Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 13507, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188065

RESUMO

Selenium nanoparticles (SeNPs) are gaining importance in the field of medicines due to their high surface area and unique properties than their other forms of selenium. In this study, biogenic selenium nanoparticles (B-SeNPs) were synthesized using cyanobacteria and their bioactivities (antioxidant, antimicrobial, anticancer and biocompatibility) were determined for comparison with commercially available chemically synthesized selenium nanoparticles (C-SeNPs). Color change of reaction mixture from sky blue to orange-red indicated the synthesis of biogenic SeNPs (B-SeNPs). UV-Vis spectra of the reaction mixture exhibited peak at 266 nm. During optimization, 30 °C of temperature, 24 h of time and 1:2 concentration ratio of sodium selenite and cell extract represented the best condition for SeNPs synthesis. Various functional groups and biochemical compounds present in the aqueous extract of Anabaena variabilis NCCU-441, which may have possibly influenced the reduction process of SeNPs were identified by FT-IR spectrum and GC-MS. The synthesized cyanobacterial SeNPs were orange red in color, spherical in shape, 10.8 nm in size and amorphous in nature. The B-SeNPs showed better anti-oxidant (DPPH, FRAP, SOR and ABTS assays), anti-microbial (antibacterial and antifungal) and anti-cancer activitities along with its biocompatibility in comparison to C-SeNPs suggesting higher probability of their biomedical application.


Assuntos
Anabaena variabilis/química , Antioxidantes , Nanopartículas Metálicas/química , Selênio/química , Antioxidantes/síntese química , Antioxidantes/química
2.
Photosynth Res ; 144(2): 261-272, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32076914

RESUMO

The phycobilisome (PBS) serves as the major light-harvesting system, funnelling excitation energy to both photosystems (PS) in cyanobacteria and red algae. The picosecond kinetics involving the excitation energy transfer has been studied within the isolated systems and intact filaments of the cyanobacterium Anabaena variabilis PCC 7120. A target model is proposed which resolves the dynamics of the different chromophore groups. The energy transfer rate of 8.5 ± 1.0/ns from the rod to the core is the rate-limiting step, both in vivo and in vitro. The PBS-PSI-PSII supercomplex reveals efficient excitation energy migration from the low-energy allophycocyanin, which is the terminal emitter, in the PBS core to the chlorophyll a in the photosystems. The terminal emitter of the phycobilisome transfers energy to both PSI and PSII with a rate of 50 ± 10/ns, equally distributing the solar energy to both photosystems. Finally, the excitation energy is trapped by charge separation in the photosystems with trapping rates estimated to be 56 ± 6/ns in PSI and 14 ± 2/ns in PSII.


Assuntos
Anabaena variabilis/química , Anabaena variabilis/metabolismo , Complexo de Proteína do Fotossistema I/química , Ficobilissomas/química , Clorofila A/química , Clorofila A/metabolismo , Transferência de Energia , Modelos Teóricos , Complexo de Proteína do Fotossistema I/isolamento & purificação , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Ficobilissomas/isolamento & purificação , Ficobilissomas/metabolismo , Espectrometria de Fluorescência , Análise Espectral/métodos , Tilacoides/química
3.
PLoS One ; 15(1): e0227977, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31978122

RESUMO

Anabaena variabilis is a diazotrophic filamentous cyanobacterium that differentiates to heterocysts and produces hydrogen as a byproduct. Study on metabolic interactions of the two differentiated cells provides a better understanding of its metabolism especially for improving hydrogen production. To this end, a genome-scale metabolic model for Anabaena variabilis ATCC 29413, iAM957, was reconstructed and evaluated in this research. Then, the model and transcriptomic data of the vegetative and heterocyst cells were applied to construct a regulated two-cell metabolic model. The regulated model improved prediction for biomass in high radiation levels. The regulated model predicts that heterocysts provide an oxygen-free environment and then, this model was used to find strategies for improving hydrogen production in heterocysts. The predictions indicate that the removal of uptake hydrogenase improves hydrogen production which is consistent with previous empirical research. Furthermore, the regulated model proposed activation of some reactions to provide redox cofactors which are required for improving hydrogen production up to 60% by bidirectional hydrogenase.


