Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Br J Pharmacol ; 181(15): 2413-2428, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38770951

RESUMO

BACKGROUND AND PURPOSE: Cystic fibrosis (CF) patients are living longer and healthier due to improved treatments, e.g. cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy elexacaftor/tezacaftor/ivacaftor (ETI), with treatment possibly occurring in pregnancy. The risk of ETI to foetuses remain unknown. Thus the effect of maternally administered ETI on foetal genetic and structural development was investigated. EXPERIMENTAL APPROACH: Pregnant Sprague Dawley rats were orally treated with ETI (6.7 mg·kg-1·day-1 elexacaftor + 3.5 mg·kg-1·day-1 tezacaftor + 25 mg·kg-1·day-1 ivacaftor) for 7 days from E12 to E19. Tissue samples collected at E19 were analysed using histology and RNA sequencing. Histological changes and differentially expressed genes (DEG) were assessed. KEY RESULTS: No overt structural abnormalities were found in foetal pancreas, liver, lung and small intestine after 7-day ETI exposure. Very few non-functionally associated DEG in foetal liver, lung and small intestine were identified using RNA-seq. 29 DEG were identified in thymus (27 up-regulated and two down-regulated) and most were functionally linked to each other. Gene ontology enrichment analysis revealed that multiple muscle-related terms were significantly enriched. Many more DEG were identified in cortex (44 up-regulated and four down-regulated) and a group of these were involved in central nervous system and brain development. CONCLUSION AND IMPLICATION: Sub-chronic ETI treatment in late pregnancy does not appear to pose a significant risk to the genetic and structural development of many foetal tissues. However, significant gene changes in foetal thymic myoid cells and cortical neuronal development requires future follow-up studies to assess the risk to these organs.


Assuntos
Aminofenóis , Benzodioxóis , Combinação de Medicamentos , Indóis , Pirazóis , Piridinas , Ratos Sprague-Dawley , Feminino , Animais , Gravidez , Aminofenóis/toxicidade , Aminofenóis/administração & dosagem , Ratos , Pirazóis/administração & dosagem , Pirazóis/toxicidade , Benzodioxóis/administração & dosagem , Indóis/administração & dosagem , Indóis/toxicidade , Piridinas/toxicidade , Piridinas/administração & dosagem , Quinolonas/toxicidade , Quinolonas/administração & dosagem , Pirróis/administração & dosagem , Pirróis/toxicidade , Pirrolidinas/administração & dosagem , Pirrolidinas/toxicidade , Pirrolidinas/farmacologia , Feto/efeitos dos fármacos , Feto/metabolismo , Exposição Materna/efeitos adversos , Quinolinas
2.
Environ Res ; 239(Pt 1): 117407, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37838200

RESUMO

To effectively differentiate toxic aminophenol isomers, a kind of spindle-shaped Cu-Ru bimetal mesoporous nanozyme (Cu-Ru MPNZ) with high specific surface was developed by one-pot homogeneous reduction method, directed by hexadecyl trimethyl ammonium bromide (CTAB) in this work. By virtue of the distinctive microstructure, Cu-Ru MPNZ expressed superior bi-functional oxidase- and peroxidase-mimic activity to catalyze the oxidation of 3,3',5,5,'-tetramethylbenzidine (TMB) and 2,2'-azinobis (3-ethylbenzothiazoline-6- sulfonic acid) ammonium salt (ABTS) with low Michaelis-Menten constants and quick reaction rates. Especially, toxic aminophenol isomers could exclusively react with the oxydates of TMB or ABTS to express differentiable signals in color. Under the optimal conditions, Cu-Ru MPNZ was successfully applied for visual differentiation of toxic aminophenol isomers in real aqueous, juices and medicinal samples with low detection limits (1.60 × 10-8 mol/L for o-aminophenol and 3.25 × 10-8 mol/L for m-aminophenol) and satisfactory recoveries (96.6-103.5%). The different recognition mechanisms of Cu-Ru MPNZ to toxic o- and m-aminophenol isomers were proposed for the first time as far as we known. This work will provide a potential way to monitor different organic isomer pollution in future.


