Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.859
Filtrar
3.
Toxicol Appl Pharmacol ; 489: 117014, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38914165

RESUMO

The OECD has approved two similar methods for testing the phototoxic potency of chemicals. The first method, OECD 432, is based on the cytotoxicity properties of materials to the mouse 3T3 (clone A31) cell line (fibroblasts) after exposure to light. The second method, OECD 498, is based on the same properties but using reconstructed human epidermis - EpiDerm (stratified keratinocytes). The aim of this study was to compare these two methods using statistical tests (specificity, sensitivity, negative predictive value, positive predictive value and accuracy) and non-statistical characteristics (e.g. price and experimental duration, amount of material, level of complications, cell type, irradiation dose). Both tests were performed according to the relevant guidelines using the same 11 control substances. Higher performance values were observed for OECD 432 in both phototoxic and non-phototoxic classifications. The accuracy of OECD 432 was 90.9%, while that of OECD 498 was 72.7%. OECD 432 was also shorter and less expensive. On the other hand, OECD 498 was less complicated, and used human cells with stratum corneum, which better reflects real skin. This method can also be used with oily substances that are poorly soluble in water. However, both methods are important for testing the phototoxic properties of materials, and can be used alone or in a tiered strategy.


Assuntos
Dermatite Fototóxica , Queratinócitos , Humanos , Animais , Camundongos , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Células 3T3 , Testes de Toxicidade/métodos , Organização para a Cooperação e Desenvolvimento Econômico , Alternativas aos Testes com Animais/métodos , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos
4.
Toxicol In Vitro ; 98: 105851, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38789065

RESUMO

After EU ban on animal testing for cosmetics in 2013, there has been an increasing global interest in alternatives test methods. To development for alternatives test method, we need to get the toxic data about in vitro and in vivo of chemicals. However, database sometimes provide limited in vivo and in vitro data on chemicals. Further, the data generated using the OECD TG439 (in vitro skin irritation) are scattered in difference databases, and it is not easy to navigate through them. Therefore, we complied 'Reference Chemical Database System for Skin Irritation Alternative Test (RCDS-Skin Irritation)' to allow easy, one-stop access to test chemical information. We established the systematic RCDS-Skin Irritation by collecting physiochemical properties, CAS number, human data, and in vivo (OECD TG404) data from overseas chemicals database including European Chemicals Agency (ECHA) etc., and in vitro data using Reconstructed human Epidermis (RhE) (OECD TG439). As a result, we developed the RCDS-Skin Irritation that contains information on 149 chemicals including the data we generated by performing tests using EpiDerm™ SIT, SkinEthic™ RHE and KeraSkin™ SIT. Therefore, the RCDS-Skin Irritation established based on our study will provide insight for safety assessment of chemicals and for development of alternative test methods.


Assuntos
Alternativas aos Testes com Animais , Irritantes , Testes de Irritação da Pele , Humanos , Irritantes/toxicidade , Testes de Irritação da Pele/métodos , Bases de Dados Factuais , Epiderme/efeitos dos fármacos , Bases de Dados de Compostos Químicos , Pele/efeitos dos fármacos
5.
Methods ; 228: 1-11, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38759909

RESUMO

The necessity of animal-free performance tests for novel ophthalmic formulation screening is challenging. For this, we developed and validated a new device to simulate the dynamics and physical-chemical barriers of the eye for in vitro performance tests of topic ophthalmic formulations. The OphthalMimic is a 3D-printed device with an artificial lacrimal flow, a cul-de-sac area, a support base, and a simulated cornea comprised of a polymeric membrane containing poly-vinyl alcohol 10 % (w/v), gelatin 2.5 % (w/v), and different proportions of mucin and poloxamer, i.e., 1:1 (M1), 1:2 (M2), and 2:1 (M3) w/v, respectively. The support base is designed to move between 0° and 50° to replicate the movement of an eyelid. We challenged the model by testing the residence performance of poloxamer®407 16 % and poloxamer®407 16 % + chitosan 1 % (PLX16CS10) gels containing fluconazole. The test was conducted with a simulated tear flow of 1.0 mL.min-1 for 5 min. The OphthalMimic successfully distinguished PLX16 and PLX16C10 formulations based on their fluconazole drainage (M1: 65 ± 14 % and 27 ± 10 %; M2: 58 ± 6 % and 38 ± 9 %; M3: 56 ± 5 % and 38 ± 18 %). In conclusion, the OphthalMimic is a promising tool for comparing the animal-free performance of ophthalmic formulations.