Assuntos
Anabaena variabilis/metabolismo , Hidrogênio/metabolismo , Redes e Vias Metabólicas , Oxirredutases/química , Anabaena variabilis/química , Anabaena variabilis/genética , Biocombustíveis , Oxirredutases/metabolismo , Oxigênio/metabolismo , Fótons , Transcriptoma/genética
4.
J Phys Chem Lett ; 10(11): 2938-2943, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31074620

RESUMO

Alignment of molecules through electric fields minimizes the averaging over orientations, e.g., in single-particle-imaging experiments. The response of molecules to external ac electric fields is governed by their polarizability tensor, which is usually calculated using quantum chemistry methods. These methods are not feasible for large molecules. Here, we calculate the polarizability tensor of proteins using a regression model that correlates the polarizabilities of the 20 amino acids with perfect conductors of the same shape. The dielectric constant of the molecules could be estimated from the slope of the regression line based on the Clausius-Mossotti equation. We benchmark our predictions against the quantum chemistry results for the Trp cagemini protein and the measured dielectric constants of larger proteins. Our method has applications in computing laser alignment of macromolecules, for instance, benefiting single-particle imaging, as well as for estimation of the optical and electrostatic characteristics of proteins and other macromolecules.


Assuntos
Aminoácidos/química , Simulação por Computador , Anabaena variabilis/química , Cianobactérias/química , Inibidor da Ligação a Diazepam/química , Glutarredoxinas/química , Humanos , Plastocianina/química , Teoria Quântica , Análise de Regressão , Eletricidade Estática
5.
Sci Rep ; 9(1): 2511, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30792472

RESUMO

To conserve freshwater resources, domestic and industrial wastewater is recycled. Algal systems have emerged as an efficient, low-cost option for treatment (phycoremediation) of nutrient-rich wastewater and environmental protection. However, industrial wastewater may contain growth inhibitory compounds precluding algal use in phycoremediation. Therefore, extremophyte strains, which thrive in hostile environments, are sought-after. Here, we isolated such an alga - a strain of Synechocystis sp. we found to be capable of switching from commensal exploitation of the nitrogen-fixing Trichormus variabilis, for survival in nitrogen-deficient environments, to free-living growth in nitrate abundance. In nitrogen depletion, the cells are tethered to polysaccharide capsules of T. variabilis using nanotubular structures, presumably for nitrate acquisition. The composite culture failed to establish in industrial/domestic waste effluent. However, gradual exposure to increasing wastewater strength over time untethered Synechocystis cells and killed off T. variabilis. This switched the culture to a stress-acclimated monoculture of Synechocystis sp., which rapidly grew and flourished in wastewater, with ammonium and phosphate removal efficiencies of 99.4% and 97.5%, respectively. Therefore, this strain of Synechocystis sp. shows great promise for use in phycoremediation, with potential to rapidly generate biomass that can find use as a green feedstock for valuable bio-products in industrial applications.


Assuntos
Anabaena variabilis/química , Biodegradação Ambiental , Synechocystis/química , Águas Residuárias/química , Anabaena variabilis/metabolismo , Biomassa , Conservação dos Recursos Naturais , Água Doce/química , Humanos , Resíduos Industriais/análise , Microalgas/química , Microalgas/metabolismo , Nitratos/química , Nitrogênio/metabolismo , Fosfatos/química , Synechocystis/metabolismo , Eliminação de Resíduos Líquidos , Águas Residuárias/microbiologia , Recursos Hídricos
6.
Analyst ; 139(23): 6096-9, 2014 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-25298978

RESUMO

Metal isotope coded profiling (MICP) introduces a universal discovery platform for metal chelating natural products that act as metallophores, ion buffers or sequestering agents. The detection of cation and oxoanion complexing ligands is facilitated by the identification of unique isotopic signatures created by the application of isotopically pure metals.


