Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.398
Filtrar
1.
Nat Commun ; 15(1): 5714, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977701

RESUMO

Genetic code expansion has emerged as a powerful tool for precisely introducing unnatural chemical structures into proteins to improve their catalytic functions. Given the high catalytic propensity of histidine in the enzyme pocket, increasing the chemical diversity of catalytic histidine could result in new characteristics of biocatalysts. Herein, we report the genetically encoded Nδ-Vinyl Histidine (δVin-H) and achieve the wild-type-like incorporation efficiency by the evolution of pyrrolysyl tRNA synthetase. As histidine usually acts as the nucleophile or the metal ligand in the catalytic center, we replace these two types of catalytic histidine to δVin-H to improve the performance of the histidine-involved catalytic center. Additionally, we further demonstrate the improvements of the hydrolysis activity of a previously reported organocatalytic esterase (the OE1.3 variant) in the acidic condition and myoglobin (Mb) catalyzed carbene transfer reactions under the aerobic condition. As histidine is one of the most frequently used residues in the enzyme catalytic center, the derivatization of the catalytic histidine by δVin-H holds a great potential to promote the performance of biocatalysts.


Assuntos
Domínio Catalítico , Histidina , Histidina/metabolismo , Histidina/química , Histidina/genética , Mioglobina/genética , Mioglobina/química , Mioglobina/metabolismo , Biocatálise , Catálise , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Aminoacil-tRNA Sintetases/química , Esterases/genética , Esterases/metabolismo , Esterases/química , Hidrólise , Escherichia coli/genética , Escherichia coli/metabolismo
2.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39000597

RESUMO

Drosophila spermatogenesis involves the renewal of germline stem cells, meiosis of spermatocytes, and morphological transformation of spermatids into mature sperm. We previously demonstrated that Ocnus (ocn) plays an essential role in spermatogenesis. The ValRS-m (Valyl-tRNA synthetase, mitochondrial) gene was down-regulated in ocn RNAi testes. Here, we found that ValRS-m-knockdown induced complete sterility in male flies. The depletion of ValRS-m blocked mitochondrial behavior and ATP synthesis, thus inhibiting the transition from spermatogonia to spermatocytes, and eventually, inducing the accumulation of spermatogonia during spermatogenesis. To understand the intrinsic reason for this, we further conducted transcriptome-sequencing analysis for control and ValRS-m-knockdown testes. The differentially expressed genes (DEGs) between these two groups were selected with a fold change of ≥2 or ≤1/2. Compared with the control group, 4725 genes were down-regulated (dDEGs) and 2985 genes were up-regulated (uDEGs) in the ValRS-m RNAi group. The dDEGs were mainly concentrated in the glycolytic pathway and pyruvate metabolic pathway, and the uDEGs were primarily related to ribosomal biogenesis. A total of 28 DEGs associated with mitochondria and 6 meiosis-related genes were verified to be suppressed when ValRS-m was deficient. Overall, these results suggest that ValRS-m plays a wide and vital role in mitochondrial behavior and spermatogonia differentiation in Drosophila.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Infertilidade Masculina , Espermatogênese , Animais , Masculino , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/deficiência , Espermatogênese/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Testículo/metabolismo , Meiose/genética , Espermatogônias/metabolismo , Perfilação da Expressão Gênica , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Espermatócitos/metabolismo , Transcriptoma
3.
Chem Rev ; 124(12): 7712-7730, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38829723

RESUMO

The introduction of noncanonical amino acids into proteins has enabled researchers to modify fundamental physicochemical and functional properties of proteins. While the alteration of the genetic code, via the introduction of orthogonal aminoacyl-tRNA synthetase:tRNA pairs, has driven many of these efforts, the various components involved in the process of translation are important for the development of new genetic codes. In this review, we will focus on recent advances in engineering ribosomal machinery for noncanonical amino acid incorporation and genetic code modification. The engineering of the ribosome itself will be considered, as well as the many factors that interact closely with the ribosome, including both tRNAs and accessory factors, such as the all-important EF-Tu. Given the success of genome re-engineering efforts, future paths for radical alterations of the genetic code will require more expansive alterations in the translation machinery.


