Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetics ; 218(2)2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33944921

RESUMO

Aspergillosis is an important opportunistic human disease caused by filamentous fungi in the genus Aspergillus. Roughly 70% of infections are caused by Aspergillus fumigatus, with the rest stemming from approximately a dozen other Aspergillus species. Several of these pathogens are closely related to A. fumigatus and belong in the same taxonomic section, section Fumigati. Pathogenic species are frequently most closely related to nonpathogenic ones, suggesting Aspergillus pathogenicity evolved multiple times independently. To understand the repeated evolution of Aspergillus pathogenicity, we performed comparative genomic analyses on 18 strains from 13 species, including 8 species in section Fumigati, which aimed to identify genes, both ones previously connected to virulence as well as ones never before implicated, whose evolution differs between pathogens and nonpathogens. We found that most genes were present in all species, including approximately half of those previously connected to virulence, but a few genes were section- or species-specific. Evolutionary rate analyses identified over 1700 genes whose evolutionary rate differed between pathogens and nonpathogens and dozens of genes whose rates differed between specific pathogens and the rest of the taxa. Functional testing of deletion mutants of 17 transcription factor-encoding genes whose evolution differed between pathogens and nonpathogens identified eight genes that affect either fungal survival in a model of phagocytic killing, host survival in an animal model of fungal disease, or both. These results suggest that the evolution of pathogenicity in Aspergillus involved both conserved and species-specific genetic elements, illustrating how an evolutionary genomic approach informs the study of fungal disease.


Assuntos
Aspergilose/microbiologia , Aspergillus/patogenicidade , Proteínas Fúngicas/genética , Fatores de Virulência/genética , Amebozoários/microbiologia , Animais , Aspergillus/genética , Modelos Animais de Doenças , Evolução Molecular , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Genômica , Humanos , Mariposas/microbiologia , Filogenia , Especificidade da Espécie , Fatores de Transcrição/genética
2.
J Ethnopharmacol ; 238: 111832, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-30914349

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The water decoction of Combretum aculeatum aerial parts is traditionally used in Senegal to treat tuberculosis (TB). The extract shows significant antimycobacterial activity in a validated single-cell infection assay. AIM OF THE STUDY: The main aim of this study was to identify the antimycobacterial compounds in the water decoction of Combretum aculeatum. Since the traditional preparations are used orally, a bioactivity assessment of the possible bioavailable human metabolites was also performed. MATERIALS AND METHODS: The Combretum aculeatum water decoction extract was first fractionated by flash chromatography. The fractions were submitted to an antibiotic assay against Mycobacterium marinum and to a single-cell infection assay involving Acanthamoeba castellanii as a host. Using these approaches, it was possible to correlate the antimycobacterial activity with two zones of the chromatogram. In parallel with this liquid chromatography (LC)-based activity profiling, high-resolution mass spectrometry (UHPLC-HRMS/MS) revealed the presence of ellagitannin (Et) derivatives in the active zones of the chromatogram. Isolation of the active compounds was performed by preparative chromatography. The structures of the isolated compounds were elucidated by nuclear magnetic resonance (NMR). Additionally, the main human metabolites of commercially available Ets were biologically evaluated in a similar manner. RESULTS: The in vitro bioassay-guided isolation of the Combretum aculeatum water extract led to the identification of three Ets (1-3) and ellagic acid (4). The major compounds 2 and 3 (α- and ß-punicalagin, respectively), exhibited anti-infective activity with an IC50 of 51.48 µM. In view of the documented intestinal metabolism of these compounds, some metabolites, namely, urolithin A (5), urolithin B (6) and urolithin D (7), were investigated for their antimycobacterial activity in the two assays. Urolithin D (7) exhibited the strongest anti-infective activity, with an IC50 of 345.50 µM, but this was moderate compared to the positive control rifampin (IC50 of 6.99 µM). The compounds assayed had no observable cytotoxicity towards the amoeba host cells at concentrations lower than 200 µg/mL. CONCLUSION: The observed antimycobacterial properties of the traditional water decoction of Combretum aculeatum might be related to the activity of Ets derivatives (1-3) and their metabolites, such as ellagic acid (4) and urolithin D (7). Despite the relatively weak activity of these metabolites, the high consumption of tannins achieved by taking the usual traditional decoction doses should lead to an important increase in the plasmatic concentrations of these active and bioavailable metabolites. These results support to some extent the traditional use of Combretum aculeatum to treat tuberculosis.


