Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemMedChem ; 16(24): 3672-3690, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34278727

RESUMO

Herein we report a microscale parallel synthetic approach allowing for rapid access to libraries of N-acylated aminotriazoles and screening of their inhibitory activity against factor XIIa (FXIIa) and thrombin, which are targets for antithrombotic drugs. This approach, in combination with post-screening structure optimization, yielded a potent 7 nM inhibitor of FXIIa and a 25 nM thrombin inhibitor; both compounds showed no inhibition of the other tested serine proteases. Selected N-acylated aminotriazoles exhibited anticoagulant properties in vitro influencing the intrinsic blood coagulation pathway, but not extrinsic coagulation. Mechanistic studies of FXIIa inhibition suggested that synthesized N-acylated aminotriazoles are covalent inhibitors of FXIIa. These synthesized compounds may serve as a promising starting point for the development of novel antithrombotic drugs.


Assuntos
Amitrol (Herbicida)/farmacologia , Anticoagulantes/farmacologia , Fator XIIa/antagonistas & inibidores , Inibidores de Serina Proteinase/farmacologia , Trombina/antagonistas & inibidores , Acilação , Amitrol (Herbicida)/síntese química , Amitrol (Herbicida)/química , Anticoagulantes/síntese química , Anticoagulantes/química , Coagulação Sanguínea/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fator XIIa/metabolismo , Humanos , Estrutura Molecular , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/química , Relação Estrutura-Atividade , Trombina/metabolismo
2.
PLoS One ; 15(6): e0229891, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32497076

RESUMO

A facile method has been developed for the synthesis of Schiff bases derived from substituted and unsubstituted 3-amino- and 4-amino-1,2,4-triazoles. Condensation of the aminotrizoles with a variety of aromatic aldehydes afforded desired Schiff bases in excellent yields in 3-5 minutes of exposure to ultra-sound. The synthesized compounds were characterized by means of IR, 1HNMR and Mass spectrometry. The synthesized compounds were also screened for their antibacterial potential against Gram-negative (Escherichia coli, Shigella sonnei, Pseudomonas aeruginosa and Salmonella typhi) and two Gram-positive (Staphylococcus aureus and Bacillus subtilis) strains.


Assuntos
Amitrol (Herbicida)/síntese química , Amitrol (Herbicida)/farmacologia , Antibacterianos/síntese química , Antibacterianos/farmacologia , Triazóis/síntese química , Triazóis/farmacologia , Ondas Ultrassônicas , Amitrol (Herbicida)/química , Antibacterianos/química , Bactérias/efeitos dos fármacos , Técnicas de Química Sintética , Testes de Sensibilidade Microbiana , Bases de Schiff/química , Triazóis/química
3.
World J Microbiol Biotechnol ; 36(5): 67, 2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32328869

RESUMO

As the use of the new insensitive munitions compound 3-nitro-1,2,4-triazol-5-one (NTO) increases, wastewaters, runoff and groundwater containing NTO will be generated. Little is known about the fate of NTO during biological wastewater treatment. The objective of this study was to explore the ability of wastewater sludges to promote the biotransformation of NTO. Three different sludges, i.e., anaerobic granular sludge, anaerobic digested sludge, and return activated sludge, were used to study the biotransformation of NTO under anaerobic conditions. Three different electron donor amendments were compared- hydrogen, ethanol, and acetate. Mixed microbial communities in each of the three sludge sources were effective in the reductive biotransformation of NTO. 3-amino-1,2,4-triazol-5-one (ATO) was observed as the major product of NTO biotransformation. The highest maximum specific rate of NTO reduction, about 120 mg NTO/g volatile suspended solids/d, was observed in anaerobic granular sludge with hydrogen or ethanol supplied as electron donors. NTO biotransformation to ATO by anaerobic digested sludge was also studied under denitrifying conditions. In this case, reduction of NTO started only after complete denitrification of added nitrate. An important implication of this paper is that sludge from wastewater treatment plants can rapidly and readily reduce NTO to ATO.