Assuntos
Aminoácidos , Código Genético , RNA de Transferência , Ribossomos , Aminoácidos/metabolismo , Aminoácidos/química , Ribossomos/metabolismo , RNA de Transferência/metabolismo , RNA de Transferência/genética , RNA de Transferência/química , Biossíntese de Proteínas , Engenharia de Proteínas , Aminoacil-tRNA Sintetases/metabolismo , Aminoacil-tRNA Sintetases/genética
4.
Nucleic Acids Res ; 52(12): 7158-7170, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38842939

RESUMO

Prolyl-tRNA synthetases (ProRSs) are unique among aminoacyl-tRNA synthetases (aaRSs) in having two distinct structural architectures across different organisms: prokaryote-like (P-type) and eukaryote/archaeon-like (E-type). Interestingly, Bacillus thuringiensis harbors both types, with P-type (BtProRS1) and E-type ProRS (BtProRS2) coexisting. Despite their differences, both enzymes are constitutively expressed and functional in vivo. Similar to BtProRS1, BtProRS2 selectively charges the P-type tRNAPro and displays higher halofuginone tolerance than canonical E-type ProRS. However, these two isozymes recognize the primary identity elements of the P-type tRNAPro-G72 and A73 in the acceptor stem-through distinct mechanisms. Moreover, BtProRS2 exhibits significantly higher tolerance to stresses (such as heat, hydrogen peroxide, and dithiothreitol) than BtProRS1 does. This study underscores how an E-type ProRS adapts to a P-type tRNAPro and how it may contribute to the bacterium's survival under stress conditions.


Assuntos
Aminoacil-tRNA Sintetases , Bacillus thuringiensis , Aminoacil-tRNA Sintetases/metabolismo , Aminoacil-tRNA Sintetases/genética , Bacillus thuringiensis/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Células Procarióticas/metabolismo , Estresse Fisiológico
5.
J Peripher Nerv Syst ; 29(2): 275-278, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38769024

RESUMO

BACKGROUND AND AIMS: Pathogenic variants in the NARS1 gene, which encodes for the asparaginyl-tRNA synthetase1 (NARS1) enzyme, were associated with complex central and peripheral nervous system phenotypes. Recently, Charcot-Marie-Tooth (CMT) disease has been linked to heterozygous pathogenic variants in NARS1 in nine patients. Here, we report two brothers and their mother from a French family with distal hereditary motor neuropathy (dHMN) carrying a previously unreported NARS1 variant. METHODS: The NARS1 variant (c.1555G>C; p.(Gly519Arg)) was identified through whole-genome sequencing (WGS) performed on the family members. Clinical findings, nerve conduction studies (NCS), needle electromyography (EMG), and functional assays in yeast complementation assays are reported here. RESULTS: The family members showed symptoms of dHMN, including distal weakness and osteoarticular deformities. They also exhibited brisk reflexes suggestive of upper motor neuron involvement. All patients were able to walk independently at the last follow-up. NCS and EMG confirmed pure motor neuropathy. Functional assays in yeast confirmed a loss-of-function effect of the variant on NARS1 activity. INTERPRETATION: Our findings expand the clinical spectrum of NARS1-associated neuropathies, highlighting the association of NARS1 mutations with dHMN. The benign disease course observed in our patients suggests a slowly progressive phenotype. Further reports could contribute to a more comprehensive understanding of the spectrum of NARS1-associated neuropathies.