Assuntos
Soluções Oftálmicas , Poloxâmero , Poloxâmero/química , Soluções Oftálmicas/química , Administração Oftálmica , Fluconazol/administração & dosagem , Impressão Tridimensional , Córnea/efeitos dos fármacos , Córnea/metabolismo , Animais , Quitosana/química , Alternativas aos Testes com Animais/métodos , Lágrimas/química , Humanos , Gelatina/química
6.
Toxicol In Vitro ; 98: 105824, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38614139

RESUMO

The TRPV1 receptor, which is known to contribute significantly to pain perception, has recently been identified as a useful tool for predicting eye stinging potential in cosmetics. In this study, HEK-293 cells with high TRPV1 expression were utilized to evaluate calcium influx related to receptor activation triggered by chemicals and cosmetic formulations. The cells were exposed to increasing concentrations of substances to cause or not some aggression to the eye, and TRPV1 activity was assessed by measuring intracellular FURA-2 AM fluorescence signal. To confirm TRPV1 channel activation, capsazepine, a capsaicin antagonist, was employed in addition to using capsaicin as a positive control. The study's results indicate that this novel model can identify compounds known to cause some aggression to the eye, such as stinging, considering a cut-off value of 60% of Ca2+ influx exposed to the lowest evaluated concentration (0.00032%). When applied to the cosmetic baby formulation, although the presented model exhibited higher sensitivity by classifying as stinging formulations that had previously undergone clinical testing and were deemed non-stinging, the assay could serve as a valuable in vitro tool for predicting human eye stinging sensation and can be used as a tier 1 in an integrated testing strategy.


Assuntos
Cálcio , Cosméticos , Canais de Cátion TRPV , Humanos , Cosméticos/toxicidade , Células HEK293 , Canais de Cátion TRPV/metabolismo , Cálcio/metabolismo , Olho/efeitos dos fármacos , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Alternativas aos Testes com Animais
7.
Arch Toxicol ; 98(7): 2047-2063, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38689008

RESUMO

The ongoing transition from chemical hazard and risk assessment based on animal studies to assessment relying mostly on non-animal data, requires a multitude of novel experimental methods, and this means that guidance on the validation and standardisation of test methods intended for international applicability and acceptance, needs to be updated. These so-called new approach methodologies (NAMs) must be applicable to the chemical regulatory domain and provide reliable data which are relevant to hazard and risk assessment. Confidence in and use of NAMs will depend on their reliability and relevance, and both are thoroughly assessed by validation. Validation is, however, a time- and resource-demanding process. As updates on validation guidance are conducted, the valuable components must be kept: Reliable data are and will remain fundamental. In 2016, the scientific community was made aware of the general crisis in scientific reproducibility-validated methods must not fall into this. In this commentary, we emphasize the central importance of ring trials in the validation of experimental methods. Ring trials are sometimes considered to be a major hold-up with little value added to the validation. Here, we clarify that ring trials are indispensable to demonstrate the robustness and reproducibility of a new method. Further, that methods do fail in method transfer and ring trials due to different stumbling blocks, but these provide learnings to ensure the robustness of new methods. At the same time, we identify what it would take to perform ring trials more efficiently, and how ring trials fit into the much-needed update to the guidance on the validation of NAMs.


