free enzyme. It was also shown that the pore size of MCF has a decisive influence on the stability of the DERA enzyme.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Dióxido de Silício/química , Aldeído Liases/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Biocatálise
11.
Appl Microbiol Biotechnol ; 108(1): 186, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300290

RESUMO

Steroid-based drugs are now mainly produced by the microbial transformation of phytosterol, and a two-step bioprocess is adopted to reach high space-time yields, but byproducts are frequently observed during the bioprocessing. In this study, the catabolic switch between the C19- and C22-steroidal subpathways was investigated in resting cells of Mycobacterium neoaurum NRRL B-3805, and a dose-dependent transcriptional response toward the induction of phytosterol with increased concentrations was found in the putative node enzymes including ChoM2, KstD1, OpccR, Sal, and Hsd4A. Aldolase Sal presented a dominant role in the C22 steroidal side-chain cleavage, and the byproduct was eliminated after sequential deletion of opccR and sal. Meanwhile, the molar yield of androst-1,4-diene-3,17-dione (ADD) was increased from 59.4 to 71.3%. With the regard of insufficient activity of rate-limiting enzymes may also cause byproduct accumulation, a chromosomal integration platform for target gene overexpression was established supported by a strong promoter L2 combined with site-specific recombination in the engineered cell. Rate-limiting steps of ADD bioconversion were further characterized and overcome. Overexpression of the kstD1 gene further strengthened the bioconversion from AD to ADD. After subsequential optimization of the bioconversion system, the directed biotransformation route was developed and allowed up to 82.0% molar yield with a space-time yield of 4.22 g·L-1·day-1. The catabolic diversion elements and the genetic overexpression tools as confirmed and developed in present study offer new ideas of M. neoaurum cell factory development for directed biotransformation for C19- and C22-steroidal drug intermediates from phytosterol. KEY POINTS: • Resting cells exhibited a catabolic switch between the C19- and C22-steroidal subpathways. • The C22-steroidal byproduct was eliminated after sequential deletion of opccR and sal. • Rate-limiting steps were overcome by promoter engineering and chromosomal integration.


Assuntos
Aldeído Liases , Fitosteróis , Androstadienos , Diferenciação Celular , Polienos
12.
J Nucl Med ; 65(3): 475-480, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272705

RESUMO

Fructose metabolism has been implicated in various diseases, including metabolic disorders, neurodegenerative disorders, cardiac disorders, and cancer. However, the limited availability of a quantitative imaging radiotracer has hindered its exploration in pathology and diagnostic imaging. Methods: We adopted a molecular design strategy based on the catalytic mechanism of aldolase, a key enzyme in fructolysis. We successfully synthesized a radiodeoxyfluorinated fructose analog, [18F]4-fluoro-4-deoxyfructose ([18F]4-FDF), in high molar activity. Results: Through heavy isotope tracing by mass spectrometry, we demonstrated that C4-deoxyfluorination of fructose led to effective trapping as fluorodeoxysorbitol and fluorodeoxyfructose-1-phosphate in vitro, unlike C1- and C6-fluorinated analogs that resulted in fluorolactate accumulation. This observation was consistent in vivo, where [18F]6-fluoro-6-deoxyfructose displayed substantial bone uptake due to metabolic processing whereas [18F]4-FDF did not. Importantly, [18F]4-FDF exhibited low uptake in healthy brain and heart tissues, known for their high glycolytic activity and background levels of [18F]FDG uptake. [18F]4-FDF PET/CT allowed for sensitive mapping of neuro- and cardioinflammatory responses to systemic lipopolysaccharide administration. Conclusion: Our study highlights the significance of aldolase-guided C4 radiodeoxyfluorination of fructose in enabling effective radiotracer trapping, overcoming limitations of C1 and C6 radioanalogs toward a clinically viable tool for imaging fructolysis in highly glycolytic tissues.


Assuntos
Frutose-Bifosfato Aldolase , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Aldeído Liases , Glicólise , Frutose
13.
Eur J Neurol ; 31(2): e16117, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37922500