Assuntos
Antibacterianos/farmacologia , Combretum , Taninos Hidrolisáveis/farmacologia , Mycobacterium marinum/efeitos dos fármacos , Amebozoários/efeitos dos fármacos , Amebozoários/microbiologia , Bioensaio , Disponibilidade Biológica , Interações Hospedeiro-Patógeno , Testes de Sensibilidade Microbiana , Mycobacterium marinum/crescimento & desenvolvimento , Componentes Aéreos da Planta , Extratos Vegetais/farmacologia , Análise de Célula Única
3.
Parasitology ; 146(4): 533-542, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30355379

RESUMO

Population growth, in vitro, of three Paramoeba perurans cultures, one polyclonal (G) and two clonal (B8, CE6, derived from G), previously shown to differ in virulence (B8 > G > CE6), was compared at 10 and 15 °C. B8 showed a significantly higher increase in attached and in suspended amoebae over time at 15 and 10 °C, respectively. CE6 and G also had significantly higher numbers of suspended amoebae at 10 °C compared with 15 °C at experiment termination. However, in contrast to B8, numbers of attached amoebae were significantly higher at 10 °C in CE6 but showed a similar trend in G at the end of the experiment. Numbers of both suspended and attached amoebae were lower in B8 compared with CE6 and G. Significant differences in bacterial community composition and/or relative abundances were found, between cultures, between temperatures and between the same culture with and without amoebae, based on 16S rRNA Illumina MiSeq sequencing. Bacterial diversity was lower in B8 and CE6 compared with G, possibly reflecting selection during clonal isolation. The results indicate that polyclonal P. perurans populations may contain amoebae displaying different growth dynamics. Further studies are required to determine if these differences are linked to differences seen in the bacterial communities.


Assuntos
Amebozoários/crescimento & desenvolvimento , Microbiota , Amebíase/parasitologia , Amebíase/veterinária , Amebozoários/microbiologia , Animais , Doenças dos Peixes/parasitologia , Salmo salar , Temperatura
4.
mBio ; 9(5)2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30301851

RESUMO

Within the human host, Legionella pneumophila replicates within alveolar macrophages, leading to pneumonia. However, L. pneumophila is an aquatic generalist pathogen that replicates within a wide variety of protist hosts, including amoebozoa, percolozoa, and ciliophora. The intracellular lifestyles of L. pneumophila within the two evolutionarily distant hosts macrophages and protists are remarkably similar. Coevolution with numerous protist hosts has shaped plasticity of the genome of L. pneumophila, which harbors numerous proteins encoded by genes acquired from primitive eukaryotic hosts through interkingdom horizontal gene transfer. The Dot/Icm type IVb translocation system translocates ∼6,000 effectors among Legionella species and >320 effector proteins in L. pneumophila into host cells to modulate a plethora of cellular processes to create proliferative niches. Since many of the effectors have likely evolved to modulate cellular processes of primitive eukaryotic hosts, it is not surprising that most of the effectors do not contribute to intracellular growth within human macrophages. Some of the effectors may modulate highly conserved eukaryotic processes, while others may target protist-specific processes that are absent in mammals. The lack of studies to determine the role of the effectors in adaptation of L. pneumophila to various protists has hampered the progress to determine the function of most of these effectors, which are routinely studied in mouse or human macrophages. Since many protists restrict L. pneumophila, utilization of such hosts can also be instrumental in deciphering the mechanisms of failure of L. pneumophila to overcome restriction of certain protist hosts. Here, we review the interaction of L. pneumophila with its permissive and restrictive protist environmental hosts and outline the accomplishments as well as gaps in our knowledge of L. pneumophila-protist host interaction and L. pneumophila's evolution to become a human pathogen.


