Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Int J Pharm Compd ; 28(3): 246-248, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38768504

RESUMO

Amiloride is a U.S. Food and Drug Administration-approved diuretic agent used to treat hypertension and congestive heart failure. Recent human and animal studies have suggested that amiloride may also have a role in treating anxiety through its acid-sensing ion channel antagonism. Intranasal administration of amiloride nasal spray via an extemporaneously compounded preparation has the potential for rapid delivery to the site of action to achieve therapeutic outcomes in individual patients with anxiety disorders. However, these patient-specific preparations do not have the pre-formulation characterization, including chemical stability, that conventional manufactured dosage forms have. The objective of this study was to assess the estimated chemical stability of compounded amiloride nasal spray over 6 months and 12 months utilizing accelerated degradation with high heat and the Arrhenius equation. A stability-indicating highperformance liquid chromatography analytical method was employed at appropriate intervals over a 12-month period to reveal that amiloride remained chemically stable over the period tested and by extrapolation. Physical stability and compatibility with the preservative benzyl alcohol were also confirmed via visual inspection, pH monitoring, and measurement of turbidity.


Assuntos
Amilorida , Composição de Medicamentos , Estabilidade de Medicamentos , Sprays Nasais , Amilorida/química , Amilorida/administração & dosagem , Amilorida/análise , Administração Intranasal , Cromatografia Líquida de Alta Pressão , Concentração de Íons de Hidrogênio
2.
Protein Sci ; 32(10): e4755, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37632140

RESUMO

The SARS-CoV-2 envelope (E) protein forms a five-helix bundle in lipid bilayers whose cation-conducting activity is associated with the inflammatory response and respiratory distress symptoms of COVID-19. E channel activity is inhibited by the drug 5-(N,N-hexamethylene) amiloride (HMA). However, the binding site of HMA in E has not been determined. Here we use solid-state NMR to measure distances between HMA and the E transmembrane domain (ETM) in lipid bilayers. 13 C, 15 N-labeled HMA is combined with fluorinated or 13 C-labeled ETM. Conversely, fluorinated HMA is combined with 13 C, 15 N-labeled ETM. These orthogonal isotopic labeling patterns allow us to conduct dipolar recoupling NMR experiments to determine the HMA binding stoichiometry to ETM as well as HMA-protein distances. We find that HMA binds ETM with a stoichiometry of one drug per pentamer. Unexpectedly, the bound HMA is not centrally located within the channel pore, but lies on the lipid-facing surface in the middle of the TM domain. This result suggests that HMA may inhibit the E channel activity by interfering with the gating function of an aromatic network. These distance data are obtained under much lower drug concentrations than in previous chemical shift perturbation data, which showed the largest perturbation for N-terminal residues. This difference suggests that HMA has higher affinity for the protein-lipid interface than the channel pore. These results give insight into the inhibition mechanism of HMA for SARS-CoV-2 E.


Assuntos
Amilorida , COVID-19 , Humanos , Amilorida/farmacologia , Amilorida/química , SARS-CoV-2 , Bicamadas Lipídicas/química
3.
J Med Chem ; 65(3): 1933-1945, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34898192

RESUMO

The urokinase plasminogen activator (uPA) plays a critical role in tumor cell invasion and migration and is a promising antimetastasis target. 6-Substituted analogues of 5-N,N-(hexamethylene)amiloride (HMA) are potent and selective uPA inhibitors that lack the diuretic and antikaliuretic properties of the parent drug amiloride. However, the compounds display pronounced selectivity for human over mouse uPA, thus confounding interpretation of data from human xenograft mouse models of cancer. Here, computational and experimental findings reveal that residue 99 is a key contributor to the observed species selectivity, whereby enthalpically unfavorable expulsion of a water molecule by the 5-N,N-hexamethylene ring occurs when residue 99 is Tyr (as in mouse uPA). Analogue 7 lacking the 5-N,N-hexamethylene ring maintained similar water networks when bound to human and mouse uPA and displayed reduced selectivity, thus supporting this conclusion. The study will guide further optimization of dual-potent human/mouse uPA inhibitors from the amiloride class as antimetastasis drugs.