Assuntos
Toxicologia , Reprodutibilidade dos Testes , Medição de Risco/métodos , Animais , Toxicologia/métodos , Toxicologia/normas , Testes de Toxicidade/métodos , Humanos , Estudos de Validação como Assunto , Projetos de Pesquisa/normas , Alternativas aos Testes com Animais/métodos
8.
Toxicol In Vitro ; 98: 105816, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604524

RESUMO

Skin corrosion testing is integral to evaluating the potential harm posed by chemicals, impacting regulatory decisions on safety, transportation, and labeling. Traditional animal testing methods are giving way to in vitro alternatives, such as reconstructed human epidermis (RhE) models, aligning with evolving ethical standards. This study evaluates the QileX-RhE test system's performance for chemical subcategorization within the OECD TG 431 framework. Results demonstrate its ability to differentiate subcategories, accurately predicting 83% of UN GHS Category 1A and 73% of UN GHS Category 1B/1C chemicals with 100% sensitivity in corrosive prediction. Additionally, this study provides a comprehensive assessment of the test method's performance by employing nuanced parameters such as positive predictive value (PPV), negative predictive value (NPV), post-test odds and likelihood rations, offering valuable insights into the applicability and effectiveness of the QileX-RhE test method.


Assuntos
Alternativas aos Testes com Animais , Organização para a Cooperação e Desenvolvimento Econômico , Humanos , Testes de Irritação da Pele/métodos , Cáusticos/toxicidade , Epiderme/efeitos dos fármacos
9.
Altern Lab Anim ; 52(3): 149-154, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38606566

RESUMO

In the cosmetics sector, many products such as shampoos have a probability of accidental ocular exposure during their routine use. One very specific safety parameter is the residence time of the substance on the corneal surface, as prolonged exposure may cause injury. In this study, we developed a system that simulates corneal exposure to blinking and tear flow, for comparing the corneal clearance times of viscous detergent formulations. The Ex Vivo Eye Irritation Test (EVEIT), which uses corneal explants from discarded rabbit eyes from an abattoir, was used as the basis for the new system. To simulate blinking, we developed a silicone wiping membrane to regularly move across the corneal surface, under conditions of constant addition and aspiration of fluid, to mimic tear flow. Six shampoo formulations were tested and were shown to differ widely in their corneal clearance time. Three groups could be identified according to the observed clearance times (fast, intermediate and slow); the reference shampoo had the shortest clearance time of all tested formulations. With this new system, it is now possible to investigate an important physicochemical parameter, i.e. corneal clearance time, for the consideration of ocular safety during the development of novel cosmetic formulations.


Assuntos
Piscadela , Córnea , Animais , Coelhos , Córnea/efeitos dos fármacos , Piscadela/efeitos dos fármacos , Alternativas aos Testes com Animais/métodos , Preparações para Cabelo , Lágrimas/efeitos dos fármacos
11.
Front Immunol ; 15: 1373411, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646535

RESUMO

Introduction: Veterinary vaccines against Clostridium perfringens type C need to be tested for absence of toxicity, as mandated by pharmacopoeias worldwide. This toxicity testing is required at multiple manufacturing steps and relies on outdated mouse tests that involve severe animal suffering. Clostridium perfringens type C produces several toxins of which the ß-toxin is the primary component responsible for causing disease. Here, we describe the successful development of a new cell-based in vitro assay that can address the specific toxicity of the ß-toxin. Methods: Development of the cell-based assay followed the principle of in vitro testing developed for Cl. septicum vaccines, which is based on Vero cells. We screened four cell lines and selected the THP-1 cell line, which was shown to be the most specific and sensitive for ß-toxin activity, in combination with a commercially available method to determine cell viability (MTS assay) as a readout. Results: The current animal test is estimated to detect 100 - 1000-fold dilutions of the Cl. perfringens type C non-inactivated antigen. When tested with an active Cl. perfringens type C antigen preparation, derived from a commercial vaccine manufacturing process, our THP-1 cell-based assay was able to detect toxin activity from undiluted to over 10000-fold dilution, showing a linear range between approximately 1000- and 10000-fold dilutions. Assay specificity for the ß-toxin was confirmed with neutralizing antibodies and lack of reaction to Cl. perfringens culture medium. In addition, assay parameters demonstrated good repeatability. Conclusions: Here, we have shown proof of concept for a THP-1 cell-based assay for toxicity testing of veterinary Cl. perfringens type C vaccines that is suitable for all vaccine production steps. This result represents a significant step towards the replacement of animal-based toxicity testing of this veterinary clostridial antigen. As a next step, assessment of the assay's sensitivity and repeatability and validation of the method will have to be performed in a commercial manufacturing context in order to formally implement the assay in vaccine quality control.


