Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.018
Filtrar
1.
Glob Chang Biol ; 30(7): e17399, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007251

RESUMO

The ever-increasing and expanding globalisation of trade and transport underpins the escalating global problem of biological invasions. Developing biosecurity infrastructures is crucial to anticipate and prevent the transport and introduction of invasive alien species. Still, robust and defensible forecasts of potential invaders are rare, especially for species without known invasion history. Here, we aim to support decision-making by developing a quantitative invasion risk assessment tool based on invasion syndromes (i.e., generalising typical attributes of invasive alien species). We implemented a workflow based on 'Multiple Imputation with Chain Equation' to estimate invasion syndromes from imputed datasets of species' life-history and ecological traits and macroecological patterns. Importantly, our models disentangle the factors explaining (i) transport and introduction and (ii) establishment. We showcase our tool by modelling the invasion syndromes of 466 amphibians and reptile species with invasion history. Then, we project these models to amphibians and reptiles worldwide (16,236 species [c.76% global coverage]) to identify species with a risk of being unintentionally transported and introduced, and risk of establishing alien populations. Our invasion syndrome models showed high predictive accuracy with a good balance between specificity and generality. Unintentionally transported and introduced species tend to be common and thrive well in human-disturbed habitats. In contrast, those with established alien populations tend to be large-sized, are habitat generalists, thrive well in human-disturbed habitats, and have large native geographic ranges. We forecast that 160 amphibians and reptiles without known invasion history could be unintentionally transported and introduced in the future. Among them, 57 species have a high risk of establishing alien populations. Our reliable, reproducible, transferable, statistically robust and scientifically defensible quantitative invasion risk assessment tool is a significant new addition to the suite of decision-support tools needed for developing a future-proof preventative biosecurity globally.


Assuntos
Anfíbios , Previsões , Espécies Introduzidas , Répteis , Animais , Répteis/fisiologia , Anfíbios/fisiologia , Medição de Risco/métodos , Modelos Teóricos , Modelos Biológicos
2.
J Anim Ecol ; 93(7): 932-942, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38860293

RESUMO

The distribution of species is not random in space. At the finest-resolution spatial scale, that is, field sampling locations, distributional aggregation level of different species would be determined by various factors, for example spatial autocorrelation or environmental filtering. However, few studies have quantitatively measured the importance of these factors. In this study, inspired by the statistical properties of a Markov transition model, we propose a novel additive framework to partition local multispecies distributional aggregation levels for sequential sampling-derived field biodiversity data. The framework partitions the spatial distributional aggregation of different species into two independent components: regional abundance variability and the local spatial inertia effect. Empirical studies from field amphibian surveys through line-transect sampling in southwestern China (Minya Konka) and central-southern Vietnam showed that local spatial inertia was always the dominant mechanism structuring the local occurrence and distributional aggregation of amphibians in the two regions with a latitudinal gradient from 1200 to nearly 4000 m. However, regional abundance variability is still nonnegligible in highly diverse tropical regions (i.e. Vietnam) where the altitude is not higher than 2000 m. In summary, we propose a novel framework that shows that the multispecies distributional aggregation level can be structured by two additive components. The two partitioned components could be theoretically independent. These findings are expected to deepen our understanding of the local community structure from the perspective of both spatial distribution and regional diversity patterns. The partitioning framework might have potential applications in field ecology and macroecology research.


Assuntos
Anfíbios , Distribuição Animal , Biodiversidade , Animais , Vietnã , Anfíbios/fisiologia , China , Modelos Biológicos , Cadeias de Markov
3.
Proc Biol Sci ; 291(2025): rspb20240844, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38889781

RESUMO

Biological invasions are among the threats to global biodiversity and social sustainability, especially on islands. Identifying the threshold of area at which non-native species begin to increase abruptly is crucial for early prevention strategies. The small-island effect (SIE) was proposed to quantify the nonlinear relationship between native species richness and area but has not yet been applied to non-native species and thus to predict the key breakpoints at which established non-native species start to increase rapidly. Based on an extensive global dataset, including 769 species of non-native birds, mammals, amphibians and reptiles established on 4277 islands across 54 archipelagos, we detected a high prevalence of SIEs across 66.7% of archipelagos. Approximately 50% of islands have reached the threshold area and thus may be undergoing a rapid increase in biological invasions. SIEs were more likely to occur in those archipelagos with more non-native species introduction events, more established historical non-native species, lower habitat diversity and larger archipelago area range. Our findings may have important implications not only for targeted surveillance of biological invasions on global islands but also for predicting the responses of both non-native and native species to ongoing habitat fragmentation under sustained land-use modification and climate change.