Assuntos
Amilorida/análogos & derivados , Inibidores Enzimáticos/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Água/química , Amilorida/química , Amilorida/metabolismo , Animais , Inibidores Enzimáticos/química , Humanos , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Mutação , Ligação Proteica , Especificidade da Espécie , Termodinâmica , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
4.
Int J Mol Sci ; 22(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34681656

RESUMO

The Epithelial Sodium Channel/Degenerin (ENaC/DEG) family is a superfamily of sodium-selective channels that play diverse and important physiological roles in a wide variety of animal species. Despite their differences, they share a high homology in the pore region in which the ion discrimination takes place. Although ion selectivity has been studied for decades, the mechanisms underlying this selectivity for trimeric channels, and particularly for the ENaC/DEG family, are still poorly understood. This systematic review follows PRISMA guidelines and aims to determine the main components that govern ion selectivity in the ENaC/DEG family. In total, 27 papers from three online databases were included according to specific exclusion and inclusion criteria. It was found that the G/SxS selectivity filter (glycine/serine, non-conserved residue, serine) and other well conserved residues play a crucial role in ion selectivity. Depending on the ion type, residues with different properties are involved in ion permeability. For lithium against sodium, aromatic residues upstream of the selectivity filter seem to be important, whereas for sodium against potassium, negatively charged residues downstream of the selectivity filter seem to be important. This review provides new perspectives for further studies to unravel the mechanisms of ion selectivity.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Amilorida/química , Amilorida/metabolismo , Animais , Canais Epiteliais de Sódio/química , Canais Epiteliais de Sódio/genética , Humanos , Transporte de Íons , Lítio/metabolismo , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Estrutura Quaternária de Proteína , Sódio/metabolismo
5.
J Bacteriol ; 203(22): e0036721, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34516280

RESUMO

The bacterial flagellar motor (BFM) is a protein complex that confers motility to cells and contributes to survival and virulence. The BFM consists of stators that are ion-selective membrane protein complexes and a rotor that directly connects to a large filament, acting as a propeller. The stator complexes couple ion transit across the membrane to torque that drives rotation of the motor. The most common ion gradients that drive BFM rotation are protons (H+) and sodium ions (Na+). The sodium-powered stators, like those in the PomA/PomB stator complex of Vibrio spp., can be inhibited by sodium channel inhibitors, in particular, by phenamil, a potent and widely used inhibitor. However, relatively few new sodium motility inhibitors have been described since the discovery of phenamil. In this study, we characterized two possible motility inhibitors, HM2-16F and BB2-50F, from a small library of previously reported amiloride derivatives. We used three approaches: effect on rotation of tethered cells, effect on free-swimming bacteria, and effect on rotation of marker beads. We showed that both HM2-16F and BB2-50F stopped rotation of tethered cells driven by Na+ motors comparable to phenamil at matching concentrations and could also stop rotation of tethered cells driven by H+ motors. Bead measurements in the presence and absence of stators confirmed that the compounds did not inhibit rotation via direct association with the stator, in contrast to the established mode of action of phenamil. Overall, HM2-16F and BB2-50F stopped swimming in both Na+ and H+ stator types and in pathogenic and nonpathogenic strains. IMPORTANCE Here, we characterized two novel amiloride derivatives in the search for antimicrobial compounds that target bacterial motility. These compounds were shown to inhibit flagellar motility at 10 µM across multiple strains: from nonpathogenic Escherichia coli with flagellar rotation driven by proton or chimeric sodium-powered stators, to proton-powered pathogenic E. coli (enterohemorrhagic E. coli or uropathogenic E. coli [EHEC or UPEC, respectively]), and finally, sodium-powered Vibrio alginolyticus. Broad antimotility compounds such as these are important tools in our efforts to control virulence of pathogens in health and agricultural settings.


Assuntos
Amilorida/análogos & derivados , Amilorida/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Vibrio alginolyticus/efeitos dos fármacos , Vibrio alginolyticus/fisiologia , Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Amilorida/química , Escherichia coli/classificação , Movimento
6.
J Mol Biol ; 433(21): 167218, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34461069

RESUMO

ABCG1 is an ATP binding cassette (ABC) transporter that removes excess cholesterol from peripheral tissues. Despite its role in preventing lipid accumulation and the development of cardiovascular and metabolic disease, the mechanism underpinning ABCG1-mediated cholesterol transport is unknown. Here we report a cryo-EM structure of human ABCG1 at 4 Å resolution in an inward-open state, featuring sterol-like density in the binding cavity. Structural comparison with the multidrug transporter ABCG2 and the sterol transporter ABCG5/G8 reveals the basis of mechanistic differences and distinct substrate specificity. Benzamil and taurocholate inhibited the ATPase activity of liposome-reconstituted ABCG1, whereas the ABCG2 inhibitor Ko143 did not. Based on the structural insights into ABCG1, we propose a mechanism for ABCG1-mediated cholesterol transport.