Assuntos
Biotransformação , Nitrocompostos/química , Esgotos/química , Triazóis/química , Águas Residuárias , Amitrol (Herbicida)/química , Anaerobiose , Água Subterrânea , Microbiota , Nitratos , Purificação da Água
4.
J Med Chem ; 63(10): 5324-5340, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32329617

RESUMO

Janus kinases (JAKs) are non-receptor tyrosine kinases that are essential components of the JAK-STAT signaling pathway. Associated aberrant signaling is responsible for many forms of cancer and disorders of the immune system. The present focus is on the discovery of molecules that may regulate the activity of JAK2 by selective binding to the JAK2 pseudokinase domain, JH2. Specifically, the Val617Phe mutation in JH2 stimulates the activity of the adjacent kinase domain (JH1) resulting in myeloproliferative disorders. Starting from a non-selective screening hit, we have achieved the goal of discovering molecules that preferentially bind to the ATP binding site in JH2 instead of JH1. We report the design and synthesis of the compounds and binding results for the JH1, JH2, and JH2 V617F domains, as well as five crystal structures for JH2 complexes. Testing with a selective and non-selective JH2 binder on the autophosphorylation of wild-type and V617F JAK2 is also contrasted.


Assuntos
Amitrol (Herbicida)/química , Amitrol (Herbicida)/metabolismo , Ativadores de Enzimas/química , Ativadores de Enzimas/metabolismo , Janus Quinase 2/química , Janus Quinase 2/metabolismo , Animais , Células HEK293 , Humanos , Ligantes , Ligação Proteica/fisiologia , Células Sf9 , Difração de Raios X/métodos
5.
J Am Chem Soc ; 142(11): 5177-5183, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32100536

RESUMO

The insufficient intracellular H2O2 level in tumor cells is closely associated with the limited efficacy of chemodynamic therapy (CDT). Despite tremendous efforts, engineering CDT agents with a straightforward and secure H2O2 supplying ability remains a great challenge. Inspired by the balance of H2O2 generation and elimination in cancer cells, herein, a nanozyme-based H2O2 homeostasis disruptor is fabricated to elevate the intracellular H2O2 level through facilitating H2O2 production and restraining H2O2 elimination for enhanced CDT. In the formulation, the disruptor with superoxide dismutase-mimicking activity can convert O2•- to H2O2, promoting the production of H2O2. Simultaneously, the suppression of catalase activity and depletion of glutathione by the disruptor weaken the transformation of H2O2 to H2O. Thus, the well-defined system could perturb the H2O2 balance and give rise to the accumulation of H2O2 in cancer cells. The raised H2O2 level would ultimately amplify the Fenton-like reaction-based CDT efficiency. Our work not only paves a way to engineer alternative CDT agents with a H2O2 supplying ability for intensive CDT but also provides new insights into the construction of bioinspired materials.


Assuntos
Antineoplásicos/uso terapêutico , Peróxido de Hidrogênio/metabolismo , Estruturas Metalorgânicas/uso terapêutico , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Amitrol (Herbicida)/química , Amitrol (Herbicida)/uso terapêutico , Amitrol (Herbicida)/toxicidade , Animais , Antineoplásicos/química , Antineoplásicos/toxicidade , Catalase/antagonistas & inibidores , Catálise , Linhagem Celular Tumoral , Tratamento Farmacológico , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Inibidores Enzimáticos/toxicidade , Feminino , Humanos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/toxicidade , Camundongos , Nanopartículas/química , Nanopartículas/toxicidade , Oxirredução , Polietilenoglicóis/química , Polietilenoglicóis/uso terapêutico , Polietilenoglicóis/toxicidade
6.
Cell Chem Biol ; 26(9): 1263-1273.e5, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31257183

RESUMO

Drug-like inhibitors are often designed by mimicking cofactor or substrate interactions with enzymes. However, as active sites are comprised of conserved residues, it is difficult to identify the critical interactions needed to design selective inhibitors. We are developing an approach, named RADD (resistance analysis during design), which involves engineering point mutations in the target to generate active alleles and testing compounds against them. Mutations that alter compound potency identify residues that make key interactions with the inhibitor and predict target-binding poses. Here, we apply this approach to analyze how diaminotriazole-based inhibitors bind spastin, a microtubule-severing AAA (ATPase associated with diverse cellular activities) protein. The distinct binding poses predicted for two similar inhibitors were confirmed by a series of X-ray structures. Importantly, our approach not only reveals how selective inhibition of the target can be achieved but also identifies resistance-conferring mutations at the early stages of the design process.