Assuntos
Nanosferas , Nanosferas/toxicidade , Aminofenóis/toxicidade , Cetrimônio
3.
Arch Toxicol ; 97(11): 2943-2954, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37639014

RESUMO

Acetaminophen (APAP) belong among the most used analgesics and antipyretics. It is structurally derived from p-aminophenol (PAP), a potent inducer of kidney toxicity. Both compounds can be metabolized to oxidation products and conjugated with glutathione. The glutathione-conjugates can be cleaved to provide cysteine conjugates considered as generally nontoxic. The aim of the present report was to synthesize and to purify both APAP- and PAP-cysteine conjugates and, as the first study at all, to evaluate their biological effects in human kidney HK-2 cells in comparison to parent compounds. HK-2 cells were treated with tested compounds (0-1000 µM) for up to 24 h. Cell viability, glutathione levels, ROS production and mitochondrial function were determined. After 24 h, we found that both APAP- and PAP-cysteine conjugates (1 mM) were capable to induce harmful cellular damage observed as a decrease of glutathione levels to 10% and 0%, respectively, compared to control cells. In addition, we detected the disappearance of mitochondrial membrane potential in these cells. In the case of PAP-cysteine, the extent of cellular impairment was comparable to that induced by PAP at similar doses. On the other hand, 1 mM APAP-cysteine induced even larger damage of HK-2 cells compared to 1 mM APAP after 6 or 24 h. We conclude that cysteine conjugates with aminophenol are potent inducers of oxidative stress causing significant injury in kidney cells. Thus, the harmful effects cysteine-aminophenolic conjugates ought to be considered in the description of APAP or PAP toxicity.


Assuntos
Acetaminofen , Aminofenóis , Humanos , Aminofenóis/toxicidade , Acetaminofen/toxicidade , Cisteína , Rim , Glutationa
4.
Cell Biol Toxicol ; 36(6): 591-602, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32780246

RESUMO

Drug toxicity and efficacy are difficult to predict partly because they are both poorly defined, which I aim to remedy here from a transcriptomic perspective. There are two major categories of drugs: (1) restorative drugs aiming to restore an abnormal cell, tissue, or organ to normal function (e.g., restoring normal membrane function of epithelial cells in cystic fibrosis), and (2) disruptive drugs aiming to kill pathogens or malignant cells. These two types of drugs require different definition of efficacy and toxicity. I outlined rationales for defining transcriptomic efficacy and toxicity and illustrated numerically their application with two sets of transcriptomic data, one for restorative drugs (treating cystic fibrosis with lumacaftor/ivacaftor aiming to restore the cellular function of epithelial cells) and the other for disruptive drugs (treating acute myeloid leukemia with prexasertib). The conceptual framework presented will help and sensitize researchers to collect data required for determining drug toxicity.


Assuntos
Aminofenóis/farmacologia , Aminopiridinas/farmacologia , Antineoplásicos/farmacologia , Benzodioxóis/farmacologia , Desenvolvimento de Medicamentos , Perfilação da Expressão Gênica , Quinolonas/farmacologia , Testes de Toxicidade , Transcriptoma/efeitos dos fármacos , Aminofenóis/toxicidade , Aminopiridinas/toxicidade , Animais , Antineoplásicos/toxicidade , Benzodioxóis/toxicidade , Morte Celular/efeitos dos fármacos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Pirazinas/uso terapêutico , Pirazóis/uso terapêutico , Quinolonas/toxicidade
5.
J Hazard Mater ; 387: 122000, 2020 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-31901848

RESUMO

This work reports the study of oxidation reaction of p-aminophenol (PAP) in ammoniacal medium in dissolved atmospheric oxygen and hydrogen peroxide, simulating the process of hair dyeing with permanent dyes. The products formed, which included semi-quinoneimine radical, quinoneimine, dimers, trimers and tetramers, were identified by mass spectrometry, infrared spectroscopy, UV-vis spectrophotometry, and nuclear magnetic resonance of hydrogen. The process was found to involve an autoxidation mechanism. The mutagenicity of the products was carried out by Salmonella Typhimurium YG1041 assay, and the results indicated no mutagenic properties. The presence of PAP and its oxidative products in samples of wastewater collected from hairdressing salon effluent (WW), raw river water (RRW), and water inlet and outlet of drinking water treatment plant (DWTP) was analyzed by HPLC-DAD. PAP was detected in the collected samples of WW, water samples from DWTP (before and after treatment), at concentrations of 2.1 ± 0.5 mg L-1, 1.9 ± 0.3 × 10-3 mg L-1 and 1.3 ± 0.2 × 10-3 mg L-1, respectively. The reaction products, including dimers, trimers and tetramers were identified only in the WW sample; this shows that both the precursor in the sample and its derivatives were released into the wastewater.