Assuntos
Coevolução Biológica , Genoma Bacteriano , Interações Hospedeiro-Patógeno/genética , Legionella pneumophila/genética , Amebozoários/microbiologia , Cilióforos/microbiologia , Citoplasma/microbiologia , Humanos , Legionella pneumophila/patogenicidade , Macrófagos/microbiologia
5.
Arch Microbiol ; 200(6): 859-867, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29455239

RESUMO

Candidatus Syngnamydia salmonis (Chlamydiales, Simkaniaceae) was described as an epitheliocystis-causing bacterium from the gills of Atlantic salmon (Salmo salar) in Norway. A bacterium showing 99.2% 16S rRNA identity to Cand. S. salmonis is able to multiply in Paramoeba perurans and based on the classification criteria this bacterium could represent the same species as Cand. S. salmonis. Sequencing the genome of the cultured bacterium has made it possible to fulfill the minimal standards for genetic characterization of species within the order Chlamydiales. The complete rRNA genes, the amino acid sequences of SucA, PepF, Adk, HemL, DnaA, FtsK and FabI, are presented in addition to the morphology of the Chlamydia-like morphs in the cytoplasm of P. perurans.


Assuntos
Amebozoários/microbiologia , Chlamydiales/genética , Chlamydiales/isolamento & purificação , Amebozoários/crescimento & desenvolvimento , Animais , Infecções Bacterianas , Chlamydiales/crescimento & desenvolvimento , Técnicas de Cocultura , Doenças dos Peixes/microbiologia , Genótipo , Brânquias/microbiologia , Noruega , RNA Ribossômico 16S/genética , Salmo salar/microbiologia
6.
Microbiome ; 6(1): 30, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29426363

RESUMO

BACKGROUND: Heat shock is a potential control strategy for Legionella pneumophila in hot water plumbing systems. However, it is not consistently effective, with little understanding of its influence on the broader plumbing microbiome. Here, we employed a lab-scale recirculating hot water plumbing rig to compare the pre- and post-"heat shock" (i.e., 40 → 60 → 40 °C) microbiota at distal taps. In addition, we used a second plumbing rig to represent a well-managed system at 60 °C and conducted a "control" sampling at 60 °C, subsequently reducing the temperature to 40 °C to observe the effects on Legionella and the microbiota under a simulated "thermal disruption" scenario. RESULTS: According to 16S rRNA gene amplicon sequencing, in the heat shock scenario, there was no significant difference or statistically significant, but small, difference in the microbial community composition at the distal taps pre- versus post-heat shock (both biofilm and water; weighted and unweighted UniFrac distance matrices). While heat shock did lead to decreased total bacteria numbers at distal taps, it did not measurably alter the richness or evenness of the microbiota. Quantitative PCR measurements demonstrated that L. pneumophila relative abundance at distal taps also was not significantly different at 2-month post-heat shock relative to the pre-heat shock condition, while relative abundance of Vermamoeba vermiformis, a known Legionella host, did increase. In the thermal disruption scenario, relative abundance of planktonic L. pneumophila (quantitative PCR data) increased to levels comparable to those observed in the heat shock scenario within 2 months of switching long-term operation at 60 to 40 °C. Overall, water use frequency and water heater temperature set point exhibited a stronger effect than one-time heat shock on the microbial composition and Legionella levels at distal taps. CONCLUSIONS: While heat shock may be effective for instantaneous Legionella control and reduction in total bacteria numbers, water heater temperature set point and water use frequency are more promising factors for long-term Legionella and microbial community control, illustrating the importance of maintaining consistent elevated temperatures in the system relative to short-term heat shock.


Assuntos
Amebozoários/isolamento & purificação , Legionella pneumophila/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Amebozoários/classificação , Amebozoários/microbiologia , DNA Bacteriano/genética , DNA de Protozoário/genética , DNA Ribossômico/genética , Temperatura Alta , Legionella pneumophila/classificação , Legionella pneumophila/crescimento & desenvolvimento , Engenharia Sanitária , Microbiologia da Água
7.
Environ Microbiol ; 19(10): 4010-4021, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28585299

RESUMO

Bovine tuberculosis (TB) is a zoonotic disease caused by Mycobacterium bovis. Despite intensive TB control campaigns, there are sporadic outbreaks of bovine TB in regions declared TB free. It is unclear how M. bovis is able to survive in the environment for long periods of time. We hypothesized that Free-living amoebae (FLA), as ubiquitous inhabitants of soil and water, may act as long-term reservoirs of M. bovis in the environment. In our model, M. bovis would be taken up by amoebal trophozoites, which are the actively feeding, replicating and mobile form of FLA. Upon exposure to hostile environmental conditions, infected FLA will encyst and provide an intracellular niche allowing their M. bovis cargo to persist for extended periods of time. Here, we show that five FLA species (Acanthamoeba polyphaga, Acanthamoeba castellanii, Acanthamoeba lenticulata, Vermamoeba vermiformis and Dictyostellium discoideum) are permissive to M. bovis infection and that the M. bovis bacilli may survive within the cysts of four of these species for over 60 days. We further show that exposure of M. bovis-infected trophozoites and cysts to Balb/c mice leads to pulmonary TB. This work describes for the first time that FLA carrying M. bovis can transmit TB.