Assuntos
Biodiversidade , Espécies Introduzidas , Ilhas , Animais , Conservação dos Recursos Naturais , Ecossistema , Aves/fisiologia , Anfíbios/fisiologia , Mamíferos/fisiologia , Répteis/fisiologia
4.
Glob Chang Biol ; 30(5): e17318, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38771091

RESUMO

Amphibians and fishes play a central role in shaping the structure and function of freshwater environments. These organisms have a limited capacity to disperse across different habitats and the thermal buffer offered by freshwater systems is small. Understanding determinants and patterns of their physiological sensitivity across life history is, therefore, imperative to predicting the impacts of climate change in freshwater systems. Based on a systematic literature review including 345 experiments with 998 estimates on 96 amphibian (Anura/Caudata) and 93 freshwater fish species (Teleostei), we conducted a quantitative synthesis to explore phylogenetic, ontogenetic, and biogeographic (thermal adaptation) patterns in upper thermal tolerance (CTmax) and thermal acclimation capacity (acclimation response ratio, ARR) as well as the influence of the methodology used to assess these thermal traits using a conditional inference tree analysis. We found globally consistent patterns in CTmax and ARR, with phylogeny (taxa/order), experimental methodology, climatic origin, and life stage as significant determinants of thermal traits. The analysis demonstrated that CTmax does not primarily depend on the climatic origin but on experimental acclimation temperature and duration, and life stage. Higher acclimation temperatures and longer acclimation times led to higher CTmax values, whereby Anuran larvae revealed a higher CTmax than older life stages. The ARR of freshwater fishes was more than twice that of amphibians. Differences in ARR between life stages were not significant. In addition to phylogenetic differences, we found that ARR also depended on acclimation duration, ramping rate, and adaptation to local temperature variability. However, the amount of data on early life stages is too small, methodologically inconsistent, and phylogenetically unbalanced to identify potential life cycle bottlenecks in thermal traits. We, therefore, propose methods to improve the robustness and comparability of CTmax/ARR data across species and life stages, which is crucial for the conservation of freshwater biodiversity under climate change.


Assuntos
Aclimatação , Anfíbios , Peixes , Água Doce , Aquecimento Global , Animais , Aclimatação/fisiologia , Peixes/fisiologia , Anfíbios/fisiologia , Anfíbios/crescimento & desenvolvimento , Filogenia , Mudança Climática , Temperatura
5.
An Acad Bras Cienc ; 96(2): e20230671, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747789

RESUMO

Temperature affects the rate of biochemical and physiological processes in amphibians, influencing metamorphic traits. Temperature patterns, as those observed in latitudinal and altitudinal clines, may impose different challenges on amphibians depending on how species are geographically distributed. Moreover, species' response to environmental temperatures may also be phylogenetically constrained. Here, we explore the effects of acclimation to higher temperatures on tadpole survival, development, and growth, using a meta-analytical approach. We also evaluate whether the latitude and climatic variables at each collection site can explain differences in species' response to increasing temperature and whether these responses are phylogenetically conserved. Our results show that species that develop at relatively higher temperatures reach metamorphosis faster. Furthermore, absolute latitude at each collection site may partially explain heterogeneity in larval growth rate. Phylogenetic signal of traits in response to temperature indicates a non-random process in which related species resemble each other less than expected under Brownian motion evolution (BM) in all traits, except survival. The integration of studies in a meta-analytic framework allowed us to explore macroecological and macroevolutionary patterns and provided a better understanding of the effects of climate change on amphibians.