Assuntos
Aminofenóis/química , Água Potável/análise , Tinturas para Cabelo/química , Águas Residuárias/análise , Poluentes Químicos da Água/química , Aminofenóis/análise , Aminofenóis/toxicidade , Tinturas para Cabelo/análise , Tinturas para Cabelo/toxicidade , Testes de Mutagenicidade , Oxirredução , Oxigênio/química , Rios/química , Salmonella typhimurium/efeitos dos fármacos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
6.
J Chromatogr Sci ; 58(3): 223-233, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-31812988

RESUMO

Three chromatographic methods were developed, optimized and validated for Paracetamol (PAR), Orphenadrine citrate (Or.cit) and Caffeine (CAF) determination in their mixture and in presence of PAR toxic impurity; P-aminophenol (PAP) in tablets. The first method is based on a thin layer chromatography combined with densitometry. Separation was achieved using silica gel 60 F254 TLC plates and dichloromethane:methanol:acetone:glacial acetic acid (9:1:0.5:0.3, v/v/v) as a developing system at 230 nm. The second method is based on high-performance liquid chromatography with diode array detection. The proposed compounds are separated on a reversed phase C18 analytical column using phosphate buffer (pH 9; 0.05 M) and methanol (80:20, v/v) at 1.2 mL/min. Linear regressions are obtained in the range of 1-500 µg/mL, 25-1000 µg/mL and 1-400 µg/mL for PAR, Or.cit and CAF, respectively. Quantification of the toxic PAP is carried out using LC-MS-MS by electrospray ionization in the positive mode using triple quadrupole mass spectrometry. The limit of quantification for PAP is 1 ng/mL. All methods are validated according to the ICH guidelines and successfully applied to determine PAR, Or.cit, CAF and PAP in pure powder and in combined tablets dosage form without interference from excipients.


Assuntos
Acetaminofen/análise , Aminofenóis/análise , Cafeína/análise , Cromatografia Líquida/métodos , Orfenadrina/análise , Aminofenóis/toxicidade , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Cromatografia em Camada Fina , Densitometria/métodos , Contaminação de Medicamentos , Excipientes , Comprimidos , Espectrometria de Massas em Tandem/métodos
7.
Environ Pollut ; 256: 113408, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31662267

RESUMO

The m-aminophenol (m-AP) is a widely used industrial chemical, which enters water, soils, and sediments with waste emissions. A common soil metal oxide, birnessite (δ-MnO2), was found to mediate the transformation of m-AP with fast rates under acidic conditions. Because of the highly complexity of the m-AP transformation, mechanism-based models were taken to fit the transformation kinetic process of m-AP. The results indicated that the transformation of m-AP with δ-MnO2 could be described by precursor complex formation rate-limiting model. The oxidative transformation of m-AP on the surface of δ-MnO2 was highly dependent on reactant concentrations, pH, temperature, and other co-solutes. The UV-VIS absorbance and mass spectra analysis indicated that the pathway leading to m-AP transformation may be the polymerization through the coupling reaction. The m-AP radicals were likely to be coupled by the covalent bonding between unsubstituted C2, C4 or C6 atoms in the m-AP aromatic rings to form oligomers as revealed by the results of activation energy and mass spectra. Furthermore, the toxicity assessment of the transformation productions indicated that the toxicity of m-AP to the E. coli K-12 could be reduced by MnO2 mediated transformation. The results are helpful for understanding the environmental behavior and potential risk of m-AP in natural environment.