Assuntos
Toxinas Bacterianas , Clostridium perfringens , Animais , Clostridium perfringens/imunologia , Toxinas Bacterianas/imunologia , Toxinas Bacterianas/toxicidade , Humanos , Células Vero , Chlorocebus aethiops , Testes de Toxicidade/métodos , Infecções por Clostridium/veterinária , Infecções por Clostridium/imunologia , Infecções por Clostridium/diagnóstico , Células THP-1 , Camundongos , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular , Vacinas Bacterianas/imunologia , Alternativas aos Testes com Animais/métodos
12.
ALTEX ; 41(2): 179-201, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629803

RESUMO

When The Principles of Humane Experimental Technique was published in 1959, authors William Russell and Rex Burch had a modest goal: to make researchers think about what they were doing in the laboratory - and to do it more humanely. Sixty years later, their groundbreaking book was celebrated for inspiring a revolution in science and launching a new field: The 3Rs of alternatives to animal experimentation. On November 22, 2019, some pioneering and leading scientists and researchers in the field gathered at the Johns Hopkins Bloomberg School of Public Health in Bal-timore for the 60 Years of the 3Rs Symposium: Lessons Learned and the Road Ahead. The event was sponsored by the Johns Hopkins Center for Alternatives to Animal Testing (CAAT), the Foundation for Chemistry Research and Initiatives, the Alternative Research & Development Foundation (ARDF), the American Cleaning Institute (ACI), the International Fragrance Association (IFRA), the Institute for In Vitro Sciences (IIVS), John "Jack" R. Fowle III, and the Society of Toxicology (SoT). Fourteen pres-entations shared the history behind the groundbreaking publication, international efforts to achieve its aims, stumbling blocks to progress, as well as remarkable achievements. The day was a tribute to Russell and Burch, and a testament to what is possible when people from many walks of life - science, government, and industry - work toward a common goal.


William Russell and Rex Burch published their book The Principles of Humane Experimental Technique in 1959. The book encouraged researchers to replace animal experiments where it was possible, to refine experiments with animals in order to reduce their suffering, and to reduce the number of animals that had to be used for experiments to the minimum. Sixty years later, a group of pioneering and leading scientists and researchers in the field gathered to share how the publi­cation came about and how the vision inspired international collaborations and successes on many different levels including new laws. The paper includes an overview of important milestones in the history of alternatives to animal experimentation.


Assuntos
Experimentação Animal , Alternativas aos Testes com Animais , Animais , Alternativas aos Testes com Animais/métodos , Bem-Estar do Animal , Projetos de Pesquisa
13.
Regul Toxicol Pharmacol ; 149: 105623, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631606

RESUMO

The Bone-Marrow derived Dendritic Cell (BMDC) test is a promising assay for identifying sensitizing chemicals based on the 3Rs (Replace, Reduce, Refine) principle. This study expanded the BMDC benchmarking to various in vitro, in chemico, and in silico assays targeting different key events (KE) in the skin sensitization pathway, using common substances datasets. Additionally, a Quantitative Structure-Activity Relationship (QSAR) model was developed to predict the BMDC test outcomes for sensitizing or non-sensitizing chemicals. The modeling workflow involved ISIDA (In Silico Design and Data Analysis) molecular fragment descriptors and the SVM (Support Vector Machine) machine-learning method. The BMDC model's performance was at least comparable to that of all ECVAM-validated models regardless of the KE considered. Compared with other tests targeting KE3, related to dendritic cell activation, BMDC assay was shown to have higher balanced accuracy and sensitivity concerning both the Local Lymph Node Assay (LLNA) and human labels, providing additional evidence for its reliability. The consensus QSAR model exhibits promising results, correlating well with observed sensitization potential. Integrated into a publicly available web service, the BMDC-based QSAR model may serve as a cost-effective and rapid alternative to lab experiments, providing preliminary screening for sensitization potential, compound prioritization, optimization and risk assessment.