Assuntos
Anfíbios , Evolução Biológica , Larva , Temperatura , Animais , Larva/crescimento & desenvolvimento , Larva/fisiologia , Anfíbios/crescimento & desenvolvimento , Anfíbios/fisiologia , Anfíbios/classificação , Mudança Climática , Filogenia , Metamorfose Biológica/fisiologia , Aclimatação/fisiologia
6.
Neurosci Biobehav Rev ; 163: 105739, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38821152

RESUMO

Vertebrate hippocampal formation is central to conversations on the comparative analysis of spatial cognition, especially in light of variation found in different vertebrate classes. Assuming the medial pallium (MP) of extant amphibians resembles the hippocampal formation (HF) of ancestral stem tetrapods, we propose that the HF of modern amniotes began with a MP characterized by a relatively undifferentiated cytoarchitecture, more direct thalamic/olfactory sensory inputs, and a more generalized role in associative learning-memory processes. As such, hippocampal evolution in amniotes, especially mammals, can be seen as progressing toward a cytoarchitecture with well-defined subdivisions, regional connectivity, and a functional specialization supporting map-like representations of space. We then summarize a growing literature on amphibian spatial cognition and its underlying brain organization. Emphasizing the MP/HF, we highlight that further research into amphibian spatial cognition would provide novel insight into the role of the HF in spatial memory processes, and their supporting neural mechanisms. A more complete reconstruction of hippocampal evolution would benefit from additional research on non-mammalian vertebrates, with amphibians being of particular interest.


Assuntos
Anfíbios , Cognição , Animais , Anfíbios/fisiologia , Cognição/fisiologia , Telencéfalo/fisiologia , Telencéfalo/anatomia & histologia , Hipocampo/fisiologia , Evolução Biológica , Percepção Espacial/fisiologia
7.
Aquat Toxicol ; 270: 106907, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564994

RESUMO

Poly- and perfluoroalkyl substances (PFASs) are commonly used in various industries and everyday products, including clothing, electronics, furniture, paints, and many others. PFASs are primarily found in aquatic environments, but also present in soil, air and plants, making them one of the most important and dangerous pollutants of the natural environment. PFASs bioaccumulate in living organisms and are especially dangerous to aquatic and semi-aquatic animals. As endocrine disruptors, PFASs affect many internal organs and systems, including reproductive, endocrine, nervous, cardiovascular, and immune systems. This manuscript represents the first comprehensive review exclusively focusing on PFASs in amphibians and reptiles. Both groups of animals are highly vulnerable to PFASs in the natural habitats. Amphibians and reptiles, renowned for their sensitivity to environmental changes, are often used as crucial bioindicators to monitor ecosystem health and environmental pollution levels. Furthermore, the decline in amphibian and reptile populations worldwide may be related to increasing environmental pollution. Therefore, studies investigating the exposure of amphibians and reptiles to PFASs, as well as their impacts on these organisms are essential in modern toxicology. Summarizing the current knowledge on PFASs in amphibians and reptiles in a single manuscript will facilitate the exploration of new research topics in this field. Such a comprehensive review will aid researchers in understanding the implications of PFASs exposure on amphibians and reptiles, guiding future investigations to mitigate their adverse effects of these vital components of ecosystems.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Animais , Ecossistema , Poluentes Químicos da Água/toxicidade , Anfíbios/fisiologia , Répteis/fisiologia , Fluorocarbonos/análise
8.
Sci Total Environ ; 927: 172356, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614338

RESUMO

Roads represent one of the main sources of wildlife mortality, population decline, and isolation, especially for low-vagility animal groups. It is still not clearly understood how wildlife populations respond to these negative effects over space and time. Most studies on wildlife road mortality do not consider the spatial and temporal components simultaneously, or the imperfect roadkill detection, both of which could lead to inaccurate assumptions and unreliable mitigation actions. In this study, we applied a multi-season occupancy model to a 14-year amphibian mortality dataset collected along 120 km of roads, combined with freely available landscape and remote sensing metrics, to identify the spatiotemporal patterns of amphibian roadkill in a Mediterranean landscape in Southern Portugal. Our models showed an explicit general decrease in amphibian roadkill. The Iberian painted frog (Discoglossus galganoi) experienced roadkill declines over time of ∼70 %, while the spiny common toad (Bufo spinosus) and the fire salamander (Salamandra salamandra) had a loss of nearly 50 %, and the Southern marbled newt (Triturus pygmaeus) had 40 %. Despite the decreasing trend in roadkill, spatial patterns seem to be rather stable from year to year. Multi-season occupancy models, when combined with relevant landscape and remote sensing predictors, as well as long-term monitoring data, can describe dynamic changes in roadkill over space and time. These patterns are valuable tools for understanding roadkill patterns and drivers in Mediterranean landscapes, enabling the differentiation of road sections with varying roadkill over time. Ultimately, this information may contribute to the development of effective conservation measures.