Assuntos
Aminofenóis/química , Óxidos/química , Poluentes Químicos da Água/química , Aminofenóis/toxicidade , Escherichia coli , Cinética , Compostos de Manganês , Oxirredução , Estresse Oxidativo , Água , Poluentes Químicos da Água/toxicidade
8.
Anal Chim Acta ; 1074: 123-130, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31159932

RESUMO

Abnormal levels of Cys, Hcy and GSH are associated with various diseases, thus monitoring biothiols is of great significance. In this work, a dual-emission responsive near-infrared fluorescent probe NIR-NBD for detecting Hcy and Cys/GSH was developed based on the conjugation of a dicyanoisophorone based fluorophore (NIR-OH) and 7-nitrobenzofurazan (NBD). To our surprise, the addition of Hcy induced significant fluorescence enhancement at both 549 and 697 nm; while Cys/GSH resulted in major fluorescence emission at 697 nm. The detection limit was determined to be 33.2 nM for Cys, 33.5 nM for Hcy, and 34.4 nM for GSH. Therefore, the probe can be used for discriminative detection of Hcy and Cys/GSH. Moreover, fluorescence imaging of HeLa cells indicated that the probe was cell membrane permeable and could be used for visualizing Hcy and Cys/GSH in living cells.


Assuntos
4-Cloro-7-nitrobenzofurazano/análogos & derivados , Aminofenóis/química , Cisteína/análise , Corantes Fluorescentes/química , Glutationa/análise , Homocisteína/análise , 4-Cloro-7-nitrobenzofurazano/síntese química , 4-Cloro-7-nitrobenzofurazano/toxicidade , Aminofenóis/síntese química , Aminofenóis/toxicidade , Fluorescência , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/toxicidade , Células HeLa , Humanos , Limite de Detecção , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos
9.
Arh Hig Rada Toksikol ; 70(1): 18-29, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30956221

RESUMO

Exposure to alkyl anilines may lead to bladder cancer, which is the second most frequent cancer of the urogenital tract. 3,5-dimethylaniline is highly used in industry. Studies on its primary metabolite 3,5-dimethylaminophenol (3,5-DMAP) showed that this compound causes oxidative stress, changes antioxidant enzyme activities, and leads to death of different mammalian cells. However, there is no in vitro study to show the direct effects of 3,5-DMAP on human bladder and urothelial cells. Selenocompounds are suggested to decrease oxidative stress caused by some chemicals, and selenium supplementation was shown to reduce the risk of bladder cancer. The main aim of this study was to investigate whether selenocompounds organic selenomethionine (SM, 10 µmol/L) or inorganic sodium selenite (SS, 30 nmol/L) could reduce oxidative stress, DNA damage, and apoptosis in UROtsa cells exposed to 3,5-DMAP. 3,5-DMAP caused a dose-dependent increase in intracellular generation of reactive oxygen species, and its dose of 50 µmol/L caused lipid peroxidation, protein oxidation, and changes in antioxidant enzyme activities in different cellular fractions. The comet assay also showed single-strand DNA breaks induced by the 3,5-DMAP dose of 50 µmol/L, but no changes in double-strand DNA breaks. Apoptosis was also triggered. Both selenocompounds provided partial protection against the cellular toxicity of 3,5-DMAP. Low selenium status along with exposure to alkyl anilines can be a major factor in the development of bladder cancer. More mechanistic studies are needed to specify the role of selenium in bladder cancer.


Assuntos
Aminofenóis/toxicidade , Antioxidantes/farmacologia , Dano ao DNA/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Fatores de Proteção , Compostos de Selênio/farmacologia , Urotélio/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Estresse Oxidativo/efeitos dos fármacos
10.
Biomed Pharmacother ; 109: 621-628, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30399599

RESUMO

Aminophenols, which are widely used as components of hair dye and medicine, may function as environmental endocrine disruptors by regulating the proliferation of endocrine-related cancers. Estrogen receptor α (ERα) is a key regulator of breast cancer. Recently, it was found that ERα may also participate in the transformation and progression of thyroid tumors, but its interaction with aminophenols and its function in thyroid tumors is not clear. In this study, the transcription factor activity of ERα in BHP10-3 cells (a thyroid tumor cell line) was examined using luciferase assays. The promoter recruitment of ERα was examined using chromatin co-precipitation (ChIP). Additionally, in an in vivo study, BHP10-3 cells were transplanted into nude mice. Upon administration of aminophenols, the transcription factor activity of ERα was significantly increased in BHP10-3 cells, and the recruitment of ERα to the promoter of its target gene was increased. Aminophenols enhanced the in vitro and in vivo proliferation of BHP10-3 cells. By discovering that aminophenols induce the onco-promoting activity of ERα, our study extends the understanding of the function of aminophenols and suggests that ERα is a potential therapeutic target for the treatment of thyroid tumors.


