Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteome Res ; 15(10): 3489-3499, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27546880

RESUMO

Glycosylation is an abundant and important protein modification with large influence on the properties and interactions of glycoconjugates. Human plasma N-glycosylation has been the subject of frequent investigation, revealing strong associations with physiological and pathological conditions. Less well-characterized is the plasma N-glycosylation of the mouse, the most commonly used animal model for studying human diseases, particularly with regard to differences between strains and sexes. For this reason, we used MALDI-TOF(/TOF)-MS(/MS) assisted by linkage-specific derivatization of the sialic acids to comparatively analyze the plasma N-glycosylation of both male and female mice originating from BALB/c, CD57BL/6, CD-1, and Swiss Webster strains. The combined use of this analytical method and the recently developed data processing software named MassyTools allowed the relative quantification of the N-glycan species within plasma, the distinction between α2,3- and α2,6-linked N-glycolylneuraminic acids (due to respective lactonization and ethyl esterification), the detection of sialic acid O-acetylation, as well as the characterization of branching sialylation (Neu5Gcα2,3-Hex-[Neu5Gcα2,6-]HexNAc). When analyzing the glycosylation according to mouse sex, we found that female mice present a considerably higher degree of core fucosylation (2-4-fold depending on the strain), galactosylation, α2,6-linked sialylation, and larger high-mannose type glycan species compared with their male counterparts. Male mice, on the contrary, showed on average higher α2,3-linked sialylation, branching sialylation, and putative bisection. These differences together with sialic acid acetylation proved to be strain-specific as well. Interestingly, the outbred strains CD-1 and Swiss Webster displayed considerably larger interindividual variation than inbred strains BALB/c and CD57BL/6, suggesting a strong hereditable component of the observed plasma N-glycome.


Assuntos
Glicosilação , Polissacarídeos/química , Animais , Animais Endogâmicos/metabolismo , Animais não Endogâmicos/metabolismo , Feminino , Humanos , Masculino , Camundongos , Polissacarídeos/sangue , Fatores Sexuais
2.
Behav Brain Res ; 223(1): 222-6, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21570428

RESUMO

The paucity of appropriate animal models for bipolar disorder hinders the research of the disorder and its treatments. Previous work suggests that Black Swiss (BS) mice may be a suitable model animal for behavioral domains of mania including reward-seeking, risk-taking, vigor, aggression and sensitivity to psychostimulants. These behaviors are high in BS mice compared with other strains and are responsive to the mood stabilizers lithium and valproate but not to the antidepressant imipramine. The current study evaluated the etiological validity of this model by assessing brain expression of two proteins implicated in affective disorders, ß-catenin and BDNF, in BS mice versus C57bl/6, A/J and CBA/J mice. Additionally, pharmacological validity was further tested by assessing the effects of risperidone in a behavioral battery of tests. ß-catenin and BDNF expression were evaluated in the frontal cortex and hippocampus of untreated BS, CBA/J, A/J and C57bl/6 mice by western blot. Subchronic 0.1 and 0.3mg/kg doses of risperidone were tested in a battery of behavioral tests for domains of mania. Expression of ß-catenin was found to be lower in the hippocampus of BS mice compared with the other strains. Reduced ß-catenin expression was not observed in the frontal cortex. BDNF expression levels were similar between strains in both the hippocampus and frontal cortex. In the behavioral tests, risperidone ameliorated amphetamine-induced hyperactivity without affecting other tests in the battery. These results offer additional pharmacological and possible etiological validity supporting the utilization of Black Swiss mice as a model for domains of mania.


Assuntos
Animais não Endogâmicos/psicologia , Transtorno Bipolar/metabolismo , Modelos Animais de Doenças , Anfetamina/farmacologia , Animais , Animais não Endogâmicos/metabolismo , Comportamento Animal/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Lobo Frontal/metabolismo , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Endogâmicos , Risperidona/farmacologia , Especificidade da Espécie , beta Catenina/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...