Assuntos
Dinâmica Populacional , Animais , Portugal , Anfíbios/fisiologia , Monitoramento Ambiental/métodos , Análise Espaço-Temporal , Conservação dos Recursos Naturais , Meios de Transporte
9.
Sci Rep ; 14(1): 9950, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688941

RESUMO

The degree to which burrowing, soil-dwelling caecilian amphibians spend time on the surface is little studied, and circadian rhythm has not been investigated in multiple species of this order or by manipulating light-dark cycles. We studied surface-activity rhythm of the Indian caecilians Ichthyophis cf. longicephalus and Uraeotyphlus cf. oxyurus (Ichthyophiidae) and Gegeneophis tejaswini (Grandisoniidae), under LD, DD and DL cycles. We examined daily surface activity and the role of light-dark cycles as a zeitgeber. All three species were strictly nocturnal and G. tejaswini displayed the least surface activity. Four out of thirteen individuals, two I. cf. longicephalus, one G. tejaswini and one U. cf. oxyurus, displayed a more or less distinct surface-activity rhythm in all three cycles, and for the nine other animals the activity patterns were not evident. An approximately 24 h free-run period was observed in the three species. When the light-dark cycle was inverted, surface activity in the three species shifted to the dark phase. The findings of this study suggest that caecilians have a weak circadian surface-activity rhythm, and that the absence of light can act as a prominent zeitgeber in these burrowing, limbless amphibians.


Assuntos
Anfíbios , Ritmo Circadiano , Solo , Animais , Ritmo Circadiano/fisiologia , Anfíbios/fisiologia , Solo/química , Fotoperíodo , Comportamento Animal/fisiologia
10.
Science ; 383(6687): 1092-1095, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38452082

RESUMO

Among vertebrates, the yolk is commonly the only form of nutritional investment offered by the female to the embryo. Some species, however, have developed parental care behaviors associated with specialized food provisioning essential for offspring survival, such as the production of lipidic-rich parental milk in mammals. Here, we show that females of the egg-laying caecilian amphibian Siphonops annulatus provide similarly lipid-rich milk to altricial hatchlings during parental care. We observed that for 2 months, S. annulatus babies ingested milk released through the maternal vent seemingly in response to tactile and acoustic stimulation by the babies. The milk, composed mainly of lipids and carbohydrates, originates from the maternal oviduct epithelium's hypertrophied glands. Our data suggest lactation in this oviparous nonmammalian species and expand the knowledge of parental care and communication in caecilians.


Assuntos
Anfíbios , Lactação , Leite , Oviparidade , Animais , Feminino , Anfíbios/fisiologia , Leite/química , Oviductos/citologia , Oviductos/fisiologia , Oviparidade/fisiologia , Tato , Lipídeos/análise
11.
Philos Trans R Soc Lond B Biol Sci ; 379(1898): 20220505, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38310939

RESUMO

Environmental variation in the Anthropocene involves several factors that interfere with endocrine systems of wildlife and humans, presenting a planetary boundary of still unknown dimensions. Here, we focus on chemical compounds and other impacts of anthropogenic and natural origins that are adversely affecting reproduction and development. The main sink of these endocrine disruptors (EDs) is surface waters, where they mostly endanger aquatic vertebrates, like teleost fish and amphibians. For regulatory purposes, EDs are categorized into EATS modalities (oestrogenic, androgenic, thyroidal, steroidogenesis), only addressing endocrine systems being assessable by validated tests. However, there is evidence that non-EATS modalities-and even natural sources, such as decomposition products of plants or parasitic infections-can affect vertebrate endocrine systems. Recently, the disturbance of natural circadian light rhythms by artificial light at night (ALAN) has been identified as another ED. Reviewing the knowledge about EDs affecting teleosts and amphibians leads to implications for risk assessment. The generally accepted WHO-definition for EDs, which focuses exclusively on 'exogenous substances' and neglects parasitic infections or ALAN, seems to require some adaptation. Natural EDs have been involved in coevolutionary processes for ages without resulting in a general loss of biodiversity. Therefore, to address the 'One Health'-principle, future research and regulatory efforts should focus on minimizing anthropogenic factors for endocrine disruption. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.