Assuntos
Aminofenóis/toxicidade , Proliferação de Células/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Feminino , Camundongos , Camundongos Nus , Neoplasias da Glândula Tireoide/induzido quimicamente , Neoplasias da Glândula Tireoide/patologia
12.
Am J Physiol Renal Physiol ; 313(6): F1200-F1208, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28768661

RESUMO

Although all-trans-retinoic acid (ATRA) provides protection against a variety of conditions in vivo, particularly ischemia, the molecular mechanisms underpinning these effects remain unclear. The present studies were designed to assess potential mechanisms by which ATRA affords cytoprotection against renal toxicants in LLC-PK1 cells. Pretreatment of LLC-PK1 cells with ATRA (25 µM) for 24 h afforded cytoprotection against oncotic cell death induced by p-aminophenol (PAP), 2-(glutathion-S-yl)hydroquinone (MGHQ), and iodoacetamide but not against apoptotic cell death induced by cisplatin. Inhibition of protein synthesis with cycloheximide blunted ATRA protection, indicating essential cell survival pathways must be engaged before toxicant exposure to provide cytoprotection. Interestingly, ATRA did not prevent the PAP-induced generation of reactive oxygen species (ROS) nor did it alter glutathione levels. Moreover, ATRA had no significant effect on Nrf2 protein expression, and the Nrf2 inducers sulforaphane and MG132 did not influence ATRA cytoprotection, suggesting cytoprotective pathways beyond those that influence ROS levels contribute to ATRA protection. In contrast, ATRA rapidly (15 min) induced levels of the cellular stress kinases p-ERK and p-AKT at concentrations of ATRA (10 and 25 µM) required for cytoprotection. Consistent with a role for p-ERK in ATRA-mediated cytoprotection, inhibition of p-ERK with PD98059 reduced the ability of ATRA to afford protection against PAP toxicity. Collectively, these data suggest that p-ERK and its downstream targets, independent of ROS and antioxidant signaling, are important contributors to the cytoprotective effects of ATRA against oncotic cell death.


Assuntos
Células Epiteliais/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Rim/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Tretinoína/farmacologia , Aminofenóis/toxicidade , Animais , Apoptose/efeitos dos fármacos , Cisplatino/toxicidade , Citoproteção , Ativação Enzimática , Células Epiteliais/enzimologia , Células Epiteliais/patologia , Glutationa/análogos & derivados , Glutationa/toxicidade , Iodoacetamida/toxicidade , Rim/enzimologia , Rim/patologia , Células LLC-PK1 , Necrose , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Suínos , Fatores de Tempo
13.
Toxicol In Vitro ; 29(2): 289-98, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25458622

RESUMO

In vitro models are useful tools to initially assess the toxicological safety hazards of food ingredients. Toxicities of cinnamaldehyde (CINA), cinnamon bark oil, lemongrass oil (LGO), thymol, thyme oil (TO), clove leaf oil, eugenol, ginger root extract (GRE), citric acid, guanosine monophosphate, inosine monophosphate and sorbose (SORB) were assessed in canine renal proximal tubule cells (CPTC) using viability assay and renal injury markers. At LC50, CINA was the most toxic (0.012mg/ml), while SORB the least toxic (>100mg/ml). Toxicities (LC50) of positive controls were as follows: 4-aminophenol (0.15mg/ml in CPTC and 0.083mg/ml in human PTC), neomycin (28.6mg/ml in CPTC and 27.1mg/ml in human PTC). XYL displayed lowest cytotoxic potency (LC50=82.7mg/ml in CPTC). In vivo renal injury markers in CPTC were not significantly different from controls. The LGO toxicity mechanism was analyzed using qPCR and electron microscopy. Out of 370 genes, 57 genes (15.4%) were significantly up (34, 9.1%) or down (23, 6.2%) regulated, with the most upregulated gene gsta3 (∼200-fold) and the most affected pathway being oxidative stress. LGO induced damage of mitochondria, phospholipid accumulation and lack of a brush border. Viability assays along with mechanistic studies in the CPTC model may serve as a valuable in vitro toxicity screening tool.


