Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Pathog ; 124: 322-331, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30165113

RESUMO

Aliivibrio salmonicida is the causative agent of cold-water vibriosis, a hemorrhagic septicemia of salmonid fish. The bacterium has been shown to rapidly enter the fish bloodstream, and proliferation in blood is seen after a period of latency. Although the pathogenesis of the disease is largely unknown, shedding of high quantities of outer-membrane complex VS-P1, consisting of LPS and a protein moiety, has been suggested to act as decoy and contribute to immunomodulation. To investigate the role of LPS in the pathogenesis, we constructed O-antigen deficient mutants by knocking out the gene encoding O-antigen ligase waaL. As this gene exists in two copies in the Al. salmonicida genome, we constructed single and double in-frame deletion mutants to explore potential effects of copy number variation. Our results demonstrate that the LPS structure of Al. salmonicida is essential for virulence in Atlantic salmon. As the loss of O-antigen did not influence invasive properties of the bacterium, the role of LPS in virulence applies to later stages of the pathogenesis. One copy of waaL was sufficient for O-antigen ligation and virulence in experimental models. However, as a non-significant decrease in mortality was observed after immersion challenge with a waaL single mutant, it is tempting to suggest that multiple copies of the gene are beneficial to the bacterium at lower challenge doses. The loss of O-antigen was not found to affect serum survival in vitro, but quantification of bacteria in blood following immersion challenge suggested a role in in vivo survival. Furthermore, fish challenged with the waaL double mutant induced a more transient immune response than fish challenged with the wild type strain. Whether the reduction in virulence following the loss of waaL is caused by altered immunomodulative properties or impaired survival remains unclear. However, our data demonstrate that LPS is crucial for development of disease.


Assuntos
Aliivibrio salmonicida/metabolismo , Aliivibrio salmonicida/patogenicidade , Doenças dos Peixes/microbiologia , Septicemia Hemorrágica/veterinária , Antígenos O/metabolismo , Vibrioses/veterinária , Aliivibrio salmonicida/genética , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono-Oxigênio Ligases/genética , Carbono-Oxigênio Ligases/metabolismo , Variações do Número de Cópias de DNA , Septicemia Hemorrágica/microbiologia , Antígenos O/genética , Salmo salar , Vibrioses/microbiologia , Virulência
2.
Microb Pathog ; 109: 263-273, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28602841

RESUMO

Aliivibrio salmonicida is the causative agent of cold-water vibriosis, a septicemia of farmed salmonid fish. The mechanisms of disease are not well described, and few virulence factors have been identified. However, a requirement for motility in the pathogenesis has been reported. Al. salmonicida is motile by the means of lophotrichous polar flagella, consisting of multiple flagellin subunits that are expressed simultaneously. Here we show that flagellin subunit FlaA, but not FlaD, is of major importance for motility in Al. salmonicida. Deletion of flaA resulted in 62% reduction in motility, as well as a reduction in the fraction of flagellated cells and number of flagella per cell. Similarly, deletion of the gene encoding motor protein motA gave rise to an aflagellate phenotype and cessation of motility. Surprisingly, we found that Al. salmonicida does not require motility for invasion of Atlantic salmon. Nevertheless, in-frame deletion mutants defective of motA and flaA were less virulent in Atlantic salmon challenged by immersion, whereas an effect on virulence after i.p. challenge was only seen for the latter. Our results indicate a complex requirement for motility and/or flagellation in the pathogenesis of cold-water vibriosis, but the mechanisms involved remain unknown. We hypothesize that the differences in virulence observed after immersion and i.p. challenge are related to the immune response of the host.


Assuntos
Aliivibrio salmonicida/fisiologia , Aliivibrio salmonicida/patogenicidade , Doenças dos Peixes/microbiologia , Flagelos/fisiologia , Vibrioses/microbiologia , Vibrioses/veterinária , Aliivibrio salmonicida/citologia , Aliivibrio salmonicida/genética , Animais , Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Doenças dos Peixes/imunologia , Flagelina/genética , Flagelina/metabolismo , Regulação Bacteriana da Expressão Gênica , Imersão , Microscopia Eletrônica de Transmissão , Salmo salar/microbiologia , Deleção de Sequência , Temperatura , Vibrioses/imunologia , Virulência/genética
3.
Microb Pathog ; 52(1): 77-84, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22079881

RESUMO

Cold-water vibriosis (CV) is a bacterial septicemia of farmed salmonid fish and cod caused by the Gram-negative bacterium Vibrio (Aliivibrio) salmonicida. To study the pathogenesis of this marine pathogen, Atlantic salmon was experimentally infected by immersion challenge with wild type V. salmonicida and the bacterial distribution in different organs was investigated at different time points. V. salmonicida was identified in the blood as early as 2 h after challenge demonstrating a rapid establishment of bacteremia without an initial period of colonization of the host. Two days after immersion challenge, only a few V. salmonicida were identified in the intestines, but the amount increased with time. In prolonged CV cases, V. salmonicida was the dominating bacterium of the gut microbiota causing a release of the pathogen to the water. We hypothesize that V. salmonicida uses the blood volume for proliferation during the infection of the fish and the salmonid intestine as a reservoir that favors survival and transmission. In addition, a motility-deficient V. salmonicida strain led us to investigate the impact of motility in the CV pathogenesis by comparing the virulence properties of the mutant with the wild type LFI1238 strain in both i.p. and immersion challenge experiments. V. salmonicida was shown to be highly dependent on motility to gain access to the fish host. After invasion, motility was no longer required for virulence, but the absence of normal flagellation delayed the disease development.