Assuntos
Sistema Endócrino , Doenças Parasitárias , Animais , Humanos , Anfíbios/fisiologia , Vertebrados , Medição de Risco
12.
Semin Nucl Med ; 53(5): 577-585, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37438172

RESUMO

The bulk of biomedical positron emission tomography (PET)-scanning experiments are performed on mammals (ie, rodents, pigs, and dogs), and the technique is only infrequently applied to answer research questions in ectothermic vertebrates such as fish, amphibians, and reptiles. Nevertheless, many unique and interesting physiological characteristics in these ectothermic vertebrates could be addressed in detail through PET. The low metabolic rate of ectothermic animals, however, may compromise the validity of physiological and biochemical parameters derived from the images created by PET and other scanning modalities. Here, we review some of the considerations that should be taken into account when PET scanning fish, amphibians, and reptiles. We present specific results from our own experiments, many of which remain previously unpublished, and we draw on examples from the literature. We conclude that knowledge on the natural history and physiology of the species studied and an understanding of the limitations of the PET scanning techniques are necessary to avoid the design of faulty experiments and erroneous conclusions.


Assuntos
Répteis , Vertebrados , Animais , Suínos , Cães , Répteis/fisiologia , Anfíbios/fisiologia , Peixes , Tomografia por Emissão de Pósitrons , Mamíferos
13.
J Exp Zool A Ecol Integr Physiol ; 339(9): 869-877, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37522483

RESUMO

The relationship between the thyroid gland and reproduction in amphibians and reptiles has been studied for more than 100 years. Most studies suggest a positive involvement of thyroid hormones with some aspects of reproduction, but some studies support a negative role for thyroid hormones at certain life stages. Comprehensive studies of gene activation/suppression by thyroid hormones and their absence at various levels of the hypothalamo-pituitary-gonadal axis coupled with observations of adrenocorticoid activity, reproductive performance, and metabolic involvement are needed to understand this complex relationship.


Assuntos
Répteis , Glândula Tireoide , Animais , Glândula Tireoide/metabolismo , Anfíbios/fisiologia , Hormônios Tireóideos/metabolismo , Reprodução/fisiologia
14.
Glob Chang Biol ; 29(17): 4949-4965, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37401520

RESUMO

Ecosystem disturbance is increasing in extent, severity and frequency across the globe. To date, research has largely focussed on the impacts of disturbance on animal population size, extinction risk and species richness. However, individual responses, such as changes in body condition, can act as more sensitive metrics and may provide early warning signs of reduced fitness and population declines. We conducted the first global systematic review and meta-analysis investigating the impacts of ecosystem disturbance on reptile and amphibian body condition. We collated 384 effect sizes representing 137 species from 133 studies. We tested how disturbance type, species traits, biome and taxon moderate the impacts of disturbance on body condition. We found an overall negative effect of disturbance on herpetofauna body condition (Hedges' g = -0.37, 95% CI: -0.57, -0.18). Disturbance type was an influential predictor of body condition response and all disturbance types had a negative mean effect. Drought, invasive species and agriculture had the largest effects. The impact of disturbance varied in strength and direction across biomes, with the largest negative effects found within Mediterranean and temperate biomes. In contrast, taxon, body size, habitat specialisation and conservation status were not influential predictors of disturbance effects. Our findings reveal the widespread effects of disturbance on herpetofauna body condition and highlight the potential role of individual-level response metrics in enhancing wildlife monitoring. The use of individual response metrics alongside population and community metrics would deepen our understanding of disturbance impacts by revealing both early impacts and chronic effects within affected populations. This could enable early and more informed conservation management.