Assuntos
Inocuidade dos Alimentos , Túbulos Renais Proximais/citologia , Testes de Toxicidade/métodos , Acroleína/análogos & derivados , Acroleína/toxicidade , Aminofenóis/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Ácido Cítrico/toxicidade , Cães , Eugenol/toxicidade , Perfilação da Expressão Gênica , Zingiber officinale , Guanosina Monofosfato/toxicidade , Humanos , Inosina Monofosfato/toxicidade , Óleos Voláteis/toxicidade , Extratos Vegetais/toxicidade , Óleos de Plantas/toxicidade , Raízes de Plantas , Sorbose/toxicidade , Terpenos/toxicidade , Timol/toxicidade , Thymus (Planta) , Xilitol/toxicidade
14.
J Appl Toxicol ; 35(5): 466-77, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25178734

RESUMO

Exposure to monocyclic aromatic alkylanilines (MAAs), namely 2,6-dimethylaniline (2,6-DMA), 3,5-dimethylaniline (3,5-DMA) and 3-ethylaniline (3-EA), was significantly and independently associated with bladder cancer incidence. 3,5-DMAP (3,5-dimethylaminophenol), a metabolite of 3,5-DMA, was shown to induce an imbalance in cytotoxicity cellular antioxidant/oxidant status, and DNA damage in mammalian cell lines. This study was designed to evaluate the protective effect of ascorbic acid (Asc) against the cytotoxicity, reactive oxygen species (ROS) production, genotoxicity and epigenetic changes induced by 3,5-DMAP in AA8 Chinese Hamster Ovary (CHO) cells. In different cellular fractions, 3,5-DMAP caused alterations in the enzyme activities orchestrating a cellular antioxidant balance, decreases in reduced glutathione levels and a cellular redox ratio as well as increases in lipid peroxidation and protein oxidation. We also suggest that the cellular stress caused by this particular alkylaniline leads to both genetic (Aprt mutagenesis) and epigenetic changes in histones 3 and 4 (H3 and H4). This may further cause molecular events triggering different pathological conditions and eventually cancer. In both cytoplasm and nucleus, Asc provided increases in 3,5-DMAP-reduced glutathione levels and cellular redox ratio and decreases in the lipid peroxidation and protein oxidation. Asc was also found to be protective against the genotoxic and epigenetic effects initiated by 3,5-DMAP. In addition, Asc supplied protection against the cell cycle (G1 phase) arrest induced by this particular alkylaniline metabolite.


Assuntos
Aminofenóis/toxicidade , Ácido Ascórbico/farmacologia , Epigênese Genética/efeitos dos fármacos , Compostos de Anilina/toxicidade , Animais , Antioxidantes/metabolismo , Células CHO , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Cricetinae , Cricetulus , Dano ao DNA/efeitos dos fármacos , Glutationa/metabolismo , Histona Acetiltransferases/metabolismo , Histona Desacetilases/metabolismo , Histonas/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
15.
Chem Biol Interact ; 222: 126-32, 2014 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-25446496

RESUMO

Chlorinated anilines are nephrotoxicants both in vivo and in vitro. The mechanism of chloroaniline nephrotoxicity may occur via more than one mechanism, but aminochlorophenol metabolites appear to contribute to the adverse in vivo effects. The purpose of this study was to compare the nephrotoxic potential of 4-aminophenol (4-AP), 4-amino-2-chlorophenol (4-A2CP), 4-amino-3-chlorophenol (4-A3CP) and 4-amino-2,6-dichlorophenol (4-A2,6DCP) using isolated renal cortical cells (IRCC) from male Fischer 344 rats as the model and to explore renal bioactivation mechanisms for 4-A2CP. For these studies, IRCC (∼4×10(6)cells/ml) were incubated with an aminophenol (0.5 or 1.0mM) or vehicle for 60min at 37°C with shaking. In some experiments, cells were pretreated with an antioxidant or cytochrome P450 (CYP), flavin-containing monooxygenase (FMO), peroxidase or cyclooxygenase inhibitor prior to 4-A2CP (1.0mM). Lactate dehydrogenase (LDH) release served as a measure of cytotoxicity. The order of decreasing nephrotoxic potential in IRCC was 4-A2,6-DCP>4-A2CP>4-AP>4-A3CP. The cytotoxicity induced by 4-A2CP was reduced by pretreatment with the peroxidase inhibitor mercaptosuccinic acid, and some antioxidants (ascorbate, glutathione, N-acetyl-l-cysteine) but not by others (α-tocopherol, DPPD). In addition, pretreatment with the iron chelator deferoxamine, several CYP inhibitors (except for the general CYP inhibitor piperonyl butoxide), FMO inhibitors or indomethacin (a cyclooxygenase inhibitor) failed to attenuate 4-A2CP cytotoxicity. These results demonstrate that the number and ring position of chloro groups can influence the nephrotoxic potential of 4-aminochlorophenols. In addition, 4-A2CP may be bioactivated by cyclooxygenase and peroxidases, and free radicals appear to play a role in 4-A2CP cytotoxicity.