Assuntos
Linhagem , Humanos , Masculino , Feminino , Adulto , França , Pessoa de Meia-Idade , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/fisiopatologia , Aminoacil-tRNA Sintetases/genética , Neuropatia Hereditária Motora e Sensorial/genética , Neuropatia Hereditária Motora e Sensorial/fisiopatologia
6.
Nucleic Acids Res ; 52(12): 7096-7111, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38783009

RESUMO

Aminoacyl-tRNA synthetases (AARS) and tRNAs translate the genetic code in all living cells. Little is known about how their molecular ancestors began to enforce the coding rules for the expression of their own genes. Schimmel et al. proposed in 1993 that AARS catalytic domains began by reading an 'operational' code in the acceptor stems of tRNA minihelices. We show here that the enzymology of an AARS urzyme•TΨC-minihelix cognate pair is a rich in vitro realization of that idea. The TΨC-minihelixLeu is a very poor substrate for full-length Leucyl-tRNA synthetase. It is a superior RNA substrate for the corresponding urzyme, LeuAC. LeuAC active-site mutations shift the choice of both amino acid and RNA substrates. AARS urzyme•minihelix cognate pairs are thus small, pliant models for the ancestral decoding hardware. They are thus an ideal platform for detailed experimental study of the operational RNA code.


Assuntos
Aminoacil-tRNA Sintetases , Conformação de Ácido Nucleico , RNA de Transferência , RNA de Transferência/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , Aminoacil-tRNA Sintetases/metabolismo , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Domínio Catalítico , Código Genético , RNA Catalítico/química , RNA Catalítico/metabolismo , Especificidade por Substrato , Leucina-tRNA Ligase/metabolismo , Leucina-tRNA Ligase/química , Leucina-tRNA Ligase/genética
7.
Biomolecules ; 14(5)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38785925

RESUMO

The principle of continuity posits that some central features of primordial biocatalytic mechanisms should still be present in the genetically dependent pathway of protein synthesis, a crucial step in the emergence of life. Key bimolecular reactions of this process are catalyzed by DNA-dependent RNA polymerases, aminoacyl-tRNA synthetases, and ribosomes. Remarkably, none of these biocatalysts contribute chemically active groups to their respective reactions. Instead, structural and functional studies have demonstrated that nucleotidic α-phosphate and ß-d-ribosyl 2' OH and 3' OH groups can help their own catalysis, a process which, consequently, has been called "substrate-assisted". Furthermore, upon binding, the substrates significantly lower the entropy of activation, exclude water from these catalysts' active sites, and are readily positioned for a reaction. This binding mode has been described as an "entropy trap". The combination of this effect with substrate-assisted catalysis results in reactions that are stereochemically and mechanistically simpler than the ones found in most modern enzymes. This observation is consistent with the way in which primordial catalysts could have operated; it may also explain why, thanks to their complementary reactivities, ß-d-ribose and phosphate were naturally selected to be the central components of early coding polymers.


Assuntos
Biossíntese de Proteínas , Aminoacil-tRNA Sintetases/metabolismo , Aminoacil-tRNA Sintetases/genética , Biocatálise , Ribossomos/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/química
8.
Protein Sci ; 33(6): e5028, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38757396

RESUMO

Prolyl-tRNA synthetase (ProRS), belonging to the family of aminoacyl-tRNA synthetases responsible for pairing specific amino acids with their respective tRNAs, is categorized into two distinct types: the eukaryote/archaeon-like type (E-type) and the prokaryote-like type (P-type). Notably, these types are specific to their corresponding cognate tRNAs. In an intriguing paradox, Thermus thermophilus ProRS (TtProRS) aligns with the E-type ProRS but selectively charges the P-type tRNAPro, featuring the bacterium-specific acceptor-stem elements G72 and A73. This investigation reveals TtProRS's notable resilience to the inhibitor halofuginone, a synthetic derivative of febrifugine emulating Pro-A76, resembling the characteristics of the P-type ProRS. Furthermore, akin to the P-type ProRS, TtProRS identifies its cognate tRNA through recognition of the acceptor-stem elements G72/A73, along with the anticodon elements G35/G36. However, in contrast to the P-type ProRS, which relies on a strictly conserved R residue within the bacterium-like motif 2 loop for recognizing G72/A73, TtProRS achieves this through a non-conserved sequence, RTR, within the otherwise non-interacting eukaryote-like motif 2 loop. This investigation sheds light on the adaptive capacity of a typically conserved housekeeping enzyme to accommodate a novel substrate.