Assuntos
Anabaena variabilis/metabolismo , Quelantes/química , Ferro/química , Metais/química , Molibdênio/química , Sideróforos/química , Anabaena variabilis/química , Colorimetria , Isótopos de Ferro , Metais/metabolismo , Estrutura Molecular , Compostos Orgânicos
7.
Prikl Biokhim Mikrobiol ; 50(1): 72-9, 2014.
Artigo em Russo | MEDLINE | ID: mdl-25272755

RESUMO

Phycocyanin, a high value pigment was purified from diazotrophic cyanobacteria Anabaena variabilis CCC421 using a strategy involving ammonium sulfate precipitation, dialysis and anion exchange chromatography using DEAE-cellulose column. 36% phycocyanin with a purity of 2.75 was recovered finally after anion exchange chromatography. Purified phycocyanin was found to contain 2 subunits of 17 and 18 kDa which were identified as a-and (3 subunits by SDS-PAGE and MALDI-TOE HPLC method using a C5 column coupled with fluorescence or photodiode-based detection was also developed to separate and detect the A. variabilis CCC421 phycocyanin subunits. The fluorescence method was more sensitive than photodiode one. The purified phycocyanin from A. variabilis CCC421 as well as its subunits was characterized with respect to absorption and IR spectra. Spectral characterization of the subunits revealed that alpha and beta subunits contained one and two phycocyanobilin groups as chromophores, respectively.


Assuntos
Anabaena variabilis/química , Ficocianina/química , Pigmentos Biológicos/química , Fracionamento Químico , Cromatografia/métodos , Ficocianina/isolamento & purificação , Pigmentos Biológicos/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
8.
Biotechnol Prog ; 30(1): 233-40, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24265121

RESUMO

This article presents a multispectral image analysis approach for probing the spectral backscattered irradiance from algal cultures. It was demonstrated how this spectral information can be used to measure algal biomass concentration, detect invasive species, and monitor culture health in real time. To accomplish this, a conventional RGB camera was used as a three band photodetector for imaging cultures of the green alga Chlorella sp. and the cyanobacterium Anabaena variabilis. A novel floating reference platform was placed in the culture, which enhanced the sensitivity of image color intensity to biomass concentration. Correlations were generated between the RGB color vector of culture images and the biomass concentrations for monocultures of each strain. These correlations predicted the biomass concentrations of independently prepared cultures with average errors of 22 and 14%, respectively. Moreover, the difference in spectral signatures between the two strains was exploited to detect the invasion of Chlorella sp. cultures by A. variabilis. Invasion was successfully detected for A. variabilis to Chlorella sp. mass ratios as small as 0.08. Finally, a method was presented for using multispectral imaging to detect thermal stress in A. variabilis. These methods can be extended to field applications to provide delay free process control feedback for efficient operation of large scale algae cultivation systems.


Assuntos
Técnicas de Cultura de Células/métodos , Chlorella , Processamento de Imagem Assistida por Computador/métodos , Imagem Óptica/métodos , Espectrofotometria/métodos , Anabaena variabilis/química , Anabaena variabilis/crescimento & desenvolvimento , Biomassa , Chlorella/química , Chlorella/crescimento & desenvolvimento , Temperatura
9.
Mol Microbiol ; 86(2): 485-99, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22906379

RESUMO

Structural backbones of iron-scavenging siderophore molecules include polyamines 1,3-diaminopropane and 1,5-diaminopentane (cadaverine). For the cadaverine-based desferroxiamine E siderophore in Streptomyces coelicolor, the corresponding biosynthetic gene cluster contains an ORF encoded by desA that was suspected of producing the cadaverine (decarboxylated lysine) backbone. However, desA encodes an l-2,4-diaminobutyrate decarboxylase (DABA DC) homologue and not any known form of lysine decarboxylase (LDC). The only known function of DABA DC is, together with l-2,4-aminobutyrate aminotransferase (DABA AT), to synthesize 1,3-diaminopropane. We show here that S. coelicolor desA encodes a novel LDC and we hypothesized that DABA DC homologues present in siderophore biosynthetic clusters in the absence of DABA AT ORFs would be novel LDCs. We confirmed this by correctly predicting the LDC activity of a DABA DC homologue from a Yersinia pestis siderophore biosynthetic pathway. The corollary was confirmed for a DABA DC homologue, adjacent to a DABA AT ORF in a siderophore pathway in the cyanobacterium Anabaena variabilis, which was shown to be a bona fide DABA DC. These findings enable prediction of whether a siderophore pathway will utilize 1,3-diaminopropane or cadaverine, and suggest that the majority of bacteria use DABA AT and DABA DC for siderophore, rather than norspermidine/polyamine biosynthesis.