Assuntos
Engenharia de Proteínas/métodos , Espastina/efeitos dos fármacos , Espastina/genética , Proteínas AAA/genética , Adenosina Trifosfatases/metabolismo , Amitrol (Herbicida)/química , Fenômenos Bioquímicos , Domínio Catalítico , Cristalografia por Raios X/métodos , Desenho de Fármacos , Humanos , Microtúbulos/metabolismo , Modelos Moleculares , Mutação Puntual/genética , Espastina/antagonistas & inibidores , Triazóis/química , Tubulina (Proteína)/química
7.
PLoS One ; 13(7): e0198827, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29969448

RESUMO

Acanthamoeba is normally free-living, but sometimes facultative and occasionally opportunistic parasites. Current therapies are, by necessity, arduous and yet poorly effective due to their inabilities to kill cyst stages or in some cases to actually induce encystation. Acanthamoeba can therefore survive as cysts and cause disease recurrence. Herein, in pursuit of better therapies and to understand the biochemistry of this understudied organism, we characterize its histidine biosynthesis pathway and explore the potential of targeting this with antimicrobials. We demonstrate that Acanthamoeba is a histidine autotroph, but with the ability to scavenge preformed histidine. It is able to grow in defined media lacking this amino acid, but is inhibited by 3-amino-1,2,4-triazole (3AT) that targets Imidazoleglycerol-Phosphate Dehydratase (IGPD) the rate limiting step of histidine biosynthesis. The structure of Acanthamoeba IGPD has also been determined in complex with 2-hydroxy-3-(1,2,4-triazol-1-yl) propylphosphonate [(R)-C348], a recently described novel inhibitor of Arabidopsis thaliana IGPD. This compound inhibited the growth of four Acanthamoeba species, having a 50% inhibitory concentration (IC50) ranging from 250-526 nM. This effect could be ablated by the addition of 1 mM exogenous free histidine, but importantly not by physiological concentrations found in mammalian tissues. The ability of 3AT and (R)-C348 to restrict the growth of four strains of Acanthamoeba spp. including a recently isolated clinical strain, while not inducing encystment, demonstrates the potential therapeutic utility of targeting the histidine biosynthesis pathway in Acanthamoeba.


Assuntos
Acanthamoeba/enzimologia , Amitrol (Herbicida)/química , Antiprotozoários/química , Histidina/antagonistas & inibidores , Hidroliases/química , Acanthamoeba/efeitos dos fármacos , Acanthamoeba/genética , Acanthamoeba/crescimento & desenvolvimento , Amitrol (Herbicida)/farmacologia , Antiprotozoários/farmacologia , Processos Autotróficos/efeitos dos fármacos , Processos Autotróficos/genética , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Histidina/biossíntese , Hidroliases/antagonistas & inibidores , Hidroliases/genética , Hidroliases/metabolismo , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica
8.
Environ Sci Pollut Res Int ; 25(21): 20320-20327, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28233210

RESUMO

Fulvic acid (Henan ChangSheng Corporation) photoinduced degradation of non-UVA-absorbing herbicide amitrole (3-amino-1,2,4-triazole, AMT) as a way for its removal from polluted water was investigated in details. It was shown that the main primary species generated by fulvic acid under UVA radiation, triplet state and hydrated electron, are not directly involved in the herbicide degradation. AMT decays in reactions with secondary intermediates, reactive oxygen species, formed in reactions of the primary ones with dissolved oxygen. Singlet oxygen is responsible for 80% of herbicide oxidation, and •OH and O2-• radicals-for the remaining 20% of AMT. It was found that quantum yield of AMT photodegradation (ϕ 365nm) decreases linearly from 2.2 × 10-3 to 1.2 × 10-3 with the increase of fulvic acid concentration from 1.1 to 30 mg L-1. On the contrary, the increase of AMT concentration from 0.8 to 25 mg L-1 leads to practically linear growth of ϕ 365nm value from 1.8 × 10-4 to 4 × 10-3. Thus, the fulvic acid exhibits a good potential as UVA photooxidizer of organic pollutants sensitive to the singlet oxygen (ϕ 532nm(1O2) = 0.025 at pH 6.5).