RESUMO

BACKGROUND AND PURPOSE: Elevation of serum creatine kinase (CK) or hyperCKemia is considered a biological marker of myopathies. However, selective elevation of serum aldolase with normal CK has been reported in a few myopathies, including dermatomyositis, immune-mediated myopathy with perimysial pathology and fasciitis with associated myopathy. The aim was to investigate the disease spectrum of myopathies with isolated aldolase elevation. METHODS: Medical records were reviewed to identify patients >18 years old seen between December 1994 and June 2020 who had pathologically proven myopathies with elevated aldolase and normal CK level. Patients with alternative causes of aldolase elevation were excluded. RESULTS: Thirty-four patients with various types of myopathies were identified. Myopathies were treatable in 27 patients. The three most common etiologies were dermatomyositis (n = 8), overlap myositis (n = 4) and nonspecific myopathy (n = 4). Perimysial pathology comprising inflammation, fragmentation, vasculitis, calcified perimysial vessels or extracellular amyloid deposition was found in 17/34 patients (50%). Eight dermatomyositis patients with selective elevated aldolase were compared to 24 sex- and age-matched patients with dermatomyositis and hyperCKemia. Dermatomyositis patients with normal CK significantly (p < 0.05) had less frequent cutaneous involvement (50.0% vs. 100.0%) and fibrillation potentials (50.0% vs. 90.5%) but higher median erythrocyte sedimentation rate (33.5 vs. 13.5 mm/h) and more common perifascicular mitochondrial pathology (37.5% vs. 4.2%). CONCLUSION: Isolated aldolase elevation can be found in a greater variety of myopathies than initially thought and most were treatable. Dermatomyositis is the most common myopathy with selective elevation of aldolase in our cohort, which features some unique characteristics compared to dermatomyositis with hyperCKemia.


Assuntos
Dermatomiosite , Doenças Musculares , Miosite , Humanos , Adolescente , Dermatomiosite/complicações , Dermatomiosite/patologia , Miosite/complicações , Miosite/patologia , Creatina Quinase , Aldeído Liases
14.
Microb Biotechnol ; 17(1): e14270, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37154793

RESUMO

Mycobacterial mutants blocked in ring degradation constructed to achieve C19 synthons production, also accumulate by-products such as C22 intermediates throughout an alternative pathway reducing the production yields and complicating the downstream purification processing of final products. In this work, we have identified the MSMEG_6561 gene, encoding an aldolase responsible for the transformation of 22-hydroxy-3-oxo-cholest-4-ene-24-carboxyl-CoA (22-OH-BCN-CoA) into the 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC) precursor (20S)-3-oxopregn-4-ene-20-carboxaldehyde (3-OPA). The deletion of this gene increases the production yield of the C-19 steroidal synthon 4-androstene-3,17-dione (AD) from natural sterols, avoiding the production of 4-HBC as by-product and the drawbacks in the AD purification. The molar yield of AD production using the MS6039-5941-6561 triple mutant strain was checked in flasks and bioreactor improving very significantly compared with the previously described MS6039-5941 strain.


Assuntos
Frutose-Bifosfato Aldolase , Esteróis , Esteróis/metabolismo , Colestenonas , Aldeído Liases
15.
Biochem Biophys Res Commun ; 695: 149440, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38157628

RESUMO

l-threonate is the metabolite of vitamin C, while d-erythronate is the metabolite of N-acetyl-d-glucosamine, the nutritional supplement for joint health. They are widely distributed in the environment and human biofluids. Nevertheless, the catabolisms of l-threonate and d-erythronate are sparsely reported. Here we explored the functional diversity of an acid sugar kinase family (Pfam families PF07005-PF17042), and discovered a novel 2-oxo-tetronate kinase. The conserved genome neighborhood of the 2-oxo-tetronate kinase encodes members of class-II fructose-bisphosphate aldolase family (F_bP_aldolase, PF01116) and a dehydrogenase family (PF03446-PF14833). Instructed by this analysis, we experimentally verified that these enzymes are capable of degrading l-threonate into dihydroxyacetone phosphate (DHAP) in Arthrobacter sp. ZBG10, Clostridium scindens ATCC 35704, and Pseudonocardia dioxanivorans ATCC 55486. Meanwhile, a convergent catabolic pathway for d-erythronate was characterized in P. dioxanivorans ATCC 55486. Moreover, the phylogenetic distribution analysis indicates that the biological range of the identified l-threonate and d-erythronate catabolic pathways appears to extend mostly to members of the Actinomycetota, Cyanobacteriota, Bacillota, Pseudomonadota, and Bacteroidota phyla.


Assuntos
Bactérias , Butiratos , Frutose-Bifosfato Aldolase , Humanos , Filogenia , Bactérias/metabolismo , Aldeído Liases , Fosfotransferases
16.
J Investig Med High Impact Case Rep ; 11: 23247096231217829, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38097369