Assuntos
Proteínas de Bactérias/metabolismo , Carboxiliases/metabolismo , Evolução Molecular , Sideróforos/biossíntese , Streptomyces coelicolor/enzimologia , Anabaena variabilis/química , Anabaena variabilis/enzimologia , Anabaena variabilis/genética , Bactérias/química , Bactérias/enzimologia , Bactérias/genética , Proteínas de Bactérias/genética , Carboxiliases/genética , Dados de Sequência Molecular , Filogenia , Poliaminas/metabolismo , Streptomyces coelicolor/genética
10.
Mikrobiologiia ; 80(4): 552-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22073557

RESUMO

Two diazotrophic cyanobacteria, Westiellopsis prolifica and Anabaena variabilis were evaluated for elucidating the possible mechanism of mineral phosphate solubilization. Phosphate starved cyanobacteria evaluated for the presence of organic acids, extracellular compounds or enzymes that might have been produced and promoted the mineral phosphate solubilization with Mussorie Rock Phosphate and Tricalcium Phosphate as substrates. Both the cultures did not reveal production of organic acids throughout the incubation period when checked for decrease in pH of the media and thin layer chromatography Thin layer chromatography of culture filtrates showed the presence of hydrocarbon like compound. Further analysis of the culture filtrates with gas liquid chromatography, a single peak near to the retention time of 7.6 was observed in all extracts of culture filtrates irrespective of phosphate source. UV-visible spectra of culture filtrates revealed the absorption maxima of 276 nm. Gas Chromatographic-Mass Spectrometric analysis of culture filtrates showed most intense peak in the electron impact (EI) ionization was at m/z 149 and molecular ion peaks at m/z 207 and 167, inferring the presence of phthalic acid. Among the mechanisms in mineral phosphate solubilization, it was evident that these cyanobacteria used phthalic acid as possible mode of P solubilization.


Assuntos
Anabaena variabilis/química , Fosfatos de Cálcio/metabolismo , Cianobactérias/química , Fosfatos/química , Anabaena variabilis/metabolismo , Cromatografia em Camada Fina , Cianobactérias/metabolismo , Hidrocarbonetos/química , Concentração de Íons de Hidrogênio , Minerais/química , Compostos Orgânicos/química , Ácidos Ftálicos/química
11.
Biochem Biophys Res Commun ; 397(3): 603-7, 2010 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-20570649

RESUMO

The generation of reactive oxygen species (ROS) under simulated solar radiation (UV-B: 0.30Wm(-2), UV-A: 25.70Wm(-2) and PAR: 118.06Wm(-2)) was studied in the cyanobacterium Anabaena variabilis PCC 7937 using the oxidant-sensing fluorescent probe 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). DCFH-DA is a nonpolar dye, converted into the polar derivative DCFH by cellular esterases that are nonfluorescent but switched to highly fluorescent DCF when oxidized by intracellular ROS and other peroxides. The images obtained from the fluorescence microscope after 12h of irradiation showed green fluorescence from cells covered with 295, 320 or 395nm cut-off filters, indicating the generation of ROS in all treatments. However, the green/red fluorescence ratio obtained from fluorescence microscopic analysis showed the highest generation of ROS after UV-B radiation in comparison to PAR or UV-A radiation. Production of ROS was also measured by a spectrofluorophotometer and results obtained supported the results of fluorescence microscopy. Low levels of ROS were detected at the start (0h) of the experiment showing that they are generated even during normal metabolism. This study also showed that UV-B radiation causes the fragmentation of the cyanobacterial filaments which could be due to the observed oxidative stress. This is the first report for the detection of intracellular ROS in a cyanobacterium by fluorescence microscopy using DCFH-DA and thereby suggesting the applicability of this method in the study of in vivo generation of ROS.