Assuntos
Amitrol (Herbicida)/química , Benzopiranos/química , Poluentes Ambientais/química , Herbicidas/química , Fotólise , Oxigênio Singlete/química , Raios Ultravioleta , Oxirredução , Oxigênio/química , Triazóis/química
9.
J Biol Inorg Chem ; 20(6): 1059-68, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26239697

RESUMO

The potential impact on human exposure to aminotriazole (ATA) and heavy metal in the environment becomes a concerning issue. In the current study, a water-soluble Cu(II)-aminotriazole complex [Cu(II)-ATA] was synthesized. To explore the binding mechanism of the complex with human serum albumin (HSA), their effects on conformation and activity of HSA by multispectroscopic approach and molecular modeling were investigated. Further fluorescent tests revealed that the quenching mechanism of HSA by Cu(II)-ATA was overall static. Meanwhile, the obtained binding constant and thermodynamic parameters on complex-HSA interaction showed that the types of interaction force of Cu(II)-ATA and HSA were hydrogen bonding, van der Waals and electrostatic. The analysis of three-dimensional fluorescence, circular dichroism and Fourier transform infrared spectroscopy showed that Cu(II)-ATA induced the changes in the secondary structure of HSA. Molecular docking simulation was performed and docking model suggested that the complex docked into HSA at subdomain IIA. Furthermore, amino group and attractive electrostatic interaction of Cu(II)-ATA greatly contributed to the hydrogen bonding, van der Waals and electrostatic interaction between Cu(II)-ATA and HSA, as confirmed by experimental data.


Assuntos
Amitrol (Herbicida)/química , Sítios de Ligação , Complexos de Coordenação/química , Albumina Sérica/ultraestrutura , Ligação Competitiva , Dicroísmo Circular , Cobre , Humanos , Ibuprofeno/química , Cetoprofeno/química , Simulação de Acoplamento Molecular , Albumina Sérica/química , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Analyst ; 140(16): 5764-71, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26171468

RESUMO

Amitrole is a biologically toxic nonselective herbicide which contaminates surface and ground waters at unprecedented rates. All reported modified electrodes that detect amitrole within sub-micromolar to nanomolar levels were based on the electro-oxidation of amitrole. Herein, we developed a new conceptual idea to detect picomolar concentrations of amitrole based on calcium cross linked pectin stabilized gold nanoparticle (CCLP-GNP) film modified electrode which was prepared by electrodeposition. When the electrochemical behavior of amitrole was investigated at the CCLP-GNP film, the reduction peak current of the GNPs linearly decreased as the concentration of amitrole increases. We have designed a determination platform based on the amitrole dependent decrease of the GNP cathodic peak. The described concept and high sensitivity of square wave voltammetry together facilitate the great sensing ability; as a result the described approach is able to reach a low detection limit of 36 pM which surpassed the detection limits of existing protocols. The sensor presents a good ability to determine amitrole in two linear concentration ranges: (1) 100 pM-1500 pM with a detection limit of 36 pM; (2) 100 nM-1500 nM with a detection limit of 20 nM. The preparation of CCLP-GNPs is simple, rapid and does not require any reducing agents.