Assuntos
Benchmarking , Células Dendríticas , Relação Quantitativa Estrutura-Atividade , Células Dendríticas/efeitos dos fármacos , Humanos , Animais , Máquina de Vetores de Suporte , Simulação por Computador , Dermatite Alérgica de Contato , Alérgenos/toxicidade , Alternativas aos Testes com Animais/métodos , Células da Medula Óssea/efeitos dos fármacos , Ensaio Local de Linfonodo , Camundongos
14.
ALTEX ; 41(2): 152-178, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38579692

RESUMO

Developmental neurotoxicity (DNT) testing has seen enormous progress over the last two decades. Preceding even the publication of the animal-based OECD test guideline for DNT testing in 2007, a series of non-animal technology workshops and conferences (starting in 2005) shaped a community that has delivered a comprehensive battery of in vitro test methods (IVB). Its data interpretation is covered by a very recent OECD test guidance (No. 377). Here, we aim to overview the progress in the field, focusing on the evolution of testing strategies, the role of emerging technologies, and the impact of OECD test guidelines on DNT testing. In particular, this is an example of a targeted development of an animal-free testing approach for one of the most complex hazards of chemicals to human health. These developments started literally from a blank slate, with no proposed alternative methods available. Over two decades, cutting-edge science enabled the design of a testing approach that spares animals and enables throughput for this challenging hazard. While it is evident that the field needs guidance and regulation, the massive economic impact of decreased human cognitive capacity caused by chemical exposure should be prioritized more highly. Beyond this, the claim to fame of DNT in vitro testing is the enormous scientific progress it has brought for understanding the human brain, its development, and how it can be perturbed.


Developmental neurotoxicity (DNT) testing predicts the hazard of exposure to chemicals to human brain development. Comprehensive advanced non-animal testing strategies using cutting-edge technology can now replace animal-based approaches to assess this complex hazard. These strategies can assess large numbers of chemicals more accurately and efficiently than the animal-based approach. Recent OECD test guidance has formalized this battery of in vitro test methods for DNT, marking a pivotal achievement in the field. The shift towards non-animal testing reflects both a commitment to animal welfare and a growing recognition of the economic and public health impacts associated with impaired cognitive function caused by chemical exposures. These innovations ultimately contribute to safer chemical management and better protection of human health, especially during the vulnerable stages of brain development.


Assuntos
Síndromes Neurotóxicas , Testes de Toxicidade , Animais , Alternativas aos Testes com Animais , Modelos Animais , Síndromes Neurotóxicas/etiologia
15.
Altern Lab Anim ; 52(3): 166-176, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626463

RESUMO

The Korean Center for the Validation of Alternative Methods (KoCVAM), which promotes the Three Rs principles and the use of alternative methods in Korea, has been operating within the Toxicological Screening and Testing Division of the Ministry of Food and Drug Safety (MFDS) since 2009. KoCVAM has exchanged opinions and information on the development and validation of non-animal alternative test methods as part of the International Cooperation on Alternative Test Methods (ICATM), and provided input into draft OECD Test Guidelines (TGs). Several Korean laws (e.g. the Cosmetics Act) encourage the use of alternative test methods for chemical testing and assessment. To promote and support the use of alternative test methods in the country, KoCVAM has published information and provided training on the national guidelines, which are based on the OECD TGs. In addition, KoCVAM has held annual training workshops on alternative test methods, to help Korean research institutions (including GLP test facilities) to implement them. In addition, by helping to develop and validate alternative test methods that were adopted in OECD TG 442B, TG 492 and TG 439, KoCVAM has contributed to the enhanced competitiveness of Korean industry on the worldwide stage.