Assuntos
Anabaena variabilis/química , Fluoresceínas/química , Corantes Fluorescentes/química , Espécies Reativas de Oxigênio/análise , Anabaena variabilis/efeitos da radiação , Fluorofotometria/métodos , Microscopia de Fluorescência/métodos , Estresse Oxidativo , Energia Solar , Raios Ultravioleta
12.
Photochem Photobiol ; 86(4): 862-70, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20456655

RESUMO

In the present investigation we show for the first time that bioconversion of a primary mycosporine-like amino acid (MAA) into a secondary MAA is regulated by sulfur deficiency in the cyanobacterium Anabaena variabilis PCC 7937. This cyanobacterium synthesizes the primary MAA shinorine (RT = 2.2 min, lambda(max) = 334 nm) under normal conditions (PAR + UV-A + UV-B); however, under sulfur deficiency, a secondary MAA palythine-serine (RT = 3.9 min, lambda(max) = 320 nm) appears. Addition of methionine to sulfur-deficient cultures resulted in the disappearance of palythine-serine, suggesting the role of primary MAAs under sulfur deficiency in recycling of methionine by donating the methyl group from the glycine subunit of shinorine to tetrahydrofolate to regenerate the methionine from homocysteine. This is also the first report for the synthesis of palythine-serine by cyanobacteria which has so far been reported only from corals. Addition of methionine also affected the conversion of mycosporine-glycine into shinorine, consequently, resulted in the appearance of mycosporine-glycine (RT = 3.6 min, lambda(max) = 310 nm). Our results also suggest that palythine-serine is synthesized from shinorine. Based on these results we propose that glycine decarboxylase is the potential enzyme that catalyzes the bioconversion of shinorine to palythine-serine by decarboxylation and demethylation of the glycine unit of shinorine.


Assuntos
Aminoácidos/biossíntese , Anabaena variabilis/metabolismo , Glicina/análogos & derivados , Enxofre/metabolismo , Aminoácidos/química , Anabaena variabilis/química , Anabaena variabilis/crescimento & desenvolvimento , Biocatálise , Cicloexanóis/química , Cicloexilaminas/química , Glicina/biossíntese , Glicina/química , Glicina Desidrogenase (Descarboxilante)/química , Glicina Desidrogenase (Descarboxilante)/metabolismo , Enxofre/química , Raios Ultravioleta
13.
Antonie Van Leeuwenhoek ; 97(3): 297-306, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20069361

RESUMO

The nitrogen fixing cyanobacterial strains namely Anabaena variabilis (Nostocales, Nostocaceae) and Westiellopsis prolifica (Nostocales, Hapalosiphonaceae) were evaluated for their nitrogen fixation and growth potential in response to different concentrations (10, 20 and 30 mg P) of the alternate insoluble P-sources Mussorie Rock Phosphate and Tricalcium Phosphate. Distinct and significant intergeneric differences were observed with respect to nitrogen fixation measured as Acetylene Reduction Activity (ARA) and growth potential as soluble proteins, total carbohydrate content, dry weight and total chlorophyll content in response to different concentrations of Mussorie Rock Phosphate and Tricalcium Phosphate. Both the strains showed higher soluble protein content at 20 mg P (Mussorie Rock Phosphate) that increased with time of incubation in A. variabilis. Both cyanobacteria recorded maximum Acetylene Reduction Activity at 20 mg P (Tricalcium Phosphate) followed by activity in presence of soluble phosphate (K2HPO4). The mean activity at all concentrations of insoluble phosphate (Mussorie Rock Phosphate and Tricalcium Phosphate) was more than in the presence of soluble phosphate.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo , Fixação de Nitrogênio , Fosfatos/metabolismo , Acetileno/metabolismo , Anabaena variabilis/química , Anabaena variabilis/crescimento & desenvolvimento , Anabaena variabilis/metabolismo , Proteínas de Bactérias/análise , Biomassa , Carboidratos/análise , Clorofila/análise , Cianobactérias/química
14.
J Biomol NMR ; 44(4): 225-33, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19533375

RESUMO

The use of 13C NMR relaxation dispersion experiments to monitor micro-millisecond fluctuations in the protonation states of histidine residues in proteins is investigated. To illustrate the approach, measurements on three specifically 13C labeled histidine residues in plastocyanin (PCu) from Anabaena variabilis (A.v.) are presented. Significant Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion is observed for 13C(epsilon1) nuclei in the histidine imidazole rings of A.v. PCu. The chemical shift changes obtained from the CPMG dispersion data are in good agreement with those obtained from the chemical shift titration experiments, and the CPMG derived exchange rates agree with those obtained previously from 15N backbone relaxation measurements. Compared to measurements of backbone nuclei, 13C(epsilon1) dispersion provides a more direct method to monitor interchanging protonation states or other kinds of conformational changes of histidine side chains or their environment. Advantages and shortcomings of using the 13C(epsilon1) dispersion experiments in combination with chemical shift titration experiments to obtain information on exchange dynamics of the histidine side chains are discussed.