Assuntos
Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Trifosfato de Adenosina/química , Amilorida/análogos & derivados , Colesterol/química , Proteínas de Neoplasias/química , Ácido Taurocólico/farmacologia , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Amilorida/química , Amilorida/farmacologia , Sequência de Aminoácidos , Sítios de Ligação , Transporte Biológico/efeitos dos fármacos , Colesterol/metabolismo , Microscopia Crioeletrônica , Dicetopiperazinas/química , Dicetopiperazinas/farmacologia , Expressão Gênica , Células HEK293 , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Cinética , Lipoproteínas/antagonistas & inibidores , Lipoproteínas/química , Lipoproteínas/genética , Lipoproteínas/metabolismo , Modelos Moleculares , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Ácido Taurocólico/química
7.
ACS Appl Bio Mater ; 4(4): 3639-3648, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33969280

RESUMO

Complex shaped and critical-sized bone defects have been a clinical challenge for many years. Scaffold-based strategies such as hydrogels provide localized drug release while filling complex defect shapes, but ultimately possess weaknesses in low mechanical strength alongside a lack of macroporous and collagen-mimicking nanofibrous structures. Thus, there is a demand for mechanically strong, extracellular matrix (ECM) mimicking scaffolds that can robustly fit complex shaped critical sized defects and simultaneously provide localized, sustained, multiple growth factor release. We therefore developed a composite, bi-phasic PCL/hydroxyapatite (HA) 3D nanofibrous (NF) scaffold for bone tissue regeneration by using our innovative electrospun-based thermally induced self-agglomeration (TISA) technique. One intriguing feature of our ECM-mimicking TISA scaffolds is that they are highly elastic and porous even after evenly coated with minerals and can easily be pressed to fit different defect shapes. Furthermore, the bio-mimetic mineral deposition technique allowed us to simultaneously encapsulate different type of drugs, e.g., proteins and small molecules, on TISA scaffolds under physiologically mild conditions. Compared to scaffolds with physically surface-adsorbed phenamil, a BMP2 signaling agonist, incorporated phenamil composite scaffolds indicated less burst release and longer lasting sustained release of phenamil with subsequently improved osteogenic differentiation of cells in vitro. Overall, our study indicated that the innovative press-fit 3D NF composite scaffold may be a robust tool for multiple-drug delivery and bone tissue engineering.


Assuntos
Amilorida/análogos & derivados , Nanofibras/química , Poliésteres/química , Amilorida/química , Amilorida/metabolismo , Amilorida/farmacologia , Animais , Regeneração Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Durapatita/química , Módulo de Elasticidade , Matriz Extracelular/metabolismo , Camundongos , Minerais/química , Osteoclastos/citologia , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Porosidade , Impressão Tridimensional , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Propriedades de Superfície , Engenharia Tecidual
8.
Int J Mol Sci ; 22(6)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804289

RESUMO

The K+-sparing diuretic amiloride shows off-target anti-cancer effects in multiple rodent models. These effects arise from the inhibition of two distinct cancer targets: the trypsin-like serine protease urokinase-type plasminogen activator (uPA), a cell-surface mediator of matrix degradation and tumor cell invasiveness, and the sodium-hydrogen exchanger isoform-1 (NHE1), a central regulator of transmembrane pH that supports carcinogenic progression. In this study, we co-screened our library of 5- and 6-substituted amilorides against these two targets, aiming to identify single-target selective and dual-targeting inhibitors for use as complementary pharmacological probes. Closely related analogs substituted at the 6-position with pyrimidines were identified as dual-targeting (pyrimidine 24 uPA IC50 = 175 nM, NHE1 IC50 = 266 nM, uPA selectivity ratio = 1.5) and uPA-selective (methoxypyrimidine 26 uPA IC50 = 86 nM, NHE1 IC50 = 12,290 nM, uPA selectivity ratio = 143) inhibitors, while high NHE1 potency and selectivity was seen with 5-morpholino (29 NHE1 IC50 = 129 nM, uPA IC50 = 10,949 nM; NHE1 selectivity ratio = 85) and 5-(1,4-oxazepine) (30 NHE1 IC50 = 85 nM, uPA IC50 = 5715 nM; NHE1 selectivity ratio = 67) analogs. Together, these amilorides comprise a new toolkit of chemotype-matched, non-cytotoxic probes for dissecting the pharmacological effects of selective uPA and NHE1 inhibition versus dual-uPA/NHE1 inhibition.