Assuntos
Amebozoários/microbiologia , Reservatórios de Doenças/microbiologia , Mycobacterium bovis/crescimento & desenvolvimento , Acanthamoeba/microbiologia , Animais , Bovinos , Dictyostelium/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium bovis/patogenicidade , Tuberculose Bovina/microbiologia , Tuberculose Bovina/transmissão
8.
Parasitol Res ; 116(2): 549-558, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27830372

RESUMO

The genus Sappinia comprises free-living amoebae occurring worldwide in a variety of habitats such as soils, plant matter and freshwater ponds, but also animal faeces, and includes at present three species, S. pedata, S. diploidea and S. platani. The genus is potentially pathogenic, as indicated by the identification of S. pedata in a case of human amoebic encephalitis. Electron microscopy studies on some strains already revealed intracellular bacteria in Sappinia. In the current study, we performed 16S ribosomal RNA gene (rDNA) analysis of these bacterial endosymbionts. We first inferred relationships among Sappinia strains on the basis of 18S rDNA, demonstrating that S. pedata emerged as sister to a larger clade including S. diploidea, S. platani and a few 'S. diploidea-like' strains. Thus, bacterial 16S rDNA was searched for in representative strains of each Sappinia species/subgroup. We found that Sappinia strains were associated to distinct species of Flavobacterium or Pedobacter (phylum Bacteroidetes). These appear to be distributed following the amoebal host subgroups, and are not directly related to other Bacteroidetes species known as interacting with free-living amoebae. While all the endosymbionts' close relatives are known to grow on agar, bacteriological media inoculated with amoebal extracts remained negative. Overall, results indicate that the recovered bacteria are likely specific obligate endosymbionts of Sappinia species. Further studies, including additional amoebal strains and deep morphological and molecular analyses, will be necessary to confirm this hypothesis.


Assuntos
Amebozoários/microbiologia , Bactérias/isolamento & purificação , Simbiose , Amebozoários/fisiologia , Animais , Bactérias/classificação , Bactérias/genética , DNA Bacteriano/genética , DNA Ribossômico/genética , Filogenia , RNA Ribossômico 16S/genética
9.
PLoS One ; 11(11): e0167355, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27898739

RESUMO

Presence of Burkholderia pseudomallei in soil and water is correlated with endemicity of melioidosis in Southeast Asia and northern Australia. Several biological and physico-chemical factors have been shown to influence persistence of B. pseudomallei in the environment of endemic areas. This study was the first to evaluate the interaction of B. pseudomallei with soil amoebae isolated from B. pseudomallei-positive soil site in Khon Kaen, Thailand. Four species of amoebae, Paravahlkampfia ustiana, Acanthamoeba sp., Naegleria pagei, and isolate A-ST39-E1, were isolated, cultured and identified based on morphology, movement and 18S rRNA gene sequence. Co-cultivation combined with a kanamycin-protection assay of B. pseudomallei with these amoebae at MOI 20 at 30°C were evaluated during 0-6 h using the plate count technique on Ashdown's agar. The fate of intracellular B. pseudomallei in these amoebae was also monitored by confocal laser scanning microscopy (CLSM) observation of the CellTracker™ Orange-B. pseudomallei stained cells. The results demonstrated the ability of P. ustiana, Acanthamoeba sp. and isolate A-ST39-E1 to graze B. pseudomallei. However, the number of internalized B. pseudomallei substantially decreased and the bacterial cells disappeared during the observation period, suggesting they had been digested. We found that B. pseudomallei promoted the growth of Acanthamoeba sp. and isolate A-ST39-E1 in co-cultures at MOI 100 at 30°C, 24 h. These findings indicated that P. ustiana, Acanthamoeba sp. and isolate A-ST39-E1 may prey upon B. pseudomallei rather than representing potential environmental reservoirs in which the bacteria can persist.