Assuntos
Histidina/química , Ressonância Magnética Nuclear Biomolecular/métodos , Plastocianina/química , Anabaena variabilis/química , Isótopos de Carbono/química , Concentração de Íons de Hidrogênio , Imidazóis/química , Modelos Químicos , Modelos Moleculares , Prótons , Temperatura
15.
Structure ; 17(2): 303-13, 2009 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-19217401

RESUMO

The crystal structures of two homologous endopeptidases from cyanobacteria Anabaena variabilis and Nostoc punctiforme were determined at 1.05 and 1.60 A resolution, respectively, and contain a bacterial SH3-like domain (SH3b) and a ubiquitous cell-wall-associated NlpC/P60 (or CHAP) cysteine peptidase domain. The NlpC/P60 domain is a primitive, papain-like peptidase in the CA clan of cysteine peptidases with a Cys126/His176/His188 catalytic triad and a conserved catalytic core. We deduced from structure and sequence analysis, and then experimentally, that these two proteins act as gamma-D-glutamyl-L-diamino acid endopeptidases (EC 3.4.22.-). The active site is located near the interface between the SH3b and NlpC/P60 domains, where the SH3b domain may help define substrate specificity, instead of functioning as a targeting domain, so that only muropeptides with an N-terminal L-alanine can bind to the active site.


Assuntos
Endopeptidases/química , Endopeptidases/metabolismo , Peptidoglicano/química , Peptidoglicano/metabolismo , Sequência de Aminoácidos , Anabaena variabilis/química , Anabaena variabilis/enzimologia , Domínio Catalítico , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/fisiologia , Endopeptidases/fisiologia , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Nostoc/química , Nostoc/enzimologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Domínios de Homologia de src
16.
J Am Chem Soc ; 130(26): 8460-70, 2008 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-18540585

RESUMO

A model describing conformational exchange of His 61 in plastocyanin from Anabaena variabilis is presented. A detailed picture of the exchange dynamics has been obtained using solution NMR relaxation measurements, chemical shift titrations, and structural information provided by a high-resolution crystal structure of the protein. A three-site model for chemical exchange that involves interconversion among the tautomeric and protonated forms of the histidine side chain with rates that are fast on the NMR chemical shift time scale can account for all of the data. In general, in the limit of fast exchange, it is not possible to obtain separate measures of chemical shift differences and populations of the participating states using NMR. However, we show here that when the data mentioned above are combined, it is possible to extract values of all of the parameters that characterize the exchange process, including rates, populations, and chemical shift changes, and to provide cross-validations that establish their accuracy. The methodology is generally applicable to the study of histidine side chain dynamics, which can play an important functional role in many protein systems.


Assuntos
Anabaena variabilis/química , Plastocianina/química , Histidina , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica
18.
Electrophoresis ; 28(10): 1624-32, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17447238

RESUMO

Cyanobacteria are photosynthetic bacteria capable of producing hydrogen and secondary metabolites with potential pharmaceutical applications. A limited number of cyanobacterial 2-DE proteomic studies have been published, most of which are based on Synechocystis sp. PCC 6803. Here, we report the use of 2-DE, ESI-MS/MS and protein bioinformatics tools to characterize the proteome of Anabaena variabilis ATCC 29413, a heterocystous nitrogen-fixing cyanobacterium that is a model organism for the study of nitrogen fixation. Using a 2-DE workflow that included the use of a detergent-based extraction buffer and 3-10 nonlinear IPG strips resulted in the identification of 254 unique proteins, with significantly better coverage of basic and low-abundance proteins that has been reported in 2-DE analyses of Synechocystis sp. A set of protein bioinformatics tools was employed to provide estimates of protein localization, hydrophobicity, abundance and other properties. The characteristics of the A. variabilis proteins identified in this study were compared against the theoretical proteome for this organism, and more generally within the cyanobacteria, to identify opportunities for further development of 2-DE-based cyanobacterial proteomics.