Assuntos
Amilorida/farmacologia , Neoplasias da Mama/tratamento farmacológico , Trocador 1 de Sódio-Hidrogênio/genética , Ativador de Plasminogênio Tipo Uroquinase/genética , Amilorida/síntese química , Amilorida/química , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Diuréticos/síntese química , Diuréticos/química , Diuréticos/farmacologia , Feminino , Humanos , Modelos Moleculares , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Trocador 1 de Sódio-Hidrogênio/antagonistas & inibidores , Relação Estrutura-Atividade , Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores
9.
Nat Struct Mol Biol ; 27(12): 1202-1208, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33177698

RESUMO

An essential protein of the SARS-CoV-2 virus, the envelope protein E, forms a homopentameric cation channel that is important for virus pathogenicity. Here we report a 2.1-Å structure and the drug-binding site of E's transmembrane domain (ETM), determined using solid-state NMR spectroscopy. In lipid bilayers that mimic the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) membrane, ETM forms a five-helix bundle surrounding a narrow pore. The protein deviates from the ideal α-helical geometry due to three phenylalanine residues, which stack within each helix and between helices. Together with valine and leucine interdigitation, these cause a dehydrated pore compared with the viroporins of influenza viruses and HIV. Hexamethylene amiloride binds the polar amino-terminal lumen, whereas acidic pH affects the carboxy-terminal conformation. Thus, the N- and C-terminal halves of this bipartite channel may interact with other viral and host proteins semi-independently. The structure sets the stage for designing E inhibitors as antiviral drugs.


Assuntos
Proteínas do Envelope de Coronavírus/química , Bicamadas Lipídicas/química , SARS-CoV-2/química , Amantadina/química , Amilorida/análogos & derivados , Amilorida/química , Antivirais/química , Proteínas do Envelope de Coronavírus/genética , Dimiristoilfosfatidilcolina/química , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Fenilalanina/química , Fosfolipídeos/química , Conformação Proteica , Domínios Proteicos , SARS-CoV-2/genética
10.
J Renin Angiotensin Aldosterone Syst ; 21(4): 1470320320975893, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33234024

RESUMO

Amiloride is a potassium retaining diuretic and natriuretic which acts by reversibly blocking luminal epithelial sodium channels (ENaCs) in the late distal tubule and collecting duct. Amiloride is indicated in oedematous states, and for potassium conservation adjunctive to thiazide or loop diuretics for hypertension, congestive heart failure and hepatic cirrhosis with ascites. Historical studies on its use in hypertension were poorly controlled and there is insufficient data on dose-response. It is clearly highly effective in combination with thiazide diuretics where it counteracts the adverse metabolic effects of the thiazides and its use in the Medical Research Council Trial of Older Hypertensive Patients, demonstrated convincing outcome benefits on stroke and coronary events. Recently it has been shown to be as effective as spironolactone in resistant hypertension but there is a real need to establish its potential role in the much larger number of patients with mild to moderate hypertension in whom there is a paucity of information with amiloride particularly across an extended dose range.


Assuntos
Amilorida/uso terapêutico , Amilorida/efeitos adversos , Amilorida/química , Amilorida/farmacocinética , Animais , Ensaios Clínicos como Assunto , Diuréticos/efeitos adversos , Diuréticos/química , Diuréticos/farmacocinética , Diuréticos/uso terapêutico , Humanos , Hipertensão/tratamento farmacológico
11.
PLoS One ; 15(7): e0232435, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32649677