Assuntos
Amebozoários/microbiologia , Burkholderia pseudomallei/fisiologia , Microbiologia do Solo , Amebozoários/genética , Amebozoários/isolamento & purificação , Amebozoários/ultraestrutura , Burkholderia pseudomallei/efeitos dos fármacos , Burkholderia pseudomallei/isolamento & purificação , Microscopia Confocal , RNA Ribossômico 18S/genética , Análise de Sequência de RNA , Tailândia , Trofozoítos
10.
Microb Pathog ; 80: 14-20, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25697664

RESUMO

To detect new potential pathogens in hospital water, we isolated free-living amoebae in water samples taken from three different hospitals in Marseille (France). The samples were inoculated in media containing saline buffer and various bacteria as nutrient sources. The isolated amoebae were identified by gene sequencing. Among the 105 water samples, taken from 19 sites, we isolated 14 amoebae, of which 9 Vermamoeba vermiformis and 5 Acanthamoeba sp. None of the amoebae showed the presence of obligate bacterial endosymbionts. Because V. vermiformis was most commonly isolated, we used an axenic collection strain to isolate amoeba-resistant bacteria from the same sites. The isolated bacterial species included Stenotrophomonas maltophilia and Legionella sp. Legionella taurinensis was isolated for the first time in association with amoebae. A strict intracellular bacterium was isolated, that may represent a new genus among the Chlamydiales. We propose that it be named "Candidatus Rubidus massiliensis". Our study shows that the isolation and identification of new pathogens associated with amoebae, which were previously performed using Acanthamoeba sp., should instead use V. vermiformis because this organism is more commonly associated with humans and is an essential complement of Acanthamoeba sp. co-culture to study the ecology of hospital water supplies.


Assuntos
Amebozoários/isolamento & purificação , Amebozoários/microbiologia , Chlamydiales/isolamento & purificação , Legionella/isolamento & purificação , Stenotrophomonas maltophilia/isolamento & purificação , Água/parasitologia , Amebozoários/classificação , Amebozoários/genética , Chlamydiales/classificação , Chlamydiales/genética , Análise por Conglomerados , França , Hospitais , Legionella/classificação , Legionella/genética , Microscopia , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Homologia de Sequência , Stenotrophomonas maltophilia/classificação , Stenotrophomonas maltophilia/genética
11.
Parasitol Res ; 112(2): 829-38, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23224611

RESUMO

Vannella sp. isolated from waterweed Elodea sp. was found infected by a chlamydia-like organism. This organism behaves like a parasite, causing the death through burst of its host. Once the vannellae degenerated, the parasite was successfully kept in laboratory within a Saccamoeba sp. isolated from the same waterweed sample, which revealed in fine through electron microscopy to harbor two bacterial endosymbionts: the chlamydial parasite we introduce and another endosymbiont initially and naturally present in the host. Herein, we provide molecular-based identification of both the amoeba host and its two endosymbionts, with special focus on the chlamydia parasite. High sequence similarity values of the 18S rDNA permitted to assign the amoeba to the species Saccamoeba lacustris (Amoebozoa, Tubulinea). The bacterial endosymbiont naturally harbored by the host belonged to Sphingomonas koreensis (Alpha-Proteobacteria). The chlamydial parasite showed a strict specificity for Saccamoeba spp., being unable to infect a variety of other amoebae, including Acanthamoeba, and it was itself infected by a bacteriophage. Sequence similarity values of the 16S rDNA and phylogenetic analysis indicated that this strain is a new member of the family Parachlamydiaceae, for which we propose the name "Candidatus Mesochlamydia elodeae."


Assuntos
Amebozoários/microbiologia , Chlamydiales/classificação , Chlamydiales/isolamento & purificação , Simbiose , Amebozoários/ultraestrutura , Chlamydiales/fisiologia , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genes de RNAr , Microscopia Eletrônica , Dados de Sequência Molecular , Filogenia , RNA Bacteriano/genética , RNA de Protozoário/genética , RNA Ribossômico/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
12.
Eukaryot Cell ; 10(8): 1143-6, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21666073

RESUMO

We have performed a genomic characterization of a kinetoplastid protist living within the amoebozoan Neoparamoeba pemaquidensis. The genome of this "Ichthyobodo-related organism" was found to be unexpectedly large, with at least 11 chromosomes between 1.0 and 3.5 Mbp and a total genome size of at least 25 Mbp.