Assuntos
Anabaena variabilis/química , Proteínas de Bactérias/análise , Modelos Biológicos , Fragmentos de Peptídeos/análise , Proteoma/análise , Anabaena variabilis/metabolismo , Proteínas de Bactérias/química , Biologia Computacional , Bases de Dados de Proteínas , Eletroforese em Gel Bidimensional , Fragmentos de Peptídeos/química , Mapeamento de Peptídeos , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Synechocystis/química , Synechocystis/metabolismo
19.
Magn Reson Chem ; 44(8): 761-9, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16705625

RESUMO

Two methods for estimating the microsecond-millisecond dynamics in proteins from only two 15N relaxation parameters at one magnetic field strength are investigated. Thus, the chemical exchange contribution, R(ex), to the transversal relaxation rate, which contains the dynamics information, is evaluated by two methods: (i) one in which the R(ex) term is derived from the 15N R1 and R2 relaxation rates alone, and (ii) one in which it is obtained from the transversal dipole-chemical shift anisotropy (CSA) cross-correlation rate, eta(xy), and the R2 rate. Since the R1, R2, and eta(xy) experiments are fast and sensitive, both methods are attractive in studies where large amounts of dynamical information are required. However, both methods are liable to effects that can compromise the estimation of the R(ex) terms. In the R2/R1 method, internal ps-ns dynamics and rotational anisotropy can interfere with the determination of R(ex), while in the R2/eta(xy) method it can be affected by variations in the 15N chemical shift anisotropy. Here, the applicability of the two methods is investigated using plastocyanin from Anabaena variabilis as an example, and the quality of the obtained R(ex) terms is evaluated both theoretically and experimentally. It is found that the R2/R1 method gives reliable R(ex) terms if the protein is relatively rigid and tumbles fast and nearly isotropically in solution, as for instance plastocyanin, and is preferable in such cases. In contrast, the R2/eta(xy) method gives better results if the protein is flexible or highly non-spherical and can be used for such proteins, if the sequential variation in the 15N chemical shift anisotropy is negligible. For exchange terms <1 s(-1) neither method is reliable.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Aminoácidos/química , Anabaena variabilis/química , Anisotropia , Isótopos de Nitrogênio/análise , Plastocianina/química
20.
J Biol Inorg Chem ; 11(3): 277-85, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16432723

RESUMO

A previous method for mapping the electron spin distribution in blue copper proteins by paramagnetic nuclear magnetic resonance (NMR) relaxation (Hansen DF, Led JJ, 2004, J Am Chem Soc 126:1247-1253) suggested that the blue copper site of plastocyanin from Anabaena variabilis (A.v.) is less covalent than those found for other plastocyanins by other experimental methods, such as X-ray absorption spectroscopy. Here, a detailed spectroscopic study revealed that the electronic structure of A.v. plastocyanin is similar to those of other plastocyanins. Therefore, the NMR approach was reinvestigated using a more accurate geometric structure as the basis for the mapping, in contrast to the previous approach, as well as a more complete spin distribution model including Gaussian-type natural atomic orbitals instead of Slater-type hydrogen-like atomic orbitals. The refinement results in a good agreement between the electron spin density derived from paramagnetic NMR and the electronic structure description obtained by the other experimental methods. The refined approach was evaluated against density functional theory (DFT) calculations on a model complex of the metal site of plastocyanin in the crystal phase. In general, the agreement between the experimental paramagnetic relaxation rates and the corresponding rates obtained by the DFT calculations is good. Small deviations are attributed to minor differences between the solution structure and the crystal structure outside the first coordination sphere. Overall, the refined approach provides a complementary experimental method for determining the electronic structure of paramagnetic metalloproteins, provided that an accurate geometric structure is available.


Assuntos
Anabaena variabilis/química , Proteínas de Bactérias/química , Cobre/química , Ressonância Magnética Nuclear Biomolecular/métodos , Modelos Moleculares , Análise Espectral/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...