Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 4(12): 1081-90, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16307126

RESUMO

The formation of grana in chloroplasts of higher plants is examined in terms of the subtle interplay of physicochemical forces of attraction and repulsion. The attractive forces between two adjacent membranes comprise (1) van der Waals attraction that depends on the abundance and type of atoms in each membrane, on the distance between the membranes and on the dielectric constant, (2) depletion attraction that generates local order by granal stacking at the expense of greater disorder (i.e. entropy) in the stroma, and (3) an electrostatic attraction of opposite charges located on adjacent membranes. The repulsive forces comprise (1) electrostatic repulsion due to the net negative charge on the outer surface of thylakoid membranes, (2) hydration repulsion that operates at small separations between thylakoid membranes due to layers of bound water molecules, and (3) steric hindrance due to bulky protrusions of Photosystem I (PSI) and ATP synthase into the stroma. In addition, specific interactions may occur, but they await experimental demonstration. Although grana are not essential for photosynthesis, they are ubiquitous in higher plants. Grana may have been selected during evolution for the functional advantages that they confer on higher plants. The functional consequences of grana stacking include (1) enhancement of light capture through a vastly increased area-to-volume ratio and connectivity of several PSIIs with large functional antenna size, (2) the ability to control the lateral separation of PSI from PSII and, therefore, the balanced distribution of excitation energy between two photosystems working in series, (3) the reversible fine-tuning of energy distribution between the photosystems by State 1-State 2 transitions, (4) the ability to regulate light-harvesting via controlled thermal dissipation of excess excitation energy, detected as non-photochemical quenching, (5) dynamic flexibility in the light reactions mediated by a granal structure in response to regulation by a trans-thylakoid pH gradient, (6) delaying the premature degradation of D1 and D2 reaction-centre protein(s) in PSII by harbouring photoinactived PSIIs in appressed granal domains, (7) enhancement of the rate of non-cyclic synthesis of adenosine triphosphate (ATP) as well as the regulation of non-cyclic vs. cyclic ATP synthesis, and (8) the potential increase of photosynthetic capacity for a given composition of chloroplast constituents in full sunlight, concomitantly with enhancement of photochemical efficiency in canopy shade. Hence chloroplast ultrastructure and function are intimately intertwined.


Assuntos
Alocasia/citologia , Cloroplastos/química , Cloroplastos/fisiologia , Tilacoides/química , Tilacoides/fisiologia , Alocasia/metabolismo , Alocasia/efeitos da radiação , Alocasia/ultraestrutura , Cloroplastos/efeitos da radiação , Cloroplastos/ultraestrutura , Entropia , Fotossíntese , Eletricidade Estática , Tilacoides/efeitos da radiação , Tilacoides/ultraestrutura
2.
Plant Physiol ; 132(3): 1529-39, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12857833

RESUMO

Light-mediated chloroplast movements are common in plants. When leaves of Alocasia brisbanensis (F.M. Bailey) Domin are exposed to dim light, mesophyll chloroplasts spread along the periclinal walls normal to the light, maximizing absorbance. Under high light, the chloroplasts move to anticlinal walls. It has been proposed that movement to the high-light position shortens the diffusion path for CO(2) from the intercellular air spaces to the chloroplasts, thus reducing CO(2) limitation of photosynthesis. To test this hypothesis, we used pulsed photoacoustics to measure oxygen diffusion times as a proxy for CO(2) diffusion in leaf cells. We found no evidence that chloroplast movement to the high-light position enhanced gas diffusion. Times for oxygen diffusion were not shorter in leaves pretreated with white light, which induced chloroplast movement to the high-light position, compared with leaves pretreated with 500 to 700 nm light, which did not induce movement. From the oxygen diffusion time and the diffusion distance from chloroplasts to the intercellular gas space, we calculated an oxygen permeability of 2.25 x 10(-)(6) cm(2) s(-)(1) for leaf cells at 20 degrees C. When leaf temperature was varied from 5 degrees C to 40 degrees C, the permeability for oxygen increased between 5 degrees C and 20 degrees C but changed little between 20 degrees C and 40 degrees C, indicating changes in viscosity or other physical parameters of leaf cells above 20 degrees C. Resistance for CO(2) estimated from oxygen permeability was in good agreement with published values, validating photoacoustics as another way of assessing internal resistances to CO(2) diffusion.


Assuntos
Alocasia/citologia , Alocasia/metabolismo , Dióxido de Carbono/metabolismo , Cloroplastos/metabolismo , Movimento , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Acústica , Cloroplastos/efeitos da radiação , Difusão , Luz , Movimento/efeitos da radiação , Oxigênio/metabolismo , Folhas de Planta/efeitos da radiação , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...