Assuntos
Aliivibrio salmonicida/patogenicidade , Doenças dos Peixes/microbiologia , Vibrioses/microbiologia , Aliivibrio salmonicida/genética , Aliivibrio salmonicida/isolamento & purificação , Aliivibrio salmonicida/fisiologia , Animais , Intestinos/microbiologia , Salmo salar , Vibrioses/veterinária , Virulência
4.
Appl Environ Microbiol ; 73(6): 1825-33, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17277225

RESUMO

The cold-water-fish pathogen Vibrio salmonicida expresses a functional bacterial luciferase but produces insufficient levels of its aliphatic-aldehyde substrate to be detectably luminous in culture. Our goals were to (i) better explain this cryptic bioluminescence phenotype through molecular characterization of the lux operon and (ii) test whether the bioluminescence gene cluster is associated with virulence. Cloning and sequencing of the V. salmonicida lux operon revealed that homologs of all of the genes required for luminescence are present: luxAB (luciferase) and luxCDE (aliphatic-aldehyde synthesis). The arrangement and sequence of these structural lux genes are conserved compared to those in related species of luminous bacteria. However, V. salmonicida strains have a novel arrangement and number of homologs of the luxR and luxI quorum-sensing regulatory genes. Reverse transcriptase PCR analysis suggests that this novel arrangement of quorum-sensing genes generates antisense transcripts that may be responsible for the reduced production of bioluminescence. In addition, infection with a strain in which the luxA gene was mutated resulted in a marked delay in mortality among Atlantic salmon relative to infection with the wild-type parent in single-strain challenge experiments. In mixed-strain competition between the luxA mutant and the wild type, the mutant was attenuated up to 50-fold. It remains unclear whether the attenuation results from a direct loss of luciferase or a polar disturbance elsewhere in the lux operon. Nevertheless, these findings document for the first time an association between a mutation in a structural lux gene and virulence, as well as provide a new molecular system to study Vibrio pathogenesis in a natural host.


Assuntos
Aliivibrio salmonicida/genética , Aliivibrio salmonicida/patogenicidade , Doenças dos Peixes/microbiologia , Luciferases Bacterianas/genética , Óperon/genética , Vibrioses/veterinária , Aliivibrio salmonicida/isolamento & purificação , Sequência de Aminoácidos , Animais , Sequência Conservada , DNA Bacteriano/química , DNA Bacteriano/genética , Gadus morhua/microbiologia , Dados de Sequência Molecular , Mutação , RNA Antissenso/biossíntese , RNA Bacteriano/análise , RNA Bacteriano/genética , RNA Mensageiro/análise , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Homologia de Sequência , Análise de Sobrevida , Vibrioses/microbiologia , Vibrioses/mortalidade , Virulência/genética
5.
Microb Pathog ; 42(1): 36-45, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17145162

RESUMO

Vibrio salmonicida is the causative agent of cold-water vibriosis in farmed marine fish species. Adherence of pathogenic bacteria to mucosal surfaces is considered to be the first steps in the infective processes, and proteins involved are regarded as virulence factors. The global protein expression profile of V. salmonicida, grown with and without the presence of fish skin mucus in the synthetic media, was compared. Increased levels of proteins involved in motility, oxidative stress responses, and general stress responses were demonstrated as an effect of growth in the presence of mucus compared to non-mucus containing media. Enhanced levels of the flagellar proteins FlaC, FlaD and FlaE indicate increased motility capacity, while enhanced levels of the heat shock protein DnaK and the chaperonin GroEL indicate a general stress response. In addition, we observed that peroxidases, TPx.Grx and AhpC, involved in the oxidative stress responses, were induced by mucus proteins. The addition of mucus to the culture medium did not significantly alter the growth rate of V. salmonicida. An analysis of mucus proteins suggests that the mucus layer harbours a protein species that potentially possesses catalytic activity against DNA, and a protein with iron chelating activity. This study represents the first V. salmonicida proteomic analysis, and provides specific insight into the proteins necessary for the bacteria to challenge the skin mucus barrier of the fish.


Assuntos
Aliivibrio salmonicida/química , Aliivibrio salmonicida/patogenicidade , Doenças dos Peixes/microbiologia , Muco/química , Proteoma , Salmo salar/microbiologia , Vibrioses/veterinária , Aliivibrio salmonicida/crescimento & desenvolvimento , Aliivibrio salmonicida/fisiologia , Animais , Cromatografia Líquida , Eletroforese em Gel Bidimensional , Doenças dos Peixes/genética , Flagelos/química , Proteínas de Choque Térmico/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Vibrioses/genética , Vibrioses/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...