Assuntos
Alternativas aos Testes com Animais , República da Coreia , Alternativas aos Testes com Animais/métodos , Animais , Guias como Assunto
16.
Food Chem Toxicol ; 188: 114698, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679282

RESUMO

Phototoxicity is an acute toxic reaction induced by topical skin exposure to photoreactive chemicals followed by exposure to environmental light and thus chemicals that absorb UV are recommended to be evaluated for phototoxic potential. There are currently three internationally harmonized alternative test methods for phototoxicity. One of them is the in vitro Phototoxicity: RhE Phototoxicity test method (OECD TG498). Korean center for the Validation of Alternative Methods (KoCVAM) developed an in vitro phototoxicity test method using a KeraSkin™ reconstructed human epidermis model (KeraSkin™ Phototoxicity Assay) as a 'me-too' test method of OECD TG498. For the development and optimization of KeraSkin™ Phototoxicity Assay, the following test chemicals were used: 6 proficiency chemicals in OECD TG498 (3 phototoxic and 3 non-phototoxic), 6 reference chemicals in OECD Performance Standard No. 356 (excluding the proficiency test chemicals, 3 phototoxic and 3 non-phototoxic) and 13 additional chemicals (7 phototoxic and 6 non-phototoxic). Based on the test results generated from the test chemicals above, the overall predictive capacity of KeraSkin™ Phototoxicity Assay was calculated. In particular, the assay exhibited 100 % accuracy, 100 % sensitivity, and 100 % specificity. Therefore, it fulfills the requirements to be included as a 'me-too' test method in OECD TG498.


Assuntos
Dermatite Fototóxica , Epiderme , Humanos , Epiderme/efeitos dos fármacos , Epiderme/efeitos da radiação , Alternativas aos Testes com Animais/métodos , Raios Ultravioleta , Testes de Toxicidade/métodos , Modelos Biológicos
17.
Food Chem Toxicol ; 188: 114644, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615796

RESUMO

Next-Generation Risk Assessment (NGRA) aims to implement New Approach Methodologies (NAMs) into risk assessment and to rely on new in vivo testing in animals only as a last resort. However, various technical and regulatory hurdles impede their regulatory implementation. Assumptions about the public's expectations could act as barriers to the acceptance of NAMs. This study aimed at investigating public views of animal testing and potential alternatives, namely in vitro and in silico testing. An online survey was conducted (N = 965). The results suggest that people make trade-offs, as they experience negative affect regarding in vivo testing, which partly might explain their openness regarding certain alternatives. In vitro tests were attributed the highest ability to determine harmful effects of chemicals for different endpoints, followed by in vivo and in silico tests. Our results further showed that many people accept chemicals to be only tested with alternatives, with highest acceptance for household consumer products, food contact material or building materials and less accepting for medicines and foods. This article addresses potential challenges that might arise from public perceptions and thus, contributes to the bottom-up initiatives to overcome the hurdles to the implementation of NAMs in regulatory risk assessment.


Assuntos
Opinião Pública , Medição de Risco/métodos , Humanos , Animais , Alternativas aos Testes com Animais/métodos , Feminino , Masculino , Adulto , Inquéritos e Questionários , Pessoa de Meia-Idade , Adulto Jovem
18.
J Hazard Mater ; 471: 134297, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38677119

RESUMO

Developing mechanistic non-animal testing methods based on the adverse outcome pathway (AOP) framework must incorporate molecular and cellular key events associated with target toxicity. Using data from an in vitro assay and chemical structures, we aimed to create a hybrid model to predict hepatotoxicants. We first curated a reference dataset of 869 compounds for hepatotoxicity modeling. Then, we profiled them against PubChem for existing in vitro toxicity data. Of the 2560 resulting assays, we selected the mitochondrial membrane potential (MMP) assay, a high-throughput screening (HTS) tool that can test chemical disruptors for mitochondrial function. Machine learning was applied to develop quantitative structure-activity relationship (QSAR) models with 2536 compounds tested in the MMP assay for screening new compounds. The MMP assay results, including QSAR model outputs, yielded hepatotoxicity predictions for reference set compounds with a Correct Classification Ratio (CCR) of 0.59. The predictivity improved by including 37 structural alerts (CCR = 0.8). We validated our model by testing 37 reference set compounds in human HepG2 hepatoma cells, and reliably predicting them for hepatotoxicity (CCR = 0.79). This study introduces a novel AOP modeling strategy that combines public HTS data, computational modeling, and experimental testing to predict chemical hepatotoxicity.