RESUMO

Anxiety disorders (AD) are the most common mental conditions affecting an estimated 40 million adults in the United States. Amiloride, a diuretic agent, has shown efficacy in reducing anxious responses in preclinical models by inhibiting the acid-sensing ion channels (ASIC). By delivering amiloride via nasal route, rapid onset of action can be achieved due to direct "nose-to-brain" access. Therefore, this study reports the formulation, physical, chemical, and microbiological stability of an extemporaneously prepared amiloride 2 mg/mL nasal spray. The amiloride nasal spray was prepared by adding 100 mg of amiloride hydrochloride to 50 mL of sterile water for injection in a sterile reagent bottle. A stability-indicating high-performance liquid chromatography (HPLC) method was developed and validated. Forced-degradation studies were performed to confirm the ability of the HPLC method to identify the degradation products from amiloride distinctively. The physical stability of the amiloride nasal spray was assessed by pH, clarity, and viscosity assessments. For chemical stability studies, samples of nasal sprays stored at room temperature were collected at time-points 0, 3 hr., 24 hr., and 7 days and were assayed in triplicate using the stability-indicating HPLC method. Microbiological stability of the nasal spray solution was evaluated for up to 7 days based on the sterility test outlined in United States Pharmacopoeia (USP) chapter 71. The stability-indicating HPLC method identified the degradation products of amiloride without interference from amiloride. All tested solutions retained over 90% of the initial amiloride concentration for the 7-day study period. There were no changes in color, pH, and viscosity in any sample. The nasal spray solutions were sterile for up to 7 days in all samples tested. An extemporaneously prepared nasal spray solution of amiloride hydrochloride (2 mg/mL) was physically, chemically, and microbiologically stable for 7 days when stored at room temperature.


Assuntos
Amilorida/química , Composição de Medicamentos , Sprays Nasais , Estabilidade de Medicamentos , Armazenamento de Medicamentos
12.
J Pharm Biomed Anal ; 186: 113332, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32387749

RESUMO

The kinetics and photodegradation mechanism of the pharmaceutical mixture of hydrochlorothiazide (HCT) and amiloride (AML) has been studied in depth using a chemometric approach. Water solutions of HCT and AML, separately or in binary mixtures, were irradiated with forced light at different pH values (3, 7, 9 and 12). Multivariate Curve Resolution - Alternating Least Squares (MCR-ALS) modelling has been applied to the experimental data recorded by UV spectrophotometry and HPLC-UV/MS. 78 data sets were collected and their chemometric processing has allowed the simultaneous determination of the behaviour of the two drugs in the mixture when exposed to light and the dependence of their photodegradation kinetics on pH. MCR-ALS has been applied using three different implementations. Soft-MCR-ALS and hybrid Hard/Soft-MCR-ALS have been used to resolve the experimental data and to get the equilibrium and kinetic parameters of the investigated chemical processes. A third implementation of the MCR-ALS method has been used in the analysis of the incomplete data sets obtained when UV spectrophotometric and HPLC-UV/MS data were simultaneously analysed, using a row- and column-wise incomplete augmented data matrix arrangement. In these matrices, information from HPLC-UV detector was used as a bridge between the data recorded by UV spectrophotometry (acid-base and kinetic reactions monitoring) and the data obtained by HPLC-MS.


Assuntos
Amilorida/química , Diuréticos/química , Hidroclorotiazida/química , Fotólise , Amilorida/análise , Cromatografia Líquida de Alta Pressão , Diuréticos/análise , Combinação de Medicamentos , Hidroclorotiazida/análise , Concentração de Íons de Hidrogênio , Cinética , Análise dos Mínimos Quadrados , Espectrometria de Massas , Espectrofotometria Ultravioleta
13.
J Biomed Mater Res B Appl Biomater ; 108(6): 2699-2710, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32154997

RESUMO

Three-dimensional (3D) scaffolds with interconnected, hierarchically structured pores, and biomimetic nanostructures are desirable for tissue engineering, where preparation with a facile and biocompatible strategy remains challenging. In the present work, an innovative porous microspheres-aggregated 3D PCL scaffold with macropores, micropores, and nanofibrous-like structures was fabricated through a one-pot thermally induced phase separation (TIPS) method without the use of any porogen or specific instruments. Importantly, the porosity, pore size, and mechanical properties of our scaffolds were tailorable through tuning of the polymer concentration. Interestingly, the bioactivity of our 3D PCL scaffolds was significantly improved, as abundant apatite-like layers were formed on the 3D porous scaffolds, while no obvious apatite was observed on the 2D flat PCL film. Moreover, the high surface area attributed to the hierarchical macro/micro/nanostructure enabled our 3D porous scaffold to serve as a drug delivery depot for sustained release of both small molecule drug (phenamil) and protein (BMP2). In addition to sustained drug release, the hierarchical structure and high mechanical properties also contribute to significantly improving BMP2-induced osteogenic differentiation. In summary, we developed a novel PCL porous scaffold through a facile, one-pot TIPS method and demonstrated its promising potential application in large bone defect repair.