Assuntos
Amitrol (Herbicida)/análise , Técnicas de Química Analítica/métodos , Ouro/química , Nanopartículas/química , Pectinas/química , Amitrol (Herbicida)/química , Cálcio/química , Técnicas Eletroquímicas , Limite de Detecção
11.
Eur J Pharm Sci ; 76: 102-9, 2015 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-25956074

RESUMO

Lactoperoxidase (LPO) inhibitors are very selective for solid tumor due to their high binding affinity to the LPO enzyme. A computational study was used to select top-ranked LPO inhibitor (alone and in complex with (99m)Tc) with high in silico affinity. The novel prepared (99m)Tc-amitrole complex demonstrated both in silico and in vivo high affinity toward solid tumors.(99m)Tc-amitrole was radio-synthesized with a high radiochemical yield (89.7±3.25). It showed in vitro stability for up to 6h. Its preclinical evaluation in solid tumor-bearing mice showed high retention and biological accumulation in solid tumor cells with a high Target/Non-Target (T/NT) ratio equal to 4.9 at 60min post-injection. The data described previously could recommend (99m)Tc-amitrole as potential targeting scintigraphic probe for solid tumor imaging.


Assuntos
Amitrol (Herbicida)/farmacocinética , Antineoplásicos/farmacocinética , Carcinoma de Ehrlich/diagnóstico por imagem , Desenho Assistido por Computador , Desenho de Fármacos , Inibidores Enzimáticos/farmacocinética , Lactoperoxidase/antagonistas & inibidores , Compostos Radiofarmacêuticos/farmacocinética , Tecnécio/farmacocinética , Amitrol (Herbicida)/administração & dosagem , Amitrol (Herbicida)/química , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Carcinoma de Ehrlich/tratamento farmacológico , Carcinoma de Ehrlich/enzimologia , Estabilidade de Medicamentos , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Feminino , Concentração de Íons de Hidrogênio , Lactoperoxidase/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Cintilografia , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/química , Relação Estrutura-Atividade , Tecnécio/administração & dosagem , Tecnécio/química , Distribuição Tecidual
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 136 Pt C: 1982-7, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25468441

RESUMO

A new Schiff base of N-salicylidene-3-amino-1,2,4-triazole (SAT) was synthesized and its photoluminescent, photochromic and thermochromic properties were characterized and demonstrated. The fluorescence lifetime and quantum yield of SAT were measured and the microcrack bone imaging using SAT as a fluorescent label was observed by laser scanning confocal microscope (LSCM). The absorption spectrum of SAT was demonstrated using DFT/TD-DFT calculation.


Assuntos
Amitrol (Herbicida)/química , Diagnóstico por Imagem/métodos , Fraturas Ósseas/diagnóstico , Coloração e Rotulagem/métodos , Triazóis/química , Osso e Ossos/química , Fluorescência , Fraturas Ósseas/patologia , Microscopia Confocal , Bases de Schiff/química , Espectrometria de Fluorescência/métodos
13.
ACS Chem Neurosci ; 4(11): 1501-12, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23968537

RESUMO

Alzheimer's disease, Familial British dementia, Familial Danish dementia, Type 2 diabetes mellitus, plus Creutzfeldt-Jakob disease are associated with amyloid fibril deposition and oxidative stress. The antioxidant enzyme catalase is a neuroprotective amyloid binding protein. Herein the effects of catalase overexpression in SH-SY5Y neuronal cells on the toxicity of amyloid-ß (Aß), amyloid-Bri (ABri), amyloid-Dan (ADan), amylin (IAPP), and prion protein (PrP) peptides were determined. Results showed catalase overexpression was neuroprotective against Aß, ABri, ADan, IAPP, and PrP peptides. The catalase inhibitor 3-amino-1,2,4-triazole (3-AT) and catalase-amyloid interaction inhibitor benzothiazole aniline tetra(ethylene glycol) (BTA-EG4) significantly enhanced neurotoxicity of amyloid peptides in catalase overexpressing neuronal cells. This suggests catalase neuroprotection involves breakdown of hydrogen peroxide (H2O2) plus a direct binding interaction between catalase and the Aß, ABri, ADan, IAPP, and PrP peptides. Kisspeptin 45-50 had additive neuroprotective actions against the Aß peptide in catalase overexpressing cells. The effects of 3-AT had an intracellular site of action, while catalase-amyloid interactions had an extracellular component. These results suggest that the 3-AT and BTA-EG4 compounds may be able to inhibit endogenous catalase mediated neuroprotection. Use of BTA-EG4, or compounds that inhibit catalase binding to amyloid peptides, as potential therapeutics for Neurodegenerative diseases may therefore result in unwanted effects.