Assuntos
Aminoacil-tRNA Sintetases , Thermus thermophilus , Thermus thermophilus/enzimologia , Thermus thermophilus/genética , Aminoacil-tRNA Sintetases/metabolismo , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Especificidade por Substrato , Evolução Molecular , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Quinazolinonas/química , Quinazolinonas/metabolismo , RNA de Transferência/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , Piperidinas
9.
Neurogenetics ; 25(3): 287-291, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38652341

RESUMO

Aminoacyl-tRNA synthetases (ARSs) aminoacylate tRNA molecules with their cognate amino acid, enabling information transmission and providing substrates for protein biosynthesis. They also take part in nontranslational functions, mediated by the presence of other proteins domains. Mutations in ARS genes have been described as responsive to numerous factors, including neurological, autoimmune, and oncological. Variants of the ARS genes, both in heterozygosity and homozygosity, have been reported to be responsible for different pathological pictures in humankind. We present the case of a patient referred in infancy for failure to thrive and acquired microcephaly (head circumference: -5 SD). During follow-up we highlighted: dysphagia (which became increasingly severe until it became incompatible with oral feeding, with gastrostomy implantation, resulting in resolution of feeding difficulties), strabismus, hypotonia. NCV (Nerve Conduction Velocity) showed four limbs neuropathy, neurophysiological examination performed at 2 years of age mainly sensory and demyelinating. Exome sequencing (ES) was performed, detecting two novel compound heterozygous variants in the NARS1 gene (OMIM *108410): NM_004539:c.[662 A > G]; [1155dup], p.[(Asn221Ser)]; [(Arg386Thrfs*19)], inherited from mother and father respectively. In this article, we would like to focus on the presence of progressive dysphagia and severe neurodevelopmental disorder, associated with two novel variants in the NARS1 gene.


Assuntos
Transtornos de Deglutição , Transtornos do Neurodesenvolvimento , Humanos , Transtornos de Deglutição/genética , Transtornos de Deglutição/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Aminoacil-tRNA Sintetases/genética , Masculino , Mutação/genética , Lactente , Pré-Escolar , Feminino
10.
RNA Biol ; 21(1): 1-23, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38629491

RESUMO

Translation fidelity relies on accurate aminoacylation of transfer RNAs (tRNAs) by aminoacyl-tRNA synthetases (AARSs). AARSs specific for alanine (Ala), leucine (Leu), serine, and pyrrolysine do not recognize the anticodon bases. Single nucleotide anticodon variants in their cognate tRNAs can lead to mistranslation. Human genomes include both rare and more common mistranslating tRNA variants. We investigated three rare human tRNALeu variants that mis-incorporate Leu at phenylalanine or tryptophan codons. Expression of each tRNALeu anticodon variant in neuroblastoma cells caused defects in fluorescent protein production without significantly increased cytotoxicity under normal conditions or in the context of proteasome inhibition. Using tRNA sequencing and mass spectrometry we confirmed that each tRNALeu variant was expressed and generated mistranslation with Leu. To probe the flexibility of the entire genetic code towards Leu mis-incorporation, we created 64 yeast strains to express all possible tRNALeu anticodon variants in a doxycycline-inducible system. While some variants showed mild or no growth defects, many anticodon variants, enriched with G/C at positions 35 and 36, including those replacing Leu for proline, arginine, alanine, or glycine, caused dramatic reductions in growth. Differential phenotypic defects were observed for tRNALeu mutants with synonymous anticodons and for different tRNALeu isoacceptors with the same anticodon. A comparison to tRNAAla anticodon variants demonstrates that Ala mis-incorporation is more tolerable than Leu at nearly every codon. The data show that the nature of the amino acid substitution, the tRNA gene, and the anticodon are each important factors that influence the ability of cells to tolerate mistranslating tRNAs.