RESUMO

Dermatomyositis (DM) is a rare inflammatory myopathy with an incidence of 9.63 per 1 000 000 people and typically presents with skin rash and muscle weakness. We report a case of DM that presented with proximal muscle weakness, normal creatine phosphokinase (CPK), negative myositis antibody panel, and non-specific histopathological findings on muscle biopsy, without initial skin involvement. A 67-year-old male presented with subacute bilateral proximal lower-extremity weakness and weight loss of 20 pounds over 3 months. Laboratory investigation was significant for elevated erythrocyte sedimentation rate, C-reactive protein, CPK, and aldolase, with negative myositis-specific antibodies. Femur magnetic resonance imaging revealed subcutaneous, fascial, and muscle edema throughout quadriceps and gluteal muscles. Muscle biopsy showed myofiber atrophy with perivascular and endomysial T-lymphocytes and histiocytes, as well as scattered necrotic myofibers. He was diagnosed with inflammatory myositis and started on prednisone and monthly IVIG infusions. At 2-month follow-up, he reported new rashes on the extensor surfaces of the hands consistent with Gottron's papules, mechanic's hands, and livedo reticularis of feet and arms. Cases of DM that present with myopathy and later develop skin changes are rare. Our patient had several months of progressive proximal muscle weakness, and skin changes occurred after he was started on treatment. Laboratory findings include elevated CPK, aldolase, and myositis-specific auto-antibodies. Muscle biopsy helps in diagnosis; however, findings may be nonspecific-as was the case in our patient. Corticosteroids are first-line treatment. Long-term follow-up studies are necessary to better understand the incidence of late-onset development of typical skin findings.


Assuntos
Dermatomiosite , Miosite , Masculino , Humanos , Idoso , Dermatomiosite/complicações , Miosite/complicações , Miosite/diagnóstico , Miosite/tratamento farmacológico , Pele/patologia , Debilidade Muscular/etiologia , Aldeído Liases
17.
Int J Mol Sci ; 24(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37958544

RESUMO

Sphingosine-1-phosphate lyase insufficiency syndrome (SPLIS) is an inborn error of metabolism caused by inactivating mutations in SGPL1, the gene encoding sphingosine-1-phosphate lyase (SPL), an essential enzyme needed to degrade sphingolipids. SPLIS features include glomerulosclerosis, adrenal insufficiency, neurological defects, ichthyosis, and immune deficiency. Currently, there is no cure for SPLIS, and severely affected patients often die in the first years of life. We reported that adeno-associated virus (AAV) 9-mediated SGPL1 gene therapy (AAV-SPL) given to newborn Sgpl1 knockout mice that model SPLIS and die in the first few weeks of life prolonged their survival to 4.5 months and prevented or delayed the onset of SPLIS phenotypes. In this study, we tested the efficacy of a modified AAV-SPL, which we call AAV-SPL 2.0, in which the original cytomegalovirus (CMV) promoter driving the transgene is replaced with the synthetic "CAG" promoter used in several clinically approved gene therapy agents. AAV-SPL 2.0 infection of human embryonic kidney (HEK) cells led to 30% higher SPL expression and enzyme activity compared to AAV-SPL. Newborn Sgpl1 knockout mice receiving AAV-SPL 2.0 survived ≥ 5 months and showed normal neurodevelopment, 85% of normal weight gain over the first four months, and delayed onset of proteinuria. Over time, treated mice developed nephrosis and glomerulosclerosis, which likely resulted in their demise. Our overall findings show that AAV-SPL 2.0 performs equal to or better than AAV-SPL. However, improved kidney targeting may be necessary to achieve maximally optimized gene therapy as a potentially lifesaving SPLIS treatment.


Assuntos
Terapia Genética , Parvovirinae , Esfingosina , Animais , Humanos , Camundongos , Aldeído Liases/genética , Aldeído Liases/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Lisofosfolipídeos/metabolismo , Camundongos Knockout , Parvovirinae/metabolismo , Fosfatos , Esfingosina/metabolismo
18.
Basic Res Cardiol ; 118(1): 48, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938421

RESUMO

Cardiovascular disease (CVD) is a major threat to human health, accounting for 46% of non-communicable disease deaths. Glycolysis is a conserved and rigorous biological process that breaks down glucose into pyruvate, and its primary function is to provide the body with the energy and intermediate products needed for life activities. The non-glycolytic actions of enzymes associated with the glycolytic pathway have long been found to be associated with the development of CVD, typically exemplified by metabolic remodeling in heart failure, which is a condition in which the heart exhibits a rapid adaptive response to hypoxic and hypoxic conditions, occurring early in the course of heart failure. It is mainly characterized by a decrease in oxidative phosphorylation and a rise in the glycolytic pathway, and the rise in glycolysis is considered a hallmark of metabolic remodeling. In addition to this, the glycolytic metabolic pathway is the main source of energy for cardiomyocytes during ischemia-reperfusion. Not only that, the auxiliary pathways of glycolysis, such as the polyol pathway, hexosamine pathway, and pentose phosphate pathway, are also closely related to CVD. Therefore, targeting glycolysis is very attractive for therapeutic intervention in CVD. However, the relationship between glycolytic pathway and CVD is very complex, and some preclinical studies have confirmed that targeting glycolysis does have a certain degree of efficacy, but its specific role in the development of CVD has yet to be explored. This article aims to summarize the current knowledge regarding the glycolytic pathway and its key enzymes (including hexokinase (HK), phosphoglucose isomerase (PGI), phosphofructokinase-1 (PFK1), aldolase (Aldolase), phosphoglycerate metatase (PGAM), enolase (ENO) pyruvate kinase (PKM) lactate dehydrogenase (LDH)) for their role in cardiovascular diseases (e.g., heart failure, myocardial infarction, atherosclerosis) and possible emerging therapeutic targets.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , Humanos , Fosforilação Oxidativa , Aldeído Liases , Redes e Vias Metabólicas
19.
J Biol Chem ; 299(11): 105338, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37838169