Assuntos
Aminofenóis/farmacocinética , Aminofenóis/toxicidade , Córtex Renal/efeitos dos fármacos , Córtex Renal/metabolismo , Aminofenóis/química , Animais , Antioxidantes/farmacologia , Biotransformação , Clorofenóis/toxicidade , Inibidores Enzimáticos/farmacologia , Técnicas In Vitro , Masculino , Ratos , Ratos Endogâmicos F344 , Relação Estrutura-Atividade
16.
J Biomol Screen ; 19(10): 1402-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25239051

RESUMO

In vitro models that accurately and rapidly assess hepatotoxicity and the effects of hepatic metabolism on nonliver cell types are needed by the U.S. Department of Defense and the pharmaceutical industry to screen compound libraries. Here, we report the first use of high content analysis on the Integrated Discrete Multiple Organ Co-Culture (IdMOC) system, a high-throughput method for such studies. We cultured 3T3-L1 cells in the presence and absence of primary human hepatocytes, and exposed the cultures to 4-aminophenol and cyclophosphamide, model toxicants that are respectively detoxified and activated by the liver. Following staining with calcein-AM, ethidium homodimer-1, and Hoechst 33342, high content analysis of the cultures revealed four cytotoxic endpoints: fluorescence intensities of calcein-AM and ethidium homodimer-1, nuclear area, and cell density. Using these endpoints, we observed that the cytotoxicity of 4-aminophenol in 3T3-L1 cells in co-culture was less than that observed for 3T3-L1 monocultures, consistent with the known detoxification of 4-aminophenol by hepatocytes. Conversely, cyclophosphamide cytotoxicity for 3T3-L1 cells was enhanced by co-culturing with hepatocytes, consistent with the known metabolic activation of this toxicant. The use of IdMOC plates combined with high content analysis is therefore a multi-endpoint, high-throughput capability for measuring the effects of metabolism on toxicity.


Assuntos
Aminofenóis/toxicidade , Ciclofosfamida/toxicidade , Testes de Toxicidade/métodos , Células 3T3-L1/efeitos dos fármacos , Células 3T3-L1/metabolismo , Animais , Técnicas de Cocultura , Fluorescência , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Inativação Metabólica , Camundongos
17.
Toxicol Sci ; 141(1): 300-13, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24973092

RESUMO

Epidemiological studies have demonstrated extensive human exposure to the monocyclic aromatic amines, particularly to 3,5-dimethylaniline, and found an association between exposure to these compounds and risk for bladder cancer. Little is known about molecular mechanisms that might lead to the observed risk. We previously suggested that the hydroxylated 3,5-dimethylaniline metabolite, 3,5-dimethylaminophenol (3,5-DMAP), played a central role in effecting genetic change through the generation of reactive oxygen species (ROS) in a redox cycle with 3,5-dimethylquinoneimine. Experiments here characterize ROS generation by 3,5-DMAP exposure in nucleotide repair-proficient and -deficient Chinese hamster ovary cells as a function of time. Besides, various cellular responses discussed herein indicate that ROS production is the principal cause of cytotoxicity. Fluorescence microscopy of cells exposed to 3,5-DMAP confirmed that ROS production occurs in the nuclear compartment, as suggested by a previous study demonstrating covalent linkage between 3,5-DMAP and histones. 3,5-DMAP was also compared with 3,5-dimethylhydroquinone to determine whether substitution of one of the phenolic hydroxyl groups by an amino group had a significant effect on some of the investigated parameters. The comparatively much longer duration of observable ROS produced by 3,5-DMAP (7 vs. 1 day) provides further evidence that 3,5-DMAP becomes embedded in the cellular matrix in a form capable of continued redox cycling. 3,5-DMAP also induced dose-dependent increase of H2O2 and ·OH, which were determined as the major free radicals contributing to the cytotoxicity and apoptosis mediated via caspase-3 activation. Overall, this study provides insight into the progression of alkylaniline-induced toxicity.