Assuntos
Regeneração Óssea , Microesferas , Engenharia Tecidual/métodos , Alicerces Teciduais , Amilorida/administração & dosagem , Amilorida/análogos & derivados , Amilorida/química , Apatitas/química , Materiais Biocompatíveis , Proteína Morfogenética Óssea 2 , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Expressão Gênica/efeitos dos fármacos , Humanos , Nanoestruturas , Poliésteres , Porosidade , Proteínas Recombinantes , Fator de Crescimento Transformador beta
14.
Med Res Rev ; 40(2): 683-708, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31495942

RESUMO

The function of G protein-coupled receptors (GPCRs) can be modulated by compounds that bind to other sites than the endogenous orthosteric binding site, so-called allosteric sites. Structure elucidation of a number of GPCRs has revealed the presence of a sodium ion bound in a conserved allosteric site. The small molecule amiloride and analogs thereof have been proposed to bind in this same sodium ion site. Hence, this review seeks to summarize and reflect on the current knowledge of allosteric effects by amiloride and its analogs on GPCRs. Amiloride is known to modulate adenosine, adrenergic, dopamine, chemokine, muscarinic, serotonin, gonadotropin-releasing hormone, GABAB , and taste receptors. Amiloride analogs with lipophilic substituents tend to be more potent modulators than amiloride itself. Adenosine, α-adrenergic and dopamine receptors are most strongly modulated by amiloride analogs. In addition, for a few GPCRs, more than one binding site for amiloride has been postulated. Interestingly, the nature of the allosteric effect of amiloride and derivatives varies considerably between GPCRs, with both negative and positive allosteric modulation occurring. Since the sodium ion binding site is strongly conserved among class A GPCRs it is to be expected that amiloride also binds to class A GPCRs not evaluated yet. Investigating this typical amiloride-GPCR interaction further may yield general insight in the allosteric mechanisms of GPCR ligand binding and function, and possibly provide new opportunities for drug discovery.


Assuntos
Amilorida/análogos & derivados , Amilorida/farmacologia , Descoberta de Drogas , Receptores Acoplados a Proteínas G/metabolismo , Regulação Alostérica , Amilorida/química , Animais , Humanos
15.
J Tissue Eng Regen Med ; 14(3): 464-474, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31840422

RESUMO

Large bone defects represent a significant unmet medical challenge. Cost effectiveness and better stability make small molecule organic compounds a more promising alternative compared with biomacromolecules, for example, growth factors/hormones, in regenerative medicine. However, one common challenge for the application of these small compounds is their side-effect issue. Phenamil is emerging as an intriguing small molecule to promote bone repair by strongly activating bone morphogenetic protein signaling pathway. In addition to osteogenesis, phenamil also induces significant adipogenesis based on some in vitro studies, which is a concern that impedes it from potential clinical applications. Besides the soluble chemical signals, cellular differentiation is heavily dependent on the microenvironments provided by the 3D scaffolds. Therefore, we developed a 3D nanofibrous biomimetic scaffold-based strategy to harness the phenamil-induced stem cell lineage differentiation. Based on the gene expression, alkaline phosphatase activity, and mineralization data, we indicated that bone-matrix mimicking mineralized-gelatin nanofibrous scaffold effectively improved phenamil-induced osteoblastic differentiation, while mitigating the adipogenic differentiation in vitro. In addition to normal culture conditions, we also indicated that mineralized matrix can significantly improve phenamil-induced osteoblastic differentiation in simulated inflammatory condition. In viewing of the crucial role of mineralized matrix, we developed an innovative and facile mineral deposition-based strategy to sustain release of phenamil from 3D scaffolds for efficient local bone regeneration. Overall, our study demonstrated that biomaterials played a crucial role in modulating small molecule drug phenamil-induced osteoblastic differentiation by providing a bone-matrix mimicking mineralized gelatin nanofibrous scaffolds.