Assuntos
Aminoacil-tRNA Sintetases , Saccharomyces cerevisiae , Animais , Humanos , Saccharomyces cerevisiae/genética , Anticódon/genética , Leucina/genética , RNA de Transferência de Leucina/genética , Código Genético , Códon , RNA de Transferência/genética , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Alanina/genética , Mamíferos/genética
11.
Kidney Int ; 105(5): 924-926, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642990

RESUMO

Glutamyl-prolyl-transfer RNA synthetase 1 is an enzyme that connects glutamic acid and proline to transfer RNA during protein synthesis. In this issue, a study by Kang et al. examined the role of the immune cell glutamyl-prolyl-transfer RNA synthetase 1 in toxin-induced tubulointerstitial nephritis mice. The study demonstrated that blocking glutamyl-prolyl-transfer RNA synthetase 1 may be a therapeutic target to attenuate fibrosis after toxin-induced tubulointerstitial nephritis.


Assuntos
Aminoacil-tRNA Sintetases , Nefrite Intersticial , Animais , Camundongos , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Fibrose , Nefrite Intersticial/genética , Nefrite Intersticial/prevenção & controle
12.
J Clin Invest ; 134(10)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512451

RESUMO

Lactylation has been recently identified as a new type of posttranslational modification occurring widely on lysine residues of both histone and nonhistone proteins. The acetyltransferase p300 is thought to mediate protein lactylation, yet the cellular concentration of the proposed lactyl-donor, lactyl-coenzyme A, is about 1,000 times lower than that of acetyl-CoA, raising the question of whether p300 is a genuine lactyltransferase. Here, we report that alanyl-tRNA synthetase 1 (AARS1) moonlights as a bona fide lactyltransferase that directly uses lactate and ATP to catalyze protein lactylation. Among the candidate substrates, we focused on the Hippo pathway, which has a well-established role in tumorigenesis. Specifically, AARS1 was found to sense intracellular lactate and translocate into the nucleus to lactylate and activate the YAP-TEAD complex; and AARS1 itself was identified as a Hippo target gene that forms a positive-feedback loop with YAP-TEAD to promote gastric cancer (GC) cell proliferation. Consistently, the expression of AARS1 was found to be upregulated in GC, and elevated AARS1 expression was found to be associated with poor prognosis for patients with GC. Collectively, this work found AARS1 with lactyltransferase activity in vitro and in vivo and revealed how the metabolite lactate is translated into a signal of cell proliferation.


Assuntos
Alanina-tRNA Ligase , Transdução de Sinais , Neoplasias Gástricas , Fatores de Transcrição , Proteínas de Sinalização YAP , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Aminoacil-tRNA Sintetases/metabolismo , Aminoacil-tRNA Sintetases/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Ácido Láctico/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Neoplasias Gástricas/enzimologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Alanina-tRNA Ligase/genética , Alanina-tRNA Ligase/metabolismo
13.
Am J Med Genet A ; 194(7): e63589, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38469956

RESUMO

PARS2 encodes an aminoacyl-tRNA synthetase that catalyzes the ligation of proline to mitochondrial prolyl-tRNA molecules. Diseases associated with PARS2 primarily affect the central nervous system, causing early infantile developmental epileptic encephalopathies (EIDEE; DEE75; MIM #618437) with infantile-onset neurodegeneration. Dilated cardiomyopathy has also been reported in the affected individuals. About 10 individuals to date have been described with pathogenic biallelic variants in PARS2. While many of the reported individuals succumbed to the disease in the first two decades of life, autopsy findings have not yet been reported. Here, we describe neuropathological findings in a deceased male with evidence of intracranial calcifications in the basal ganglia, thalamus, cerebellum, and white matter, similar to Aicardi-Goutières syndrome. This report describes detailed autopsy findings in a child with PARS2-related mitochondrial disease and provides plausible evidence that intracranial calcifications may be a previously unrecognized feature of this disorder.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Calcinose , Doenças Mitocondriais , Malformações do Sistema Nervoso , Humanos , Calcinose/genética , Calcinose/patologia , Masculino , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/patologia , Malformações do Sistema Nervoso/diagnóstico por imagem , Malformações do Sistema Nervoso/diagnóstico , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/patologia , Doenças Autoimunes do Sistema Nervoso/diagnóstico , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Doenças Mitocondriais/diagnóstico por imagem , Aminoacil-tRNA Sintetases/genética , Lactente , Mutação/genética , Diagnóstico Diferencial , Encéfalo/patologia , Encéfalo/diagnóstico por imagem
14.
Nucleic Acids Res ; 52(7): 3938-3949, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38477328