Assuntos
Anfíbios , Ecossistema , Animais , Anfíbios/fisiologia , Animais Selvagens , Espécies Introduzidas , Répteis/fisiologia
15.
Cold Spring Harb Perspect Med ; 13(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36878647

RESUMO

The neural retina of mammals, like most of the rest of the central nervous system, does not regenerate new neurons after they are lost through damage or disease. The ability of nonmammalian vertebrates, like fish and amphibians, is remarkable, and lessons learned over the last 20 years have revealed some of the mechanisms underlying this potential. This knowledge has recently been applied to mammals to develop methods that can stimulate regeneration in mice. In this review, we highlight the progress in this area, and propose a "wish list" of how the clinical implementation of regenerative strategies could be applicable to various human retinal diseases.


Assuntos
Anfíbios , Peixes , Animais , Camundongos , Humanos , Anfíbios/fisiologia , Peixes/fisiologia , Retina , Sistema Nervoso Central , Mamíferos
16.
Ecol Lett ; 26(1): 147-156, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36450612

RESUMO

An individual's fitness cost associated with environmental change likely depends on the rate of adaptive phenotypic plasticity, and yet our understanding of plasticity rates in an ecological and evolutionary context remains limited. We provide the first quantitative synthesis of existing plasticity rate data, focusing on acclimation of temperature tolerance in ectothermic animals, where we demonstrate applicability of a recently proposed analytical approach. The analyses reveal considerable variation in plasticity rates of this trait among species, with half-times (how long it takes for the initial deviation from the acclimated phenotype to be reduced by 50% when individuals are shifted to a new environment) ranging from 3.7 to 770.2 h. Furthermore, rates differ among higher taxa, being higher for amphibians and reptiles than for crustaceans and fishes, and with insects being intermediate. We argue that a more comprehensive understanding of phenotypic plasticity will be attained through increased focus on the rate parameter.


Assuntos
Aclimatação , Temperatura , Animais , Aclimatação/fisiologia , Fenótipo , Répteis/fisiologia , Anfíbios/fisiologia , Crustáceos/fisiologia , Peixes/fisiologia
17.
J Anim Ecol ; 91(12): 2424-2436, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36260356

RESUMO

Nested subset pattern (nestedness) has been raised to explain the distribution of species on islands and habitat fragments for over 60 years. However, previous studies on nestedness focused on species richness and composition and overlooked the role of species traits and phylogeny in generating and explaining nestedness. To address this gap, we sampled amphibians on 37 land-bridge islands in the largest archipelago of China, the Zhoushan Archipelago, to explore nestedness as well as the underlying causal processes through three facets of diversity, that is, taxonomic, functional and phylogenetic diversity. The taxonomic nestedness was measured through organizing the species incidence matrix to achieve a maximum value, while the functional and phylogenetic nestedness were quantified by incorporating the similarity of species in terms of their ecological traits and phylogeny. We also obtained six island characteristics and seven species traits as predictors of nestedness. Amphibian metacommunities were significantly nested in these three facets of diversity. When relating different predictors to nestedness, island area, habitat diversity and species traits were highly correlated with taxonomic nestedness. Moreover, island area and habitat diversity significantly influenced functional and phylogenetic nestedness. Therefore, the results support the selective extinction and habitat nestedness hypotheses. Interestingly, although we did not observe significant influences of island isolation on taxonomic nestedness, functional and phylogenetic diversities were significantly higher than expected when matrices were ordered by increasing distance to mainland. The result suggests that there are more functionally and phylogenetically diverse species on less-isolated islands, reflecting a selective colonization process overlooked by the traditional analysis of taxonomic nestedness. Although the three facets of nestedness and underlying processes were largely congruent, we detected the distance-related functional and phylogenetic nestedness for amphibian assemblages. Therefore, we highlight that a framework that simultaneously considers taxonomic, functional and phylogenetic nestedness can contribute to a complementary understanding of nestedness processes. In addition, it also improves our ability to conserve insular biodiversity from different perspectives.