Assuntos
Adipogenia/efeitos dos fármacos , Amilorida/análogos & derivados , Diferenciação Celular/efeitos dos fármacos , Nanofibras/química , Osteoblastos/metabolismo , Alicerces Teciduais/química , Amilorida/química , Amilorida/farmacocinética , Amilorida/farmacologia , Animais , Linhagem Celular , Camundongos , Osteoblastos/citologia
16.
Org Biomol Chem ; 17(42): 9313-9320, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31612165

RESUMO

Noncoding RNAs are increasingly promising drug targets yet ligand design is hindered by a paucity of methods that reveal driving factors in selective small molecule : RNA interactions, particularly given the difficulties of high-resolution structural characterization. HIV RNAs are excellent model systems for method development given their targeting history, known structure-function relationships, and the unmet need for more effective treatments. Herein we report a strategy combining synthetic diversification, profiling against multiple RNA targets, and predictive cheminformatic analysis to identify driving factors for selectivity and affinity of small molecules for distinct HIV RNA targets. Using this strategy, we discovered improved ligands for multiple targets and the first ligands for ESSV, an exonic splicing silencer critical to replication. Computational analysis revealed guiding principles for future designs and a predictive cheminformatics model of small molecule : RNA binding. These methods are expected to facilitate progress toward selective targeting of disease-causing RNAs.


Assuntos
Amilorida/química , HIV/genética , RNA Viral/química , Amilorida/farmacologia , Antivirais/química , Antivirais/farmacologia , Quimioinformática , Descoberta de Drogas , Conformação de Ácido Nucleico , Splicing de RNA , RNA Viral/genética , RNA Viral/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo
17.
Biochem Biophys Res Commun ; 519(4): 887-893, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31561854

RESUMO

We investigated the effect of the modulation of Na/H exchanger 1 (NHE1) on apoptosis, differentiation, and chemoresistance in acute myeloid leukemia (AML) cells to evaluate the possibility of NHE1 modulation as a novel therapeutic strategy for AML. The pHi of leukemia cell lines except KG1a was higher than that of normal bone marrow mononuclear cells (BM MNCs). Notably, in K562, cytarabine (AraC)-resistant OCI-AML2, and primary leukemia cells, pHi was significantly higher than that of normal BM MNCs. Western blotting and real-time quantitative PCR confirmed that the increased NHE1 expression was responsible for the higher pHi. Specifically, compared to CD34+CD38+ leukemia cells, the mean fluorescence intensity of NHE1 was significantly higher in CD34+CD38- leukemic stem cells. The out of range in pHi by treatment with an NHE inhibitor, the amiloride analogue 5-(N,N-hexamethylene) amiloride (HMA), or an NHE activator, phorbol 12-myristate 13-acetate (PMA), resulted in dose- and time-dependent inhibition of leukemia cell proliferation. PMA induced CD14+ differentiation of leukemia cells, whereas HMA induced cell cycle arrest at the G1 phase. HMA could induce apoptosis of leukemia cells even in AraC-resistant cells and showed an additive effect on apoptosis in AraC-sensitive cells. Our result revealed that AML cells prefer more alkalic intracellular moiety than normal BM MNCs following increased NHE1 expression and that NHE1 modulation can induce apoptosis and differentiation of AML cells. These findings imply that NHE1 is a potential target in cytotoxic or differentiation-induction treatment for AML.


Assuntos
Amilorida/farmacologia , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Trocador 1 de Sódio-Hidrogênio/antagonistas & inibidores , Acetato de Tetradecanoilforbol/farmacologia , Doença Aguda , Amilorida/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Células K562 , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patologia , Trocador 1 de Sódio-Hidrogênio/genética , Trocador 1 de Sódio-Hidrogênio/metabolismo
18.
J Biol Chem ; 294(2): 679-696, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30425100