Assuntos
Amebozoários/genética , Kinetoplastida/genética , Amebozoários/microbiologia , DNA de Cinetoplasto/genética , Genoma , Cariótipo , Kinetoplastida/microbiologia , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Simbiose
13.
Microbiol Immunol ; 54(11): 707-13, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21155362

RESUMO

The obligate intracellular bacterium Parachlamydia acanthamoebae is a potential human pathogen, but the host range of the bacteria remains unknown. Hence, the growth of P. acanthamoebae Bn9 in protozoa (Tetrahymena, Acanthamoeba, Dictyostelium) and mammalian cells (HEp-2, Vero, THP-1, PMA-stimulated THP-1, Jurkat) was assessed using an AIU assay which had been previously established by the current authors. P. acanthamoebae grew in Acanthamoeba but not in the other cell types. The growth was also confirmed using DAPI staining, FISH and TEM. These results indicate that the host range of P. acanthamoebae is limited.


Assuntos
Amebozoários/microbiologia , Chlamydiales/crescimento & desenvolvimento , Acanthamoeba/microbiologia , Animais , Linhagem Celular , Dictyostelium/microbiologia , Humanos , Hibridização in Situ Fluorescente , Corpos de Inclusão/ultraestrutura , Microscopia Eletrônica de Varredura
14.
FEMS Microbiol Rev ; 34(3): 281-94, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20132312

RESUMO

Amoebae-resistant microorganisms exhibit a specific lifestyle. Unlike allopatric specialized intracellular pathogens, they have not specialized because they infect the amoebae via amoebal attack and present a sympatric lifestyle with species from different phyla. In this review, we compare the genomes from bacteria (Legionella pneumophila, Legionella drancourtii, Candidatus'Protochlamydia amoebophila,' Rickettsia bellii, Candidatus'Amoebophilus asiaticus') and a virus (mimivirus) that multiply naturally in amoebae. The objective is to highlight the genomic traits characterizing these microorganisms and their niche by comparison with other specialized pathogens. The genome of intra-amoebal microorganisms is significantly larger than that of their relatives, contradicting the genome reduction theory mostly accepted for intracellular pathogens. This is probably due to the fact that they are not specialized and therefore maintain their genome size. Moreover, the presence of many horizontally transferred genes and mobilomes in their genomes suggests that these microorganisms acquired genetic material from their neighbors and amoebal host, thus increasing their genome size. Important features involved in gene transfer and pathogenicity were thus acquired. These characteristics suggest that amoebae constitute a gene melting pot, allowing diverse microorganisms to evolve by the same pathway characterized by gene acquisition, and then either adapt to the intra-amoebal lifestyle or create new pathogens.


Assuntos
Amebozoários/microbiologia , Amebozoários/virologia , Bactérias/genética , Evolução Molecular , Genoma Bacteriano , Genoma Viral , Mimiviridae/genética , Bactérias/isolamento & purificação , Transferência Genética Horizontal , Tamanho do Genoma , Mimiviridae/isolamento & purificação , Recombinação Genética
15.
FEMS Microbiol Rev ; 34(3): 260-80, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20113355

RESUMO

Despite using modern microbiological diagnostic approaches, the aetiological agents of pneumonia remain unidentified in about 50% of cases. Some bacteria that grow poorly or not at all in axenic media used in routine clinical bacteriology laboratory but which can develop inside amoebae may be the agents of these lower respiratory tract infections (RTIs) of unexplained aetiology. Such amoebae-resisting bacteria, which coevolved with amoebae to resist their microbicidal machinery, may have developed virulence traits that help them survive within human macrophages, i.e. the first line of innate immune defence in the lung. We review here the current evidence for the emerging pathogenic role of various amoebae-resisting microorganisms as agents of RTIs in humans. Specifically, we discuss the emerging pathogenic roles of Legionella-like amoebal pathogens, novel Chlamydiae (Parachlamydia acanthamoebae, Simkania negevensis), waterborne mycobacteria and Bradyrhizobiaceae (Bosea and Afipia spp.).


Assuntos
Amebozoários/microbiologia , Doenças Transmissíveis Emergentes/microbiologia , Doenças Transmissíveis Emergentes/parasitologia , Pneumonia/microbiologia , Pneumonia/parasitologia , Afipia/patogenicidade , Amaranthaceae/microbiologia , Amebozoários/patogenicidade , Bradyrhizobiaceae/patogenicidade , Chlamydiales/patogenicidade , Humanos , Legionella/patogenicidade , Mycobacterium/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...