Assuntos
Anfíbios , Filogenia , Animais , China , Anfíbios/classificação , Anfíbios/fisiologia , Ecossistema , Distribuição Animal , Especificidade da Espécie
18.
J Exp Zool A Ecol Integr Physiol ; 337(7): 746-759, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35674344

RESUMO

Current climate change is generating accelerated increase in extreme heat events and organismal plastic adjustments in upper thermal tolerances, (critical thermal maximum -CTmax ) are recognized as the quicker mitigating mechanisms. However, current research casts doubt on the actual mitigating role of thermal acclimation to face heat impacts, due to its low magnitude and weak environmental signal. Here, we examined these drawbacks by first estimating maximum extent of thermal acclimation by examining known sources of variation affecting CTmax expression, such as daily thermal fluctuation and heating rates. Second, we examined whether the magnitude and pattern of CTmax plasticity is dependent of the thermal environment by comparing the acclimation responses of six species of tropical amphibian tadpoles inhabiting thermally contrasting open and shade habitats and, finally, estimating their warming tolerances (WT = CTmax - maximum temperatures) as estimator of heating risk. We found that plastic CTmax responses are improved in tadpoles exposed to fluctuating daily regimens. Slow heating rates implying longer duration assays determined a contrasting pattern in CTmax plastic expression, depending on species environment. Shade habitat species suffer a decline in CTmax whereas open habitat tadpoles greatly increase it, suggesting an adaptive differential ability of hot exposed species to quick hardening adjustments. Open habitat tadpoles although overall acclimate more than shade habitat species, cannot capitalize this beneficial increase in CTmax, because the maximum ambient temperatures are very close to their critical limits, and this increase may not be large enough to reduce acute heat stress under the ongoing global warming.


Assuntos
Anfíbios , Mudança Climática , Termotolerância , Aclimatação , Anfíbios/fisiologia , Animais , Ecossistema , Larva/fisiologia , Temperatura , Termotolerância/fisiologia
19.
J Exp Biol ; 225(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35662342

RESUMO

Caecilians are predominantly burrowing, elongate, limbless amphibians that have been relatively poorly studied. Although it has been suggested that the sturdy and compact skulls of caecilians are an adaptation to their head-first burrowing habits, no clear relationship between skull shape and burrowing performance appears to exist. However, the external forces encountered during burrowing are transmitted by the skull to the vertebral column, and, as such, may impact vertebral shape. Additionally, the muscles that generate the burrowing forces attach onto the vertebral column and consequently may impact vertebral shape that way as well. Here, we explored the relationships between vertebral shape and maximal in vivo push forces in 13 species of caecilian amphibians. Our results show that the shape of the two most anterior vertebrae, as well as the shape of the vertebrae at 90% of the total body length, is not correlated with peak push forces. Conversely, the shape of the third vertebrae, and the vertebrae at 20% and 60% of the total body length, does show a relationship to push forces measured in vivo. Whether these relationships are indirect (external forces constraining shape variation) or direct (muscle forces constraining shape variation) remains unclear and will require quantitative studies of the axial musculature. Importantly, our data suggest that mid-body vertebrae may potentially be used as proxies to infer burrowing capacity in fossil representatives.


Assuntos
Anfíbios , Crânio , Anfíbios/fisiologia , Animais , Cabeça , Coluna Vertebral
20.
Science ; 376(6600): 1459-1466, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35737773

RESUMO

Comparative studies of mortality in the wild are necessary to understand the evolution of aging; yet, ectothermic tetrapods are underrepresented in this comparative landscape, despite their suitability for testing evolutionary hypotheses. We present a study of aging rates and longevity across wild tetrapod ectotherms, using data from 107 populations (77 species) of nonavian reptiles and amphibians. We test hypotheses of how thermoregulatory mode, environmental temperature, protective phenotypes, and pace of life history contribute to demographic aging. Controlling for phylogeny and body size, ectotherms display a higher diversity of aging rates compared with endotherms and include phylogenetically widespread evidence of negligible aging. Protective phenotypes and life-history strategies further explain macroevolutionary patterns of aging. Analyzing ectothermic tetrapods in a comparative context enhances our understanding of the evolution of aging.


Assuntos
Envelhecimento , Anfíbios , Evolução Biológica , Répteis , Anfíbios/classificação , Anfíbios/fisiologia , Animais , Longevidade , Filogenia , Répteis/classificação , Répteis/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...