RESUMO

NADH-quinone oxidoreductase (respiratory complex I) couples NADH-to-quinone electron transfer to the translocation of protons across the membrane. Even though the architecture of the quinone-access channel in the enzyme has been modeled by X-ray crystallography and cryo-EM, conflicting findings raise the question whether the models fully reflect physiologically relevant states present throughout the catalytic cycle. To gain further insights into the structural features of the binding pocket for quinone/inhibitor, we performed chemical biology experiments using bovine heart sub-mitochondrial particles. We synthesized ubiquinones that are oversized (SF-UQs) or lipid-like (PC-UQs) and are highly unlikely to enter and transit the predicted narrow channel. We found that SF-UQs and PC-UQs can be catalytically reduced by complex I, albeit only at moderate or low rates. Moreover, quinone-site inhibitors completely blocked the catalytic reduction and the membrane potential formation coupled to this reduction. Photoaffinity-labeling experiments revealed that amiloride-type inhibitors bind to the interfacial domain of multiple core subunits (49 kDa, ND1, and PSST) and the 39-kDa supernumerary subunit, although the latter does not make up the channel cavity in the current models. The binding of amilorides to the multiple target subunits was remarkably suppressed by other quinone-site inhibitors and SF-UQs. Taken together, the present results are difficult to reconcile with the current channel models. On the basis of comprehensive interpretations of the present results and of previous findings, we discuss the physiological relevance of these models.


Assuntos
Amilorida/química , Benzoquinonas/química , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Amilorida/síntese química , Amilorida/metabolismo , Animais , Benzoquinonas/metabolismo , Sítios de Ligação , Catálise , Bovinos , Cristalografia por Raios X , Transporte de Elétrons , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/genética , Cinética , Mitocôndrias/química , Mitocôndrias/genética , Marcadores de Fotoafinidade , Quinona Redutases/química , Quinona Redutases/genética , Quinona Redutases/metabolismo , Ubiquinona/química , Ubiquinona/metabolismo
19.
J Mol Neurosci ; 66(2): 207-213, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30120716

RESUMO

The activity of sweet taste receptor (heterodimeric T1R2 and T1R3) can be modulated by sweet regulators. The compound amiloride can inhibit the sweet sensitivity of the human sweet taste receptor. This study describes the species-dependent regulation of the response of sweet taste receptors by this sweet inhibitor. Amiloride inhibited the sweet taste response of humans and mice but not that of squirrel monkeys. Using human/squirrel monkey/mouse chimeric T1R2 and T1R3 receptors as well as the agonist perillartine (which can activate the single heptahelical domain of T1R2), we found that the heptahelical domain of T1R2 is the molecular determinant that mediates the species-dependent sensitivity to this sweet regulator. Compared to the sweet inhibitor lactisole (which acts on T1R3), amiloride has a different allosteric binding site on the sweet receptor, which is important new information for the design of novel sweet taste modulators that act on T1R2.


Assuntos
Sítio Alostérico , Amilorida/farmacologia , Receptores Acoplados a Proteínas G/química , Amilorida/química , Animais , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Receptores Acoplados a Proteínas G/metabolismo , Saimiri , Especificidade da Espécie
20.
J Med Chem ; 61(18): 8299-8320, 2018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30130401

RESUMO

Metastasis is the cause of death in the majority (∼90%) of malignant cancers. The oral potassium-sparing diuretic amiloride and its 5-substituted derivative 5 -N, N-(hexamethylene)amiloride (HMA) reportedly show robust antitumor/metastasis effects in multiple in vitro and animal models. These effects are likely due, at least in part, to inhibition of the urokinase plasminogen activator (uPA), a key protease determinant of cell invasiveness and metastasis. This study reports the discovery of 6-substituted HMA analogs that show nanomolar potency against uPA, high selectivity over related trypsin-like serine proteases, and minimal inhibitory effects against epithelial sodium channels (ENaC), the diuretic and antikaliuretic target of amiloride. Reductions in lung metastases were demonstrated for two analogs in a late-stage experimental mouse metastasis model, and one analog completely inhibited formation of liver metastases in an orthotopic xenograft mouse model of pancreatic cancer. The results support further evaluation of 6-substituted HMA derivatives as uPA-targeting anticancer drugs.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Diurese/efeitos dos fármacos , Descoberta de Drogas , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Amilorida/química , Animais , Movimento Celular , Proliferação de Células , Cristalografia por Raios X , Diuréticos/química , Diuréticos/farmacologia , Feminino , Humanos , Neoplasias Pulmonares/secundário , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Modelos Moleculares , Estrutura Molecular , Neoplasias Pancreáticas/patologia , Potássio/metabolismo , Conformação Proteica , Sódio/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...