Assuntos
Aminofenóis/toxicidade , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Células CHO , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Histonas/metabolismo , Microscopia de Fluorescência
18.
Int J Hyg Environ Health ; 217(4-5): 592-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24370547

RESUMO

Epidemiological studies suggest associations between the use of N-acetyl-4-aminophenol (paracetamol) during pregnancy and increased risks of reproductive disorders in the male offspring. Previously we have reported a ubiquitous urinary excretion of N-acetyl-4-aminophenol in the general population. Possible sources are (1) direct intake of paracetamol through medication, (2) paracetamol residues in the food chain and (3) environmental exposure to aniline or related substances that are metabolized into N-acetyl-4-aminophenol. In order to elucidate the origins of the excretion of N-acetyl-4-aminophenol in urine and to contribute to the understanding of paracetamol and aniline metabolism in humans we developed a rapid, turbulent-flow HPLC-MS/MS method with isotope dilution for the simultaneous quantification of N-acetyl-4-aminophenol and two other aniline related metabolites, N-acetyl-2-aminophenol and acetanilide. We applied this method to three sets of urine samples: (1) individuals with no known exposure to aniline and also no recent paracetamol medication; (2) individuals after occupational exposure to aniline but no paracetamol medication and (3) paracetamol users. We confirmed the omnipresent excretion of N-acetyl-4-aminophenol. Additionally we revealed an omnipresent excretion of N-acetyl-2-aminophenol. In contrast, acetanilide was only found after occupational exposure to aniline, not in the general population or after paracetamol use. The results lead to four preliminary conclusions: (1) other sources than aniline seem to be responsible for the major part of urinary N-acetyl-4-aminophenol in the general population; (2) acetanilide is a metabolite of aniline in man and a valuable biomarker for aniline in occupational settings; (3) aniline baseline levels in the general population measured after chemical hydrolysis do not seem to originate from acetanilide and hence not from a direct exposure to aniline itself and (4) N-acetyl-2-aminophenol does not seem to be related to aniline nor to N-acetyl-4-aminophenol in man.


Assuntos
Acetaminofen/urina , Acetanilidas/urina , Aminofenóis/urina , Compostos de Anilina/urina , Acetaminofen/efeitos adversos , Acetaminofen/química , Acetanilidas/química , Acetanilidas/toxicidade , Aminofenóis/química , Aminofenóis/toxicidade , Compostos de Anilina/química , Compostos de Anilina/toxicidade , Cromatografia Líquida de Alta Pressão , Monitoramento Ambiental , Cadeia Alimentar , Humanos , Espectrometria de Massas , Exposição Ocupacional
20.
Bioorg Med Chem Lett ; 23(1): 301-4, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23164710

RESUMO

Five new phenoxazine-based alkaloids venezuelines A-E (1-5) and two new aminophenols venezuelines F-G (6-7), as well as three known analogues exfoliazone, chandrananimycin D and carboxyexfoliazone were isolated from the fermentation broth of the marine-derived bacterium Streptomyces venezuelae. The structures of new compounds were determined on the basis of extensive spectroscopic analysis. The cytotoxic activity of these compounds against a panel of tumor cell lines were tested, while the regulation of gene target Nur77 of 2 and exfoliazone (8) were evaluated.


Assuntos
Alcaloides/química , Aminofenóis/química , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Oxazinas/química , Streptomyces/química , Alcaloides/isolamento & purificação , Alcaloides/toxicidade , Aminofenóis/isolamento & purificação , Aminofenóis/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Expressão Gênica/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Conformação Molecular , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...