Assuntos
Amitrol (Herbicida)/toxicidade , Peptídeos beta-Amiloides/antagonistas & inibidores , Compostos de Anilina/toxicidade , Benzotiazóis/toxicidade , Catalase/genética , Inibidores Enzimáticos/toxicidade , Fármacos Neuroprotetores/antagonistas & inibidores , Doença de Alzheimer/enzimologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Amitrol (Herbicida)/química , Peptídeos beta-Amiloides/metabolismo , Compostos de Anilina/química , Benzotiazóis/química , Catalase/antagonistas & inibidores , Catalase/biossíntese , Linhagem Celular Tumoral , Síndrome de Creutzfeldt-Jakob/enzimologia , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patologia , Demência/enzimologia , Demência/genética , Demência/patologia , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Inibidores Enzimáticos/química , Humanos , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Neurônios/patologia , Fármacos Neuroprotetores/uso terapêutico , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
15.
J Hazard Mater ; 260: 569-75, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23811632

RESUMO

In order to investigate sustainable alternatives to current water treatment methods, the effect of NF-titania film thickness and subsequent photocatalysis in combination with oxidants was examined under simulated solar light. Such a combination presents a theoretical possibility for a synergistic interaction between the photocatalyst and the oxidant (activation of the oxidant by the catalyst under conditions under which it may not conventionally be activated). To investigate, peroxymonosulfate (PMS) and persulfate (PS) were used as oxidants, and two pesticides, amitrole and atrazine, were used as target contaminants. In the absence of a film, activation of PMS under simulated solar conditions is demonstrated by removal of atrazine, whereas PS provided minimal removal, suggesting inefficient activation. Combining photocatalytic films with PMS and PS manifested synergies for both oxidants. The effect was most pronounced for PS since PMS already underwent significant activation without the photocatalyst. Amitrole degradation results indicated a lack of removal of amitrole by activated PS alone, suggesting that this sulfate radical-based treatment technology may be ineffective for the removal of amitrole. The NF-TiO2 films demonstrated reusability under solar light both with and without oxidants. Finally, the degradation intermediates were analyzed, and a new intermediate appeared upon incorporating oxidants into the system.


Assuntos
Amitrol (Herbicida)/química , Atrazina/química , Luz Solar , Titânio/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Catálise , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Luz , Espectrometria de Massas , Teste de Materiais , Oxidantes/química , Oxigênio/química , Peróxidos/química , Fotoquímica , Sulfatos/química , Temperatura , Poluentes Químicos da Água/química
16.
Molecules ; 17(12): 14625-36, 2012 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-23222925

RESUMO

New series of 1,3,4-thiadiazoles have been prepared via reaction of 1,3,4-thiadiazolenaminones 1 with N-phenyl 2-oxopropanehydrazonoyl chloride (2) in dioxane in the presence of triethylamine. Also, some new heterocycles incorporating 1,3,4-thiadiazole ring were obtained by reaction of 1,3,4-thiadiazolenaminones 1 with nitrogen-nucleophiles like hydrazine hydrate, 3-amino-1,2,4-triazole and 2-aminobenzimidazole. The structure of the new products was established based on elemental and spectral analysis. The relation between the structure of the products and their activity towards some microorganisms was studied and promising results were obtained.


Assuntos
Anti-Infecciosos , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Tiadiazóis , Amitrol (Herbicida)/química , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Estrutura Molecular , Relação Estrutura-Atividade , Tiadiazóis/síntese química , Tiadiazóis/química , Tiadiazóis/farmacologia
17.
J Chromatogr A ; 1252: 84-9, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22794793

RESUMO

Molecular Interaction Fields (MIFs) based descriptors can be conveniently used to characterize and compare chromatographic scales. In this study, Quantitative Structure-Retention Relationships (QSRR) for eight different chromatographic systems were obtained with VolSurf+ descriptors and Partial Least Squares (PLS). A new and purpose-designed analysis tool highlights the different balance of intermolecular interactions governing solute retention, and estimates the similarity between chromatographic systems.