RESUMO

In the hypothetical RNA world, ribozymes could have acted as modern aminoacyl-tRNA synthetases (ARSs) to charge tRNAs, thus giving rise to the peptide synthesis along with the evolution of a primitive translation apparatus. We previously reported a T-boxzyme, Tx2.1, which selectively charges initiator tRNA with N-biotinyl-phenylalanine (BioPhe) in situ in a Flexible In-vitro Translation (FIT) system to produce BioPhe-initiating peptides. Here, we performed in vitro selection of elongation-capable T-boxzymes (elT-boxzymes), using para-azido-l-phenylalanine (PheAZ) as an acyl-donor. We implemented a new strategy to enrich elT-boxzyme-tRNA conjugates that self-aminoacylated on the 3'-terminus selectively. One of them, elT32, can charge PheAZ onto tRNA in trans in response to its cognate anticodon. Further evolution of elT32 resulted in elT49, with enhanced aminoacylation activity. We have demonstrated the translation of a PheAZ-containing peptide in an elT-boxzyme-integrated FIT system, revealing that elT-boxzymes are able to generate the PheAZ-tRNA in response to the cognate anticodon in situ of a custom-made translation system. This study, together with Tx2.1, illustrates a scenario where a series of ribozymes could have overseen aminoacylation and co-evolved with a primitive RNA-based translation system.


Assuntos
Anticódon , Biossíntese de Proteínas , RNA Catalítico , Aminoacil-RNA de Transferência , RNA Catalítico/metabolismo , RNA Catalítico/genética , Anticódon/genética , Aminoacil-RNA de Transferência/metabolismo , Aminoacil-RNA de Transferência/genética , Fenilalanina/metabolismo , Fenilalanina/análogos & derivados , Aminoacil-tRNA Sintetases/metabolismo , Aminoacil-tRNA Sintetases/genética , Aminoacilação de RNA de Transferência , Aminoacilação , Elongação Traducional da Cadeia Peptídica
15.
Chimia (Aarau) ; 78(1-2): 22-31, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38430060

RESUMO

Genetic code expansion (GCE) can enable the site-selective incorporation of non-canonical amino acids (ncAAs) into proteins. GCE has advanced tremendously in the last decade and can be used to create biorthogonal handles, monitor and control proteins inside cells, study post-translational modifications, and engineer new protein functions. Since establishing our laboratory, our research has focused on applications of GCE in protein and enzyme engineering using aminoacyl-tRNA synthetase/tRNA (aaRS/tRNA) pairs. This topic has been reviewed extensively, leaving little doubt that GCE is a powerful tool for engineering proteins and enzymes. Therefore, for this young faculty issue, we wanted to provide a more technical look into the methods we use and the challenges we think about in our laboratory. Since starting the laboratory, we have successfully engineered over a dozen novel aaRS/tRNA pairs tailored for various GCE applications. However, we acknowledge that the field can pose challenges even for experts. Thus, herein, we provide a review of methodologies in ncAA incorporation with some practical commentary and a focus on challenges, emerging solutions, and exciting developments.