RESUMO

Sulfoquinovose (SQ, 6-deoxy-6-sulfoglucose) is a sulfosugar that is the anionic head group of plant, algal, and cyanobacterial sulfolipids: sulfoquinovosyl diacylglycerols. SQ is produced within photosynthetic tissues, forms a major terrestrial reservoir of biosulfur, and is an important species within the biogeochemical sulfur cycle. A major pathway for SQ breakdown is the sulfoglycolytic Embden-Meyerhof-Parnas pathway, which involves cleavage of the 6-carbon chain of the intermediate sulfofructose-1-phosphate (SFP) into dihydroxyacetone and sulfolactaldehyde, catalyzed by class I or II SFP aldolases. While the molecular basis of catalysis is understood for class I SFP aldolases, comparatively little is known about class II SFP aldolases. Here, we report the molecular architecture and biochemical basis of catalysis of two metal-dependent class II SFP aldolases from Hafnia paralvei and Yersinia aldovae. 3D X-ray structures of complexes with substrate SFP and product dihydroxyacetone phosphate reveal a dimer-of-dimers (tetrameric) assembly, the sulfonate-binding pocket, two metal-binding sites, and flexible loops that are implicated in catalysis. Both enzymes were metal-dependent and exhibited high KM values for SFP, consistent with their role in a unidirectional nutrient acquisition pathway. Bioinformatic analysis identified a range of sulfoglycolytic Embden-Meyerhof-Parnas gene clusters containing class I/II SFP aldolases. The class I and II SFP aldolases have mututally exclusive occurrence within Actinobacteria and Firmicutes phyla, respectively, while both classes of enzyme occur within Proteobacteria. This work emphasizes the importance of SQ as a nutrient for diverse bacterial phyla and the different chemical strategies they use to harvest carbon from this sulfosugar.


Assuntos
Aldeído Liases , Frutose-Bifosfato Aldolase , Aldeído Liases/química , Carbono , Frutose-Bifosfato Aldolase/química , Metais , Fosfatos
20.
J Immunother Cancer ; 11(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37857526

RESUMO

BACKGROUND: Post-translational modification of proteins has the potential to alter the ability of T cells to recognize major histocompatibility complex (MHC) class -I and class-II restricted antigens, thereby resulting in altered immune responses. One such modification is carbamylation (homocitrullination) that results in the formation of homocitrulline (Hcit) residues in a non-enzymatic reaction of cyanate with the lysine residues in the polypeptide chain. Homocitrullination occurs in the tumor microenvironment and CD4-mediated immune responses to Hcit epitopes can target stressed tumor cells and provide a potent antitumor response in mouse models. METHODS: Homocitrullinated peptides were identified and assessed in vitro for HLA-A2 binding and in vivo in human leukocyte antigen (HLA) transgenic mouse models for immunogenicity. CD8 responses were assessed in vitro for cytotoxicity and in vivo tumor therapy. Human tumor samples were analyzed by targeted mass spectrometry for presence of homocitrullinated peptides. RESULTS: Homocitrullinated peptides from aldolase and cytokeratin were identified, that stimulated CD8-mediated responses in vivo. Modified peptides showed enhanced binding to HLA-A2 compared with the native sequences and immunization of HLA-A2 transgenic mice generated high avidity modification specific CD8 responses that killed peptide expressing target cells. Importantly, in vivo the homocitrullinated aldolase specific response was associated with efficient CD8 dependent antitumor therapy of the aggressive murine B16 tumor model indicating that this epitope is naturally presented in the tumor. In addition, the homocitrullinated aldolase epitope was also detected in human tumor samples. CONCLUSION: This is the first evidence that homocitrullinated peptides can be processed and presented via MHC-I and targeted for tumor therapy. Thus, Hcit-specific CD8 T-cell responses have potential in the development of future anticancer therapy.


Assuntos
Linfócitos T CD8-Positivos , Antígeno HLA-A2 , Camundongos , Humanos , Animais , Antígenos de Histocompatibilidade Classe II/metabolismo , Vacinação , Camundongos Transgênicos , Peptídeos , Antígenos de Histocompatibilidade Classe I , Epitopos , Processamento de Proteína Pós-Traducional , Aldeído Liases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...