Assuntos
Cromatografia/métodos , Modelos Químicos , Amitrol (Herbicida)/química , Interações Hidrofóbicas e Hidrofílicas , Análise dos Mínimos Quadrados , Modelos Moleculares , Relação Quantitativa Estrutura-Atividade , Termodinâmica
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 79(5): 1364-74, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21640640

RESUMO

3-Amino-1,2,4-triazole Schiff bases were reported to contain intramolecular charge-transfer. The enhancing and depressing effects were remarkable as the substituent was changed from electron-donating to electron-withdrawing groups. The path of the resonating delocalization was reversed in the case of the p-NO2 group. To validate these results we effectively used Weinhold et al's natural bond orbital analysis to assess the UV and FT-IR spectrophotometric monitoring of the change reflected in this phenomenon when the substituent in the benzene ring is altered. The NBO analysis was simulated by ab inito computations at the HF/6-31G(d) level of theory, in order to properly detect any possible presence of a hydrogen bond association. The changes occurring in electron occupancies of double-centered bonds, antibonding orbitals and in lone-pair orbitals appraised the results, as did the s and p character listings of the two-centered bonds and the simultaneous changes occurring in the geometric parameters of the molecules in question. Contrary to its normal preference, in these molecules the nitrogen used sp2 hybrid orbitals for its interaction, housing its electron lone-pair in the third p hybrid orbital. Furthermore, NBO analysis reflected the presence of a very soft intramolecular hydrogen association (C-H⋯π), labelled by UV and FT-IR assignments, between the benzene and triazole rings in all Schiff bases but p-N(Me)2. The n-π* stabilization energy decreased in the order: p-OH>p-OCH3>p-Cl>p-CH3>H>p-NO2>o-OH. The relation between the band position and Hammett substitution constant is interpreted in relation to the molecular structure.


Assuntos
Amitrol (Herbicida)/química , Teoria Quântica , Bases de Schiff/química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Ligação de Hidrogênio , Modelos Químicos , Modelos Moleculares , Estrutura Molecular
20.
J Biol Inorg Chem ; 15(7): 1099-107, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20461536

RESUMO

The mode of binding of aromatic ligands in the substrate binding site on the distal heme side in heme peroxidases is well understood. However, the mode of diffusion through the extended hydrophobic channel and the regulatory role of the channel are not yet clear. To provide answers to these questions, the crystal structure of the complex of lactoperoxidase and 3-amino-1,2,4-triazole (amitrole) has been determined, which revealed the presence of two ligand molecules, one in the substrate binding site and the second in the hydrophobic channel. The binding of ligand in the channel induced a remarkable conformational change in the side chain of Phe254, which flips from its original distant position to interact with the trapped ligand in the hydrophobic channel. As a result, the channel is completely blocked so that no ligand can diffuse through it to the substrate binding site. Another amitrole molecule is bound to lactoperoxidase in the substrate binding site by replacing three water molecules, including the crucial iron-bound water molecule, W1. In this arrangement, the amino nitrogen atom of amitrole occupies the position of W1 and interacts directly with ferric iron. As a consequence, it prevents the binding of H2O2 to heme iron. Thus, the interactions of amitrole with lactoperoxidase obstruct both the passage of ligands through the hydrophobic channel as well as the binding of H2O2. This explains the amitrole toxicity. From binding studies, the dissociation constant (Kd) for amitrole with lactoperoxidase was found to be approximately 5.5x10(-7) M, indicating high affinity.


Assuntos
Hemeproteínas/química , Hidrocarbonetos Aromáticos/química , Lactoperoxidase/química , Ligantes , Estrutura Terciária de Proteína , Amitrol (Herbicida)/química , Animais , Sítios de Ligação , Bovinos , Cristalografia por Raios X , Inibidores Enzimáticos/química , Lactoperoxidase/genética , Modelos Moleculares , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...