Assuntos
Alternativas aos Testes com Animais , Doença Hepática Induzida por Substâncias e Drogas , Aprendizado de Máquina , Potencial da Membrana Mitocondrial , Relação Quantitativa Estrutura-Atividade , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Testes de Toxicidade , Ensaios de Triagem em Larga Escala , Fígado/efeitos dos fármacos , Células Hep G2
19.
Environ Toxicol Chem ; 43(6): 1285-1299, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38558477

RESUMO

Current regulations require that toxicity assessments be performed using standardized toxicity testing methods, often using fish. Recent legislation in both the European Union and United States has mandated that toxicity testing alternatives implement the 3Rs of animal research (replacement, reduction, and refinement) whenever possible. There have been advances in the development of alternatives for freshwater assessments, but there is a lack of analogous developments for marine assessments. One potential alternative testing method is the fish embryo toxicity (FET) test, which uses fish embryos rather than older fish. In the present study, FET methods were applied to two marine model organisms, the sheepshead minnow and the inland silverside. Another potential alternative is the mysid shrimp survival and growth test, which uses an invertebrate model. The primary objective of the present study was to compare the sensitivity of these three potential alternative testing methods to two standardized fish-based tests using 3,4-dichloroaniline (DCA), a common reference toxicant. A secondary objective was to characterize the ontogeny of sheepshead minnows and inland silversides. This provided a temporal and visual guide that can be used to identify appropriately staged embryos for inclusion in FET tests and delineate key developmental events (e.g., somite development, eyespot formation, etc.). Comparison of the testing strategies for assessing DCA indicated that: (1) the standardized fish tests possessed comparable sensitivity to each other; (2) the mysid shrimp tests possessed comparable sensitivity to the standardized fish tests; (3) the sheepshead minnow and inland silverside FET tests were the least sensitive testing strategies employed; and (4) inclusion of sublethal endpoints (i.e., hatchability and pericardial edema) in the marine FETs increased their sensitivity. Environ Toxicol Chem 2024;43:1285-1299. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Embrião não Mamífero , Testes de Toxicidade , Poluentes Químicos da Água , Animais , Testes de Toxicidade/métodos , Embrião não Mamífero/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Alternativas aos Testes com Animais , Cyprinidae , Crustáceos/efeitos dos fármacos , Compostos de Anilina/toxicidade , Peixes
20.
Neurotoxicology ; 102: 48-57, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552718

RESUMO

Developmental neurotoxicity (DNT) is not routinely evaluated in chemical risk assessment because current test paradigms for DNT require the use of mammalian models which are ethically controversial, expensive, and resource demanding. Consequently, efforts have focused on revolutionizing DNT testing through affordable novel alternative methods for risk assessment. The goal is to develop a DNT in vitro test battery amenable to high-throughput screening (HTS). Currently, the DNT in vitro test battery consists primarily of human cell-based assays because of their immediate relevance to human health. However, such cell-based assays alone are unable to capture the complexity of a developing nervous system. Whole organismal systems that qualify as 3 R (Replace, Reduce and Refine) models are urgently needed to complement cell-based DNT testing. These models can provide the necessary organismal context and be used to explore the impact of chemicals on brain function by linking molecular and/or cellular changes to behavioural readouts. The nematode Caenorhabditis elegans, the planarian Dugesia japonica, and embryos of the zebrafish Danio rerio are all suited to low-cost HTS and each has unique strengths for DNT testing. Here, we review the strengths and the complementarity of these organisms in a novel, integrative context and highlight how they can augment current cell-based assays for more comprehensive and robust DNT screening of chemicals. Considering the limitations of all in vitro test systems, we discuss how a smart combinatory use of these systems will contribute to a better human relevant risk assessment of chemicals that considers the complexity of the developing brain.


Assuntos
Encéfalo , Caenorhabditis elegans , Síndromes Neurotóxicas , Testes de Toxicidade , Animais , Síndromes Neurotóxicas/etiologia , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Testes de Toxicidade/métodos , Caenorhabditis elegans/efeitos dos fármacos , Humanos , Peixe-Zebra , Planárias/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Alternativas aos Testes com Animais/métodos , Medição de Risco , Ensaios de Triagem em Larga Escala
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...