Assuntos
Aminoacil-tRNA Sintetases , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/metabolismo , Código Genético , Engenharia de Proteínas/métodos , Aminoácidos/genética , Aminoácidos/química , RNA de Transferência/genética
16.
Biochimie ; 222: 45-62, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38401639

RESUMO

RNA profiling studies have revealed that ∼75% of the human genome is transcribed to RNA but only a meagre fraction of it is translated to proteins. Majority of transcribed RNA constitute a specialized pool of non-coding RNAs. Human genome contains approximately 506 genes encoding a set of 51 different tRNAs, constituting a unique class of non-coding RNAs that not only have essential housekeeping functions as translator molecules during protein synthesis, but have numerous uncharted regulatory functions. Intriguing findings regarding a variety of non-canonical functions of tRNAs, tRNA derived fragments (tRFs), esoteric epitranscriptomic modifications of tRNAs, along with aminoacyl-tRNA synthetases (AARSs) and ARS-interacting multifunctional proteins (AIMPs), envision a 'peripheral dogma' controlling the flow of genetic information in the backdrop of qualitative information wrung out of the long-live central dogma of molecular biology, to drive cells towards either proliferation or differentiation programs. Our review will substantiate intriguing peculiarities of tRNA gene clusters, atypical tRNA-transcription from internal promoters catalysed by another distinct RNA polymerase enzyme, dynamically diverse tRNA epitranscriptome, intricate mechanism of tRNA-charging by AARSs governing translation fidelity, epigenetic regulation of gene expression by tRNA fragments, and the role of tRNAs and tRNA derived/associated molecules as quantitative determinants of the functional proteome, covertly orchestrating the process of tumorigenesis, through a deregulated tRNA-ome mediating selective codon-biased translation of cancer related gene transcripts.


Assuntos
Aminoacil-tRNA Sintetases , Carcinogênese , RNA de Transferência , Humanos , RNA de Transferência/genética , RNA de Transferência/metabolismo , Carcinogênese/genética , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Transcriptoma , Epigênese Genética , Neoplasias/genética , Neoplasias/metabolismo , Animais
17.
Cell Chem Biol ; 31(4): 760-775.e17, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38402621

RESUMO

Candida species are among the most prevalent causes of systemic fungal infections, which account for ∼1.5 million annual fatalities. Here, we build on a compound screen that identified the molecule N-pyrimidinyl-ß-thiophenylacrylamide (NP-BTA), which strongly inhibits Candida albicans growth. NP-BTA was hypothesized to target C. albicans glutaminyl-tRNA synthetase, Gln4. Here, we confirmed through in vitro amino-acylation assays NP-BTA is a potent inhibitor of Gln4, and we defined how NP-BTA arrests Gln4's transferase activity using co-crystallography. This analysis also uncovered Met496 as a critical residue for the compound's species-selective target engagement and potency. Structure-activity relationship (SAR) studies demonstrated the NP-BTA scaffold is subject to oxidative and non-oxidative metabolism, making it unsuitable for systemic administration. In a mouse dermatomycosis model, however, topical application of the compound provided significant therapeutic benefit. This work expands the repertoire of antifungal protein synthesis target mechanisms and provides a path to develop Gln4 inhibitors.


Assuntos
Aminoacil-tRNA Sintetases , Antifúngicos , Animais , Camundongos , Antifúngicos/farmacologia , Aminoacil-tRNA Sintetases/genética , Candida albicans , Relação Estrutura-Atividade
18.
Trends Endocrinol Metab ; 35(4): 285-289, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38307811

RESUMO

Mitochondria play multiple critical roles in cellular activity. In particular, mitochondrial translation is pivotal in the regulation of mitochondrial and cellular homeostasis. In this forum article, we discuss human mitochondrial tRNA metabolism and highlight its tight connection with various mitochondrial diseases caused by mutations in aminoacyl-tRNA synthetases, tRNAs, and tRNA-modifying enzymes.


Assuntos
Aminoacil-tRNA Sintetases , Mitocôndrias , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo
19.
Ann Rheum Dis ; 83(6): 775-786, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38395605

RESUMO

OBJECTIVES: To systemically analyse the heterogeneity in the clinical manifestations and prognoses of patients with antisynthetase syndrome (ASS) and evaluate the transcriptional signatures related to different clinical phenotypes. METHODS: A total of 701 patients with ASS were retrospectively enrolled. The clinical presentation and prognosis were assessed in association with four anti-aminoacyl transfer RNA synthetase (ARS) antibodies: anti-Jo1, anti-PL7, anti-PL12 and anti-EJ. Unsupervised machine learning was performed for patient clustering independent of anti-ARS antibodies. Transcriptome sequencing was conducted in clustered ASS patients and healthy controls. RESULTS: Patients with four different anti-ARS antibody subtypes demonstrated no significant differences in the incidence of rapidly progressive interstitial lung disease (RP-ILD) or prognoses. Unsupervised machine learning, independent of anti-ARS specificity, identified three endotypes with distinct clinical features and outcomes. Endotype 1 (RP-ILD cluster, 23.7%) was characterised by a high incidence of RP-ILD and a high mortality rate. Endotype 2 (dermatomyositis (DM)-like cluster, 14.5%) corresponded to patients with DM-like skin and muscle symptoms with an intermediate prognosis. Endotype 3 (arthritis cluster, 61.8%) was characterised by arthritis and mechanic's hands, with a good prognosis. Transcriptome sequencing revealed that the different endotypes had distinct gene signatures and biological processes. CONCLUSIONS: Anti-ARS antibodies were not significant in stratifying ASS patients into subgroups with greater homogeneity in RP-ILD and prognoses. Novel ASS endotypes were identified independent of anti-ARS specificity and differed in clinical outcomes and transcriptional signatures, providing new insights into the pathogenesis of ASS.


Assuntos
Aminoacil-tRNA Sintetases , Autoanticorpos , Doenças Pulmonares Intersticiais , Miosite , Humanos , Miosite/imunologia , Miosite/genética , Feminino , Masculino , Prognóstico , Pessoa de Meia-Idade , Aminoacil-tRNA Sintetases/imunologia , Aminoacil-tRNA Sintetases/genética , Autoanticorpos/sangue , Autoanticorpos/imunologia , Doenças Pulmonares Intersticiais/imunologia , Doenças Pulmonares Intersticiais/genética , Adulto , Estudos Retrospectivos , Dermatomiosite/imunologia , Dermatomiosite/genética , Idoso , Fenótipo , Transcriptoma
20.
Nature ; 625(7995): 603-610, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200312

RESUMO

The genetic code of living cells has been reprogrammed to enable the site-specific incorporation of hundreds of non-canonical amino acids into proteins, and the encoded synthesis of non-canonical polymers and macrocyclic peptides and depsipeptides1-3. Current methods for engineering orthogonal aminoacyl-tRNA synthetases to acylate new monomers, as required for the expansion and reprogramming of the genetic code, rely on translational readouts and therefore require the monomers to be ribosomal substrates4-6. Orthogonal synthetases cannot be evolved to acylate orthogonal tRNAs with non-canonical monomers (ncMs) that are poor ribosomal substrates, and ribosomes cannot be evolved to polymerize ncMs that cannot be acylated onto orthogonal tRNAs-this co-dependence creates an evolutionary deadlock that has essentially restricted the scope of translation in living cells to α-L-amino acids and closely related hydroxy acids. Here we break this deadlock by developing tRNA display, which enables direct, rapid and scalable selection for orthogonal synthetases that selectively acylate their cognate orthogonal tRNAs with ncMs in Escherichia coli, independent of whether the ncMs are ribosomal substrates. Using tRNA display, we directly select orthogonal synthetases that specifically acylate their cognate orthogonal tRNA with eight non-canonical amino acids and eight ncMs, including several ß-amino acids, α,α-disubstituted-amino acids and ß-hydroxy acids. We build on these advances to demonstrate the genetically encoded, site-specific cellular incorporation of ß-amino acids and α,α-disubstituted amino acids into a protein, and thereby expand the chemical scope of the genetic code to new classes of monomers.


Assuntos
Aminoácidos , Aminoacil-tRNA Sintetases , Escherichia coli , Código Genético , RNA de Transferência , Acilação , Aminoácidos/química , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Código Genético/genética , Hidroxiácidos/química , Hidroxiácidos/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , Especificidade por Substrato